[1] Abdel-Ghani, N.T., El-Chaghaby, G.A., 2014. Biosorption of metal ions removal from aqueous solutions: a review of recent studies. Int. J. Latest Res. Sci. Technol. 3(1), 24-42.
[2] Ahuja, P., Gupta, R., Saxena, R.K., 1999. Zn2+ biosorption by Oscillatoria anguistissima. Process Biochem. 34(1), 77-85.
[3] Aksu, A., 2001. Equilibrium and kinetic modelling of cadmium (II) biosorption by C. vulgaris in a batch system: effect of temperature. Sep. Purif. Technol. 21(3), 285-294.
[4] Aksu, Z., 1998. Immobilized algal technology for wastewater treatment purposes, in: Tam, N.F.Y., Wong, Y.S. (Eds). Wastewater treatment with algae. Springer-verlag, New York.
[5] Al-Daghistani, H., 2012. Bio-remediation of Cu, Ni and Cr from rotogravure wastewater using immobilized, dead, and live biomass of indigenous thermophilic bacillus species. Internet J. Microbiol. 10(1).
[6] Alfarraa, A., Frackowiak, E., Beguin, F., 2004. The HSAB concept as a means to interpret the adsorption of metal ions onto activated carbons. Appl. Surf. Sci. 228(1-4), 84-92.
[7] Al-Gheethi, A., Mohamed, R., Noman, E., Norli, I., Kadir, O., 2017. Removal of heavy metal ions from aqueous solutions using Bacillus subtilis biomass pre-treated by supercritical carbon dioxide.Clean-Soil Air Water. 45(10), 1700356.
[8] Arivalagan, P., Singaraj, D., Haridass, V., Kaliannan, T., 2014. Removal of cadmium from aqueous solution by batch studies using Bacillus cereus. Ecol. Eng. 71, 728-735.
[9] Asmal, M., Khan, A.H., Ahmad, S., Ahmad, A., 1998. Cole of sawdust in the removal of copper (II) from industrial wastes. Water Res. 32(10), 3085-3091.
[10] Atkinson, B.W., Bux, F., Kasan, H.C., 1998. Considerations for application of biosorption technology to remediate metal-contaminated industrial effluents. Water S.A. 24(2), 129-135.
[11] Bai, R.S., Abraham, T.E., 2001. Biosorption of Cr (VI) from aqueous solution by Rhizopus nigricans. Bioresur. Technol. 79(1), 73-81.
[12] Bai, R.S., Abraham, T.E., 2003. Studies on chromium (VI) adsorption-desorption using immobilized fungal biomass. Bioresour. Technol. 87(1), 17-26.
[13] Barka, N., Abdennouri, M., El Makhfouk, M., Qourzal, S., 2013. Biosorption characteristics of cadmium and lead onto eco–friendly dried cactus (Opuntia ficus indica) cladodes. J. Environ. Chem. Eng. 1(3), 144-149.
[14] Benefield, L.D., Judkins, J.F., Weand, B.L., 1982. Process Chemistry for water and wastewater treatment. Englewood Cliffs, New Jersey.
[15] Blazquez, G., Hernainz, F., Calero, M., Martn-Lara, M.A., Tenorio, G., 2009. The effect of pH on the biosorption of Cr (III) and Cr (VI) with olive stone. Chem. Eng. J. 148(2-3), 473-479.
[16] Britton, H.T.S., 1943. The application of electrometric methods to the study of some ionic reactions. Ann. Rep. Prog. Chem. 40, 43-59.
[17] Brown, P.A., Gill, S.A., Allen, S.J., 2000. Metal removal from wastewater using peat. Water Res. 34(16), 3907-3916.
[18] Bueno, B.Y.M., Torem, M.L., Molina, F., de Mesquita, L.M.S., 2008. Biosorption of lead (II), Chromium (III) and Copper (II) by R. opacus: equilibrium and kinetic studies. Miner. Eng. 21(1), 65-75.
[19] Bulgariu, D., Bulgariu, L., 2012. Equilibrium and kinetics studies of heavy metal ions biosorption on green algae waste biomass. Bioresour. Technol. 103(1), 489-493.
[20] Burrows, A., Holman, J., Parsons, A., Pilling, G., 2009. Chemistry3: introducing inorganic, organic, and physical chemistry. Oxford Univ. Press, New York.
[21] Cayllahua, J.E.B., de Carvalho, R.J., Torem, M.L., 2009. Evaluation of equilibrium, kinetic and thermodynamic parameters for biosorption of nickel (II) ions onto bacteria strain Rhodococcus opacus. Miner. Eng. 22(15), 1318-1325.
[22] Cheng, J., Yin, W., Chang, Z., Lundholm, N., Jiang, Z., 2016. Biosorption capacity and kinetics of cadmium (II) on live and dead Chlorella vulgaris. J. Appl. Phycol. 29(1), 211-221.
[23] Chojnacka, K., Chojnacki, A., Gorecka, H., 2005. Biosorption of Cr3+, Cd2+, and Cu2+ ions by blue-green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere. 59(1), 75-84.
[24] Costa, A.C.A., Franca, F.P., 1998. The behaviour of the microalgae Tetraselmis chuii in cadmium-contaminated solutions. Aquacult. Int. 6(1), 57-66.
[25] Costa, A.C.A., Franca, F.P., 2003. Cadmium interaction with micro algal cells, cyanobacteria cells, and seaweeds; toxicology and biotechnological potential for wastewater treatment. Mar. Biotechnol. 5(2), 149-156.
[26] Crini, G., 2006. Non-conventional low-cost adsorbents for dye removal: a review. Bioresour. Technol. 97(9), 1061-1085.
[27] Darnall, D.W., Greene, B., Hosea, M., McPherson, R.A., Henzl, M., Alexander, M.D., 1986. Recovery of heavy metals by immobilized algae:in trace metal removal from aqueous solutions, Industrial division of the Royal Society of Chemistry Annual Chemical Congress, Thomson, R. (Ed.), 1-24, UK.
[28] Ekmekyapar, F., Aslan, A., Bayhan, Y.K., Cakici, A., 2006. Biosorption of copper (II) by nonliving lichen biomass of Cladonia rangiformis hoffm. J. Hazard. Mater. 137(1), 293-298.
[29] Elliott, H.A., Huang, C.P., 1981. Adsorption Characteristic of Some Cu (II) Complexes on Alumino Silicates. Water Res. 15(7), 849-855.
[30] El-Sayed, M.T., 2012. The use of Saccharomyces cerevisiae for removing cadmium (II) from aqueous waste solutions. Afr. J. Microbiol. Res. 6(41), 6900-6910.
[31] Esposito, A., Pagnanell, F., Veglio, F., 2002. pH-related equilibria models for biosorption in single metal systems. Chem. Eng. Sci. 57(3), 307-313.
[32] Farooq, U., Kozinski, J.A., Khan, M.A., Athar, M., 2010. Biosorption of heavy metal ions using wheat based biosorbents-a review of the recent literature. Bioresour. Technol. 101(14), 5043-5053.
[33] Fiol, N., Villaescusa, I., Martinez, M., Miralles, N., Poch, J., Serarols, J., 2006. Sorption of Pb (II), Ni (II), Cu (II) and Cd (II) from aqueous solution by olive stone waste. Sep. Purif. Technol. 50(1), 132-140.
[34] Flouty, R., Estephane, G., 2012. Bioaccumulation and biosorption of copper and lead by a unicellular algae Chlamydomonas reinhardtii in single and binary metal systems: a comparative study. J. Environ. Manage. 111, 106-114.
[35] Fraile, A., Penche, S., Gonzalez, F., Blazquez, M.L., Munoz, J.A., Ballester, A., 2005. Biosorption of copper, zinc, cadmium and nickel by Chlorella vulgaris. Chem. Ecol. 21(1), 61-75.
[36] Gadd, G.M., 2009. Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J. Chem. Technol. Biotechnol. 84(1), 13-28.
[37] Geisweid, H.J., Urbach, W., l983. Sorption of cadmium by the green microalgae Chlorella vulgaris, Ankistrodesmus braunii and Bremosphaera viridis. Zeitschrift für Pflanzenphysiologie. 109(2), 127-141.
[38] Gipps, J.F., Coller, B.A., 1980. Effect of physical and culture conditions on uptake of Cadmium by Chlorella pyrenoidosa. Mar. Freshwater Res. 31(6), 747-755.
[39] Gray, N.F., 1999. Water Technology. John Wiley and Sons, New York.
[40] Greene, B., Hosea, M., McPherson, R., Henzl, M., Alexander, M.D., Dennis, W., Darnall, D.W., 1986. Interaction of gold (I) and gold (III) complexes with algal biomass. Environ. Sci. Technol. 20(6), 627-632.
[41] Grima, E.M., Belarbia, E.H., Fernandez, F.G.A., Medina, A.R., Chisti, Y., 2003. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol. Adv. 20(7-8), 491-515.
[42] Gupta, V.K., Rastogi, A., 2008. Equilibrium and kinetic modelling of cadmium (II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase. J. Hazard. Mater. 153(1-2), 759-766.
[43] Gupta, V.K., Rastogi, A., Nayak, A., 2010. Biosorption of nickel onto treated alga (Oedogonium hatei): application of isotherm and kinetic models. J. Colloid Interface Sci. 342(2), 533-539.
[44] Holan, Z.R., Volesky, B., Prasetyo, I., 1993. Biosorption of Cadmium by biomass of marine algae. Biotechnol. Bioeng. 41(8), 819-825.
[45] Horsfall, M., Ayebaemi, I., 2005. Effect of metal ion concentration on the biosorption of Pb2+ and Cd2+ by Caladium bicolor (wild cocoyam). Afr. J. Biotechnol. 4(2), 191-196.
[46] Huang, F., Guo, C.L., Lu, G.N., Yi, X.Y., Zhu, L.D., Dang, Z., 2014. Bioaccumulation characterization of Cadmium by growing Bacillus cereus RC-1 and its mechanism. Chemosphere. 109, 134-142.
[47] Huang, Y.C., Koseoglu, S.S., 1993. Separation of heavy metals from industrial waste streams by membrane separation technology. Waste Manage. 13(5-7), 481-501.
[48] Ismail, E.S., Vieira, J.D.G., Amaral, A., 2015. Principle, techniques and application of biocatalyst immobilization for industrial application. Appl. Microbiol. Biotechnol. 99(5), 2065-2082.
[49] Javanbakht, V., Alavi, S.A., Zilouei, H., 2014. Mechanisms of heavy metal removal using microorganisms as biosorbent. Water Sci. Technol. 69(9), 1775-1787.
[50] Jjemba, P.K., 2004. Interaction of metals and metalloids with microorganisms in the environment, in: Jjemba, P.K. (Ed.), Environmental Microbiology-Principles and Applications. Science Publishers, New Hampshire. 257-270.
[51] Junlian, Q., Lei, W., XiaoHua, F., GunagHong, Z., 2010. Comparative Study on the Ni2+ biosorption capacity and properties of living and dead Pseudomonas putida cells. Iran. J. Chem. Chem. Eng. 29(2), 159-167.
[52] Kim, K.W., Kang, S.Y., 2006. Bacterial Biosorption of trace elements, in Prasad, M.N.V., Sajwan, K.S., Naidu, R. (Eds.), Trace elements in environment: Biogeochemistry, Biotechnology and Bioremediation. CRC Press, Boca Raton.
[53] Kok, F.N., Bozoglu, F., Hasirci, V., 2001. Immobilization of acetylcholine-esterase and choline oxidase in/on pHEMA membrane for biosensor construction. J. Biomater. Sci. Polym. 12(11), 1161-1176.
[54] Kök, F.N., Hasirci, V., Arica, M.Y., 2001. In: Wise, D.L., Trantolo, D.J., Cichon, E.J., Inyang, H.I., Stottmeister, U. (Eds.), Bioremediation of contaminated soils. CRC Press.
[55] Leusch, A., Holan, Z.R., Volesky, B., 1995. Biosorption of heavy metals (Cd, Cu, Ni, Pb, Zn) by chemically-reinforced biomass of marine algae. J. Chem. Technol. Biotechnol. 62(3), 279-288.
[56] Levy, J.L., Angel, B.M., Stauber, J.L., Poon, W.L., Simpson, S.L., Cheng, S.H., Jolley, D.F., 2008. Uptake and internalisation of copper by three marine microalgae: comparison of copper-sensitive and copper-tolerant species. Aquat. Toxicol. 89(2), 82-93.
[57] Li, H., Lin, Y., Guan, W., Chang, J., Xu, L., Guo, J., We, G., 2010. Biosorption of Zn (II) by live and dead cells of Steptomyces ciscaucasicus strain CCNWHX 72-14. J. Hazard. Mat. 179(1-3), 151-159.
[58] Li, X., Li, D., Yan, Z., Ao, Y., 2018. Adsorption of Cadmium by live and dead biomass of plant growth-promoting rhizobacteria. RSC. Adv. 8(58), 33523-33533.
[59] Ligler, F.S., Taitt, C.R., 2011. Optical biosensors: today and tomorrow. Elsevier.
[60] Liu, Y., Qilin, C., Luo, F., Chen, J., 2009. Biosorption of Cd2+, Cu2+, Ni2+ and Zn2+ ions from aqueous solutions by pretreated biomass of brown algae. J. Harzard. Mater. 163(2-3), 931-938.
[61] Lodeiro, P., Barriada, J.L., Herrero, R., De Vicente, M.S., 2006. The marine macroalga Cystoseira baccata as biosorbent for cadmium (II) and lead (II) removal: kinetic and equilibrium studies. Environ. Pollut. 142(2), 264-273.
[62] Machado, M.D., Janssens, S., Soares, H.M.V.M., Soares, E.V., 2009. Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: advantages of using dead biomass. J. Appl. Microbiol. 106(6), 1792-1804.
[63] Mack, C., Wilhelmi, B., Duncan, J.R., Burgess, J.E., 2007. Biosorption of precious metals. Biotechnol. Adv. 25(3), 264-271.
[64] Madrid, Y., Camara, C., 1997. Biological substrates for metal preconcentration and speciation. TrAC, Trends Anal. Chem. 16(1), 36-44.
[65] Mata, Y.N., Blazquez, M.L., Ballester, A., Gonzalez, F., Munoz, J.A., 2008. Characterization of the biosorption of Cadmium, Lead and Copper with the brown alga Fucus vesiculosus. J. Hazard. Mater. 158(2-3), 316-323.
[66] Monteiro, C.M., Castro, P.M.L., 2012. Metal uptake by microalgae: underlying mechanisms and practical applications. Biotechnol. Prog. 28(2), 299-311.
[67] Munoz, R., Alvarez, M.T., Munoz, A., Terrazas, E., Guieysse, B., Mattiasson, B., 2006. Sequential removal of heavy metal ions and organic pollutants using an algal-bacterial consortium. Chemosphere. 63(6), 903-911.
[68] Nordstrom, D.K., Majzlan, J., Königsberger, E., 2014. Thermodynamic properties for arsenic minerals and aqueous species. Rev. Mineral. Geochem. 79(1), 217-255.
[69] Oves, M., Khan, M.S., Zaidi, A., 2013. Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil. Saudi J. Biol. Sci. 20(2), 121-129.
[70] Ozer, A., Ozer D., 2003. Comparative study of the biosorption of Pb (II), Ni (II), and Cr (VI) ions onto S. cerevisiae: determination of biosorption heats. J. Hazard. Mater. 100(1-3), 219-229.
[71] Ozer, A., Ozer, D., Ekiz, H.I., 2005. The Equilibrium and Kinetic Modelling of the Biosorption of Copper (II) ions on Cladophora crispate. Adsorption. 10(4), 317-326.
[72] Padmavathy, V., Vasudevan, P., Dhingra, S.C., 2003. Biosorption of nickel (II) ions on Baker’s yeast. Process Biochem. 38(10), 1389-1395.
[73] Parsons, J.G., Gardea-Torresdey, J.L., Tiemann, K.J., Gamez, G., 2003. Investigation of trace level binding of PtCl6 and PtCl4 to alfalfa biomass (Medicago sativa) using Zeeman graphite furnace atomic absorption spectrometry. Anal. Chim. Acta. 478(1), 139-145.
[74] Pawlik-Skowronska, B., 2003. Resistance, accumulation and allocation of zinc in two ecotypes of the green alga Stigeoclonium tenue Kutz. coming from habitats of different heavy metal concentrations. Aquat. Bot. 75(3), 189-198.
[75] Pearson, R.G., 1963. Hard and Soft Acids and Bases. J. Am. Chem. Soc. 85(22), 3533-3539.
[76] Pearson, R.G., 1966. Acids and Bases. Science. 151, 172-177.
[77] Pereira, S., Micheletti, E., Zille, A., Santos, A., Moradas-Ferreira, P., Tamagnini, P., De Philippis, R., 2011. Using extracellular polymeric substances (EPS) producing cyanobacteria for the bioremediation of heavy metals: do cations compete for the EPS functional groups and also accumulate inside the cell?. Microbiology. 157(2), 451- 458.
[78] Perez-Rama, M., Lopez, C.H., Alonso, J.A., Vaamonde, E.T., 2001. Class III metalothioneins in response to cadmium toxicity in the marine microalga Tetraselmis suecica (Kylin) Butch. Environ. Toxicol. Chem. 20(9), 2061-2066.
[79] Puranik, P.R., Paknikar, K.M., 1999. Biosorption of lead, Cadmium, and Zinc by citrobacter strain MCM B-181: characterization studies. Biotechnol. Prog. 15(2), 228-238.
[80] Raize, O., Argaman, Y., Yannai, S., 2004. Mechanisms of biosorption of different heavy metals by brown marine macroalgae. Biotechnol. Bioeng. 87(4), 451-458.
[81] Ray, L., Paul, S., Bera, D., Chattopadhyay, P., 2006. Bioaccumulation of Pb (II) from aqueous solutions by Bacillus cereus M1 16. J. Hazard. Subst. Res. 5.
[82] Robinson, P.K., 1998. Immobilized algal technology for wastewater treatment purposes, in Tam, N.F.Y., Wong, Y.S. (Eds.), Wastewater treatment with algae. Springer-verlag, New York.
[83] Romera, E., Gonzalez, F., Ballester, A., Blazquez, M.L., Munoz, J.A., 2007. Comparative study of biosorption of heavy metals using different types of algae. Bioresour. Technol. 98(17), 3344-3353.
[84] Salleh., A.B., Abdul-Rahman, R.N.Z.R., Basri, M., 2006. New lipases and proteases. Nova Publishers.
[85] Saltah, K., Sari, A., Aydin, M., 2007. Removal of ammonium ion from aqueous solution by natural Turkish (Yildizeli) zeolite for environmental quality. J. Hazard. Mater. 141(1), 258-263.
[86] Sari, A., Tuzen, M., Uluozlu, O.D., Soylak, M., 2007. Biosorption of Pb (II) and Ni (II) from aqueous solution by lichen (Cladonia furcata) biomass. Biochem. Eng. J. 37(2), 151-158.
[87] Sengil, I.A., Ozacar, M., 2009. Competitive biosorption of Pb2+, Cu2+, and Zn2+ ions from aqueous solutions onto valonia tannin resin. J. Hazard. Mater. 166(2-3), 1488-1494.
[88] Silver, S., Phung, L.T., 2005. A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J. Ind. Microbiol. Biotechnol. 32(11-12), 587-560.
[89] Skowroriski, T., 1984a. Energy-dependent transport of Cadmium by Stichococcus bacillaris. Chemosphere. 13(12), 1379-1384.
[90] Skowroriski, T., 1984b. Uptake of Cadmium by Stichococcus bacillaris. Chemosphere. 13(12), 1385-1389.
[91] Skowroriski, T., 1986. Adsorption of Cadmium on green microalga Stichococcus bacillaris. Chemosphere. 15(l), 69-76.
[92] Sulaymon, A.H., Mohammed, A.A., Al-Musawi, T.J., 2013. Competitive biosorption of lead, cadmium, copper, and arsenic ions using algae. Environ. Sci. Pollut. Res. 20(5), 3011-3023.
[93] Talaro, K.P., Chess, B., 2015. Foundations in microbiology. McGraw-Hill Education, New York.
[94] Taylor, R.F., Schultz, J.S., 1996. Handbook of chemical and biological sensors. CRC Press.
[95] Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J., 2012. Heavy Metals Toxicity and the Environment. EXS. 133-164.
[96] Terry, P.A., Stone, W., 2002. Biosorption of cadmium and copper contaminated water by Scenedesmus abundans. Chemosphere. 47(3), 249-255.
[97] Trevors, J.T., Stratton, G.W., Gadd, G.M., 1986. Cadmium transport, resistance, and toxicity in bacteria, algae, and fungi. Can. J. Microbiol. 32(6), 447-464.
[98] Tsezos, M., Remoudaki, E., Angelatou, V., 1996. A study of the effects of competing ions on the biosorption of metals. Int. Biodeterior. Biodegrad. 3(1), 19-29.
[99] Tunzun, I., Bayramoglu, G., Yalcin, E., Basaran, G., Celik, G., Arica, M.Y., 2005. Equilibrium and kinetic studies on biosorption of Hg(II), Cd(II), and Pb(II) ions onto microalgae Chlamydomonas reinhardtii. J. Environ. Manage. 77(2), 85-92.
[100] Ucun, H., Bayhan, Y.K., Kaya, Y., Cakici, A., Faruk Algur, A.O., 2002. Biosorption of chromium (VI) from aqueous solution by cone biomass of Pinus sylvestris. Bioresour. Technol. 85(2), 155-158.
[101] US, EPA., 2009. National Primary Drinking Water Regulations. United States Environmental Protection Agency EPA 816-F-09-004.
[102] Vannela, R., Verma, S.K., 2006. Co2+, Cu2+ and Zn2+ accumulation by cyanobacterium Spirulina platensis. Biotechnol. Prog. 22(5), 1282-1293.
[103] Vijayaraghavan, K., Yun, Y.S., 2008. Bacterial biosorbents and biosorption. Biotechnol. Adv. 26(3), 266-291.
[104] Volesky, B., Holan, Z.R., 1995. Biosorption of heavy metals. Biotechnol. Prog. 11(3), 235 -250.
[105] Volesky, B., 2001. Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy. 59(2-3), 203-216.
[106] Volesky, B., 2007. Biosorption and me. Water Res. 41(18), 4017-4029.
[107] Wang, J., Chen, N., 2009. Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 27(2), 195-226.
[108] Weber, W.J., Jr, 1985. Adsorption Theory, Concepts, and Modelsm, in Adsorption Technology: A Step-by-Step Approach to Process Evaluation and Application. Slejko, F. L. (Ed.), Marcel Dekker, New York. 1-35.
[109] Worms, I., Simon, D.F., Hassler, C.S., Wilkinson, K.J., 2006. Bioavailability of trace metals to aquatic microorganisms: importance of chemical, biological and physical processes on biouptake. Biochimie. 88(11), 1721-1731.
[110] Xiao, X., Luo, S., Zeng, G., Wei, W., Wan, Y., Chen, L., Guo, H., Cao, Z., Yang, I., Chen, J., Xi, Q., 2010. Biosorption of cadmium by endophytic fungi (EF) Microshaeropsis sp. LSE 10 isolated from cadmium hyperaccumulator solanum nigrum L. Bioresour. Technol. 101, 1668-1674.
[111] Yan, G., Viraraghava, T., 2000. Effect of pretreatment on the bioadsorption of heavy metals on Mucor rouxii. Water SA-Pretoria. 26(1), 119-124.
[112] Yang, J., Cao, J., Xing, G., Yuan, H., 2015. Lipid production combined with biosorption and bioaccumulation of Cadmium, Copper, Mangenese and Zinc by oleaginous microalgae Chlorella minutissima UTEX 2341. Bioresur. Technol. 175, 537-544.
[113] Zhou, P., Huang, J., Alfred, W.F., Wei, S., 1999. Heavy metals removal from wastewater in fluidized bed reactor. Water Res. 33(8), 1918-1924.