Lime-assisted hydrothermal humification and carbonization of sugar beet pulp: Unveiling the yield, quality, and phytotoxicity of products

Document Type : Research Paper

Authors

1 Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.

2 Department of Agrotechnology, Faculty of Agricultural Technology, University of Tehran, Pakdasht, Tehran, Iran.

3 Leibniz Institute for Agricultural Engineering and Bio-economy e.V. (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany.

Abstract

Hydrothermal carbonization (HTC) solid and liquid products may inhibit seed germination, necessitating post-treatment. The hydrothermal humification (HTH) method addresses this drawback by transforming inhibitory compounds, such as aromatics, into artificial humic acids (AHAs) and artificial fulvic acids (AFAs). This study introduces a novel approach by investigating the substitution of the commonly used alkaline agent in HTH, KOH, with hydrated lime to develop cost-effective hydrothermal fertilizers from sugar beet pulp, enriching them with AHAs. It assesses the effects of lime on AHA production and soluble organic compounds compared to KOH. The results indicate that lime significantly reduces furans (from 560 to 3.15 mg/kg DM in solid and from 344 to 3.86 mg/L in process liquid) and boosts sugars and organic acids, especially lactic acid (from 4.70 to 65.82 g/kg DM in solid and from 4.05 to 22.89 mg/L in process liquid), increasing hydrochar yield (68.8% with lime vs. 27.4% with KOH). Despite the lower AHA production with lime compared to KOH (3.47% vs. 15.50%), lime-treated hydrothermal products are abundant in calcium and magnesium, boasting a pH of 7. This property presents a safer and more efficient alternative to hydrothermal fertilizers. The characterization of AHAs aligns with standard and natural humic substances, while lime-assisted HTH products, applied at a level of 0.01% w/w, could significantly enhance wheat growth and nutrient uptake compared to the control group. Importantly, these products show no toxicity on Daphnia magna, underscoring their potential for sustainable agriculture.

Graphical Abstract

Lime-assisted hydrothermal humification and carbonization of sugar beet pulp: Unveiling the yield, quality, and phytotoxicity of products

Highlights

  • Lime can be considered a cost-effective alternative to KOH in hydrothermal humification.
  • Lime could significantly reduce aromatics while increasing sugars and acids.
  • Wet biomass outperformed dry biomass in the process, reducing the need for pre-drying.
  • A 0.01% addition of hydrothermal humification products notably enhanced plant growth.
  • Hydrothermal liquid products showed no toxicity in Daphnia magna bioassays.

Keywords


  1. Afolabi, O.O.D., Sohail, M., Cheng, Y.L., 2020. Optimisation and characterisation of hydrochar production from spent coffee grounds by hydrothermal carbonisation. Renewable Energy. 147, 1380-1391.
  2. Aiken, G.R., Mcknight, D.M., Wershaw, R.L., Maccarthy, P., 1986. Humic substances in soil, sediment, and water. 1985. Soil Sci. 142(5), 323.
  3. Bento, L.R., Spaccini, R., Cangemi, S., Mazzei, P., de Freitas, B.B., de Souza, A.E.O., Moreira, A.B., Ferreira, O.P., Piccolo, A., Bisinoti, M.C., 2021. Hydrochar obtained with by-products from the sugarcane industry: molecular features and effects of extracts on maize seed germination. Environ. Manage. 281, 111878.
  4. Bona, D., Lucian, M., Feretti, D., Silvestri, S., Zerbini, I., Merzari, F., Messineo, A., Volpe, M., 2023. Phytotoxicity and genotoxicity of agro-industrial digested sludge hydrochar: the role of heavy metals. Sci. Total Environ. 871, 162138.
  5. Cai, S., Zhang, Y., Hu, A., Liu, M., Wu, H., Wang, D., Zhang, W., 2023. Dissolved organic matter transformation mechanisms and process optimization of wastewater sludge hydrothermal humification treatment for producing plant biostimulants. Water Res. 235, 119910.
  6. Cao, Y., Jin, H., Zhu, N., Zhou, Z., 2023. High-efficiency fungistatic activity of vegetable waste-based humic acid related to the element composition and functional group structure. Process Saf. Environ. Prot. 169, 697-705.
  7. Celletti, S., Lanz, M., Bergamo, A., Benedetti, V., Basso, D., Baratieri, M., Cesco, S., Mimmo, T., 2021. Evaluating the aqueous phase from hydrothermal carbonization of cow manure digestate as possible fertilizer solution for plant growth. Front. Plant Sci. 12.
  8. Chen, Z., Fu, Q., Cao, Y., Wen, Q., Wu, Y., 2021. Effects of lime amendment on the organic substances changes, antibiotics removal, and heavy metals speciation transformation during swine manure composting. 262, 128342.
  9. Cunha, T.J.F., Novotny, E.H., Madari, B.E., Martin-Neto, L., de O Rezende, M.O., Canelas, L.P., de M Benites, V., 2009. Spectroscopy characterization of humic acids isolated from Amazonian dark earth soils (Terra Preta de Índio), in: Amazonian Dark Earths. Wim Sombroek’s Vision. Springer. 363-372.
  10. Deng, F., Cao, Z., Luo, Y., Wang, R., Shi, H., Li, D., 2023. Production of artificial humic acid from corn straw acid hydrolysis residue with biogas slurry impregnation for fertilizer application. Environ. Manage. 345, 118845.
  11. Dos Santos, J.V., Fregolente, L.G., Moreira, A.B., Ferreira, O.P., Mounier, S., Viguier, B., Hajjoul, H., Bisinoti, M.C., 2020. Humic-like acids from hydrochars: study of the metal complexation properties compared with humic acids from anthropogenic soils using PARAFAC and time-resolved fluorescence. Sci. Total Environ. 722, 137815.
  12. Efremenko, E., Stepanov, N., Senko, O., Lyagin, I., Maslova, O., Aslanli, A., 2023. Artificial humic substances as biomimetics of natural analogues: production, characteristics and preferences regarding their use. 8(8), 613.
  13. Fregolente, L.G., dos Santos, J.V., Mazzati, F.S., Miguel, T.B.A.R., de C. Miguel, E., Moreira, A.B., Ferreira, O.P., Bisinoti, M.C., 2021. Hydrochar from sugarcane industry by-products: assessment of its potential use as a soil conditioner by germination and growth of maize. Chem. Biol. Technol. Agric. 8, 1-13.
  14. Fregolente, L.G., Miguel, T.B.A.R., de Castro Miguel, E., de Almeida Melo, C., Moreira, A.B., Ferreira, O.P., Bisinoti, M.C., 2019. Toxicity evaluation of process water from hydrothermal carbonization of sugarcane industry by-products. Environ. Sci. Pollut. Res. 26, 27579-27589.
  15. García-Velásquez, C., Van der Meer, Y., 2023. Mind the Pulp: environmental and economic assessment of a sugar beet pulp biorefinery for biobased chemical production. Waste Manage. 155, 199-210.
  16. Ghorbani, M., Li, Q., Kianmehr, M.H., Arabhosseini, A., Sarlaki, E., Asefpour Vakilian, K., Varjani, S., Wang, Y., Wei, D., Pan, J., Aghbashlo, M., Tabatabaei, M., 2022. Highly digestible nitrogen-enriched straw upgraded by ozone-urea pretreatment: digestibility metrics and energy-economic analysis. Bioresour. Technol. 360, 127576.
  17. Griffiths, M.R., Strobel, B.W., Hama, J.R., Cedergreen, N., 2021. Toxicity and risk of plant-produced alkaloids to Daphnia magna. Environ. Sci. Eur. 33, 1-12.
  18. Islam, Md Azharul, Paul, J., Akter, J., Islam, Md Atikul, Limon, S.H., 2021. Conversion of chicken feather waste via hydrothermal carbonization: process optimization and the effect of hydrochar on seed germination of Acacia auriculiformis. J. Mater. Cycles. Waste Manage. 23, 1177-1188.
  19. Jiao, N., Zhu, Y., Li, H., Yu, Y., Xu, Y., Zhu, J., 2023. Two-Step Hydrothermal pretreatments for co-producing xylooligosaccharides and humic-like acid from vinegar residue. Fermentation. 9(7), 589.
  20. Kohzadi, S., Marzban, N., Zandsalimi, Y., Godini, K., Amini, N., Puttaiah, S.H., Lee, S.M., Zandi, S., Ebrahimi, R., Maleki, A., 2023. Machine learning-based modeling of malachite green adsorption on hydrochar derived from hydrothermal fulvification of wheat straw. Heliyon. 9.
  21. Lang, Q., Guo, X., Wang, C., Li, L., Li, Y., Xu, J., Zhao, X., Li, J., Liu, B., Sun, Q., 2023. Characteristics and phytotoxicity of hydrochar-derived dissolved organic matter: effects of feedstock type and hydrothermal temperature. J. Environ. Sci.
  22. Li, C., Cai, R., Hasan, A., Lu, X., Yang, X., Zhang, Y., 2023. Fertility assessment and nutrient conversion of hydrochars derived from co-hydrothermal carbonization between livestock manure and corn cob. J. Environ. Chem. Eng. 11(1), 109166.
  23. Li, X., Zhi, Y., Jia, M., Wang, X., Tao, M., Wang, Z., Xing, B., 2024. Properties and photosynthetic promotion mechanisms of artificial humic acid are feedstock-dependent. Carbon Res. 3, 4.
  24. Lin, C., Xin, Z., Yuan, S., Sun, J., Dong, B., Xu, Z., 2024. Effects of production temperature on the molecular composition and seed-germination-promoting properties of sludge-based hydrochar-derived dissolved organic matter. Water Res. 251, 121133.
  25. Marzban, N., Libra, J.A., Hosseini, S.H., Fischer, M.G., Rotter, V.S., 2022. Experimental evaluation and application of genetic programming to develop predictive correlations for hydrochar higher heating value and yield to optimize the energy content. J. Environ. Chem. Eng. 10(6), 108880.
  26. Marzban, N., Libra, J.A., Rotter, V.S., Ro, K.S., Moloeznik Paniagua, D., Filonenko, S., 2023. Changes in selected organic and inorganic compounds in the hydrothermal carbonization process liquid while in storage. ACS Omega. 8(4), 4234-4243.
  27. Melo, T.M., Bottlinger, M., Schulz, E., Leandro, W.M., de Aguiar Filho, A.M., Wang, H., Ok, Y.S., Rinklebe, J., 2018. Plant and soil responses to hydrothermally converted sewage sludge (sewchar). Chemosphere. 206, 338-348.
  28. Muir, B.M., 2022. Sugar Beet Processing to Sugars, in: Misra, V., Srivastava, S., Mall, A.K. (Eds.), Sugar Beet Cultivation, Management and Processing. Springer Nature Singapore, Singapore. 837-862.
  29. OECD, 2004. Test No. 202: daphnia acute immobilisation test. OECD publishing.
  30. Oleszczuk, P., Jośko, I., Kuśmierz, M., 2013. Biochar properties regarding to contaminants content and ecotoxicological assessment. J. Hazard. Mater. 260, 375-382.
  31. Peng, X., Gai, S., Cheng, K., Yang, F., 2023. Hydrothermal humification mechanism of typical agricultural waste biomass: a case study of corn straw. Green Chem. 25(4), 1503-1512.
  32. Petrovič, A., Cenčič Predikaka, T., Škodič, L., Vohl, S., Čuček, L., 2023. Hydrothermal co-carbonization of sewage sludge and whey: enhancement of product properties and potential application in agriculture. Fuel. 350, 128807.
  33. Qi, C., Yin, R., Cheng, J., Xu, Z., Chen, J., Gao, X., Li, G., Nghiem, L., Luo, W., 2022. Bacterial dynamics for gaseous emission and humification during bio-augmented composting of kitchen waste with lime addition for acidity regulation. Total Environ. 848, 157653.
  34. Rodríguez-Espinosa, T., Papamichael, I., Voukkali, I., Gimeno, A.P., Candel, M.B.A., Navarro-Pedreño, J., Zorpas, A.A., Lucas, I.G., 2023. Nitrogen management in farming systems under the use of agricultural wastes and circular economy. Sci. Total Environ. 876, 162666.
  35. Sarlaki, E., Ghofrani-Isfahani, P., Ghorbani, M., Benedini, L., Kermani, A., Rezaei, M., Marzban, N., Filonenko, S., Peng, W., Tabatabaei, M., He, Y., Aghbashlo, M., Kianmehr, M.H., Angelidaki, I., 2024. Oxidation-alkaline-enhanced abiotic humification valorizes lignin-rich biogas digestate into artificial humic acids. J. Clean. Prod. 435, 140409.
  36. Sarlaki, E., Kianmehr, M.H., Ghorbani, M., Kermani, A.M., Asefpour Vakilian, K., Angelidaki, I., Wang, Y., Gupta, V.K., Pan, J., Tabatabaei, M., Aghbashlo, M., 2023a. Highly humified nitrogen-functionalized lignite activated by urea pretreatment and ozone plasma oxidation. Chem. Eng. J. 456, 140978.
  37. Sarlaki, E., Kianmehr, M.H., Kermani, A., Ghorbani, M., Ghorbani Javid, M., Rezaei, M., Peng, W., Lam, S.S., Tabatabaei, M., Aghbashlo, M., Chen, X., 2023b. Valorizing lignite waste into engineered nitro-humic fertilizer: advancing resource efficiency in the era of a circular economy. Sustainable Chem. Pharm. 36, 101283.
  38. Shan, G., Li, W., Bao, S., Li, Y., Tan, W., 2023. Co-hydrothermal carbonization of agricultural waste and sewage sludge for product quality improvement: fuel properties of hydrochar and fertilizer quality of aqueous phase. J. Environ. Manage. 326, 116781.
  39. Shao, Y., Bao, M., Huo, W., Ye, R., Ajmal, M., Lu, W., 2023a. From biomass to humic acid: Is there an accelerated way to go?. Chem. Eng. J. 452, 139172.
  40. Shao, Y., Bao, M., Huo, W., Ye, R., Liu, Y., Lu, W., 2022. Production of artificial humic acid from biomass residues by a non-catalytic hydrothermal process. J. Clean. Prod. 335, 130302.
  41. Shao, Y., Li, Z., Long, Y., Zhao, J., Huo, W., Luo, Z., Lu, W., 2023b. Direct humification of biowaste with hydrothermal technology: a review. Sci. Total Environ. 908, 168232.
  42. Shrestha, A., Acharya, B., Farooque, A.A., 2021. Study of hydrochar and process water from hydrothermal carbonization of sea lettuce. Renewable Energy. 163, 589-598.
  43. Stevenson, F.J., 1994. Humus chemistry: genesis, composition, reactions. John Wiley and Sons.
  44. Tkachenko, V., Ambrosini, S., Marzban, N., Pandey, A., Vogl, S., Antonietti, M., Filonenko, S., 2024. Fulvic acid modification with phenolic precursors towards controllable solubility performance. RSC Sustainability.
  45. Tkachenko, V., Marzban, N., Vogl, S., Filonenko, S., Antonietti, M., 2023. Chemical insights into the base-tuned hydrothermal treatment of side stream biomasses. Sustainable Energy Fuels. 7(3), 769-777.
  46. Usmani, Z., Sharma, M., Diwan, D., Tripathi, M., Whale, E., Jayakody, L.N., Moreau, B., Thakur, V.K., Tuohy, M., Gupta, V.K., 2022. Valorization of sugar beet pulp to value-added products: a review. Bioresour. Technol. 346, 126580.
  47. VDLUFA, 2012. Handbuch der landwirtschaftlichen versuchs-und untersuchungsmethodik (vdlufa-methodenbuch), bd. Iii. Die chemische untersuchung von futtermitteln.
  48. Wang, R., Li, D., Deng, F., Cao, Z., Zheng, G., 2024. Production of artificial humic acid from rice straw for fertilizer production and soil improvement. Sci. Total Environ. 906, 167548.
  49. Wang, R., Li, D., Zheng, G., Cao, Z., Deng, F., 2023. Co-production of water-soluble humic acid fertilizer and crude cellulose from rice straw via urea assisted artificial humification under room temperature. Chem. Eng. J. 455, 140916.
  50. Wang, X., Shen, Y., Liu, X., Ma, T., Wu, J., Qi, G., 2022. Fly ash and H2O2 assisted hydrothermal carbonization for improving the nitrogen and sulfur removal from sewage sludge. Chemosphere. 290, 133209.
  51. Wang, Y.Y., Jing, X.R., Li, L.L., Liu, W.J., Tong, Z.H., Jiang, H., 2017. Biotoxicity evaluations of three typical biochars using a simulated system of fast pyrolytic biochar extracts on organisms of three kingdoms. ACS Sustainable Chem. Eng. 5(1), 481-488.
  52. Wei, S., Li, Zichen, Sun, Y., Zhang, J., Ge, Y., Li, Zhili, 2022. A comprehensive review on biomass humification: recent advances in pathways, challenges, new applications, and perspectives. Renew. Sust. Energy Reviews. 170, 112984.
  53. Xu, Z., Qi, C., Zhang, L., Ma, Y., Li, G., Nghiem, L.D., Luo, W., 2021. Regulating bacterial dynamics by lime addition to enhance kitchen waste composting. Bioresour. Technol. 341, 125749.
  54. Yang, F., Fu, Q., Antonietti, M., 2023. Anthropogenic, Carbon-Reinforced Soil as a Living Engineered Material. Chem. Rev. 123(5), 2420-2435.
  55. Yang, F., Tang, C., Antonietti, M., 2021. Natural and artificial humic substances to manage minerals, ions, water, and soil microorganisms. Chem. Soc. Rev. 50(10), 6221-6239.
  56. Yang, F., Zhang, S., Cheng, K., Antonietti, M., 2019. A hydrothermal process to turn waste biomass into artificial fulvic and humic acids for soil remediation. Sci. Total Environ. 686, 1140-1151.
  57. Yin, S., Zhang, X., Suo, F., You, X., Yuan, Y., Cheng, Y., Zhang, C., Li, Y., 2022. Effect of biochar and hydrochar from cow manure and reed straw on lettuce growth in an acidified soil. Chemosphere. 298, 134191.
  58. Zhi, Y., Li, X., Lian, F., Wang, C., White, J.C., Wang, Z., Xing, B., 2022. Nanoscale Iron trioxide catalyzes the synthesis of auxins analogs in artificial humic acids to enhance rice growth. Sci. Total Environ. 848, 157536.