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Butanol is a key microbial product that provides a route from renewable carbohydrate resources to a "drop-in" liquid biofuel, 

broadening its market in the near future. The acceptable performance of butanol as a neat or a blended fuel in different engines 

both from the technical and environmental points of view has attracted a wide range of research for reviving the old acetone-

butanol-ethanol (ABE) fermentation. In this review, recent findings on fuel characteristics of butanol, different generations of 

substrate for large scale butanol production, and alternative process designs for upstream, mainstream, and downstream 

operations have been critically reviewed and discussed. In the upstream, studies devoted to designing and optimization of 

pretreatments based on prerequisites of butanol production, e.g., maximizing cellulose and hemicellulose recovery and 

minimizing lignin degradation, are presented. In the mainstream, different microbial systems and process integrations developed 

for facilitating ABE production (e.g., in-situ butanol removal) are scrutinized. Finally, innovations in ABE recovery and 

purification as "Achilles Heel" of butanol production processes which directly controls the energy return on investment (EROI), 

are reviewed and discussed. 
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➢Unique properties of butanol as a drop-in liquid 

biofuel are reviewed.

➢Innovations in ABE production are scrutinized in 

three categories, upstream, mainstream, and 

downstream.

➢Recent innovations in pretreatment for waste-

based butanol production are reviewed and 

discussed. 

➢Process integrations with significant effects on 

butanol production are presented.

➢Recent innovations for economically-viable 

butanol recovery are reviewed and discussed. 

©2020 BRTeam CC BY 4.0

mailto:h.amiri@ast.ui.ac.ir


Amiri / Biofuel Research Journal 28 (2020) 1256-1266 

 

 Please cite this article as: Amiri H. Recent innovations for reviving the ABE fermentation for production of butanol as a drop-in liquid biofuel. Biofuel Research 

Journal 27 (2020) 1256-1266.  DOI: 10.18331/BRJ2020.7.4.4  

 

 

Contents 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1. Introduction 

 
Alcoholic fuels have been widely suggested by pioneering engineers like 

Henry ford (Bernton et al., 2010), Charles Kettering (Kettering, 1919), and Sir 

Harry R. Ricardo (Ricardo, 1935), especially for internal combustion (IC) 
engines where anti-knock properties of alcoholic fuels are distinctive. 

Nevertheless, low-cost petroleum fuels have constantly precluded these eco-

friendly energy carriers from reaching their full capacity for over a century. 
However, the growing environmental and public health challenges faced due to 

the widespread utilization of fossil fuels have led to a renewed interest in 

alternative fuels, including alcoholic ones. The magnitude of these challenges 
and in particular global warming and climate change, and their adverse impacts 

on public health, demands an accelerated response (Watts at al., 2019). In other 
words, "gigaton problems need gigaton solutions" (Xu et al., 2010), and "sugar 

fermentation" for alcohol production from renewable carbohydrate resources is 

undoubtedly a major part of these solutions.  
Among alcoholic fuels, the four-carbon butanol (also known as n-butanol) 

obtained through sugar fermentation has attracted a great deal of interest for its 

properties as a liquid fuel. Butanol as neat or blended fuel has been evaluated 
for use in both spark-ignition (SI) engines (Szwaja and Naber, 2010; Gu et al., 

2012; Tornatore et al., 2012) and compression ignition (CI) engines (Zhang and 

Boehman, 2010; Doğan, 2011; Lujaji et al., 2011; Saisirirat et al., 2011). In 
2005, McEnally and Pfefferle showed that the combustion of butanol isomers 

was accompanied by the lower formation of benzene, a precursor of soot, 

leading to lower particulate matter (PM) emissions from engines. Therefore, 
butanol could be regarded as a drop-in biofuel that can be used in the existing 

engines and infrastructure broadening its current market (USD 5.58 billion) to 

the potential market of liquid biofuel (USD 250 billion) (BP Energy Outlook, 
2020). Besides, butanol is free from some of the major factors limiting the 

widespread application of fuel-grade ethanol. These include blending issues, 

high volatility, high hygroscopicity, high corrosiveness, and pipe transportation 

 

 

 

 

 
 

 

 
 

 

 

difficulties (Amiri and Karimi, 2018). For instance, the current US 

regulations allow butanol blending with gasoline up to 16%, while this 

stands at 10% in the case of ethanol (National Research Council, 2012).  

Despite its advantages, microbial production and purification of butanol 

are associated with some inherent challenges from the process point of 

view. Butanol is the most hydrophobic and toxic fermentation end product. 

Like ethanol, butanol is an amphipathic molecule. It is partitioned in the 

hydrophobic regions of the membrane, increasing the polarity of the 

membrane's hydrophobic core, which significantly affects the cell 

metabolism due to (1) membrane leakage and (2) disruption of the 

membranes' phospholipids and proteins. Interestingly, solvent-producing 

Clostridia can produce butanol up to the threshold inhibitory 

concentrations, i.e., 1.2-1.6%.  However, obtaining fuel-grade butanol from 

the relatively dilute beer is an energy-intensive process. In fact, the 

process's energy consumption may exceed the purified biofuel's energy 

content, questioning the process's main objective, which is a high energy 

return on investment (EROI). Tao et al. (2014) estimated the EROI of 

cellulosic butanol as 1.5:1 (about 6% lower than corn-based ethanol), which 

could be increased to 2.8:1 by counting in the co-product electricity credit. 

More importantly, to obtain an economically-viable biofuel, the yield of 

sugar bioconversion should be high enough to lose less than 50% of sugar 

combustion energy (assuming USD 0.18/kg sugar and USD 10.8/GJ) in 

both bioconversion and separation processes (Huang and Percival Zhang, 

2011). Based on current technologies developed for butanol production, the 

energy-retaining efficiency is about 45%, which can be increased to as high 

as 78% through (1) increasing the ratio of butanol to total products from 0.7 

to 0.95 (leading to an increase from 45 to 62%), (2) decreasing energy loss 

through separation from 23.2 to 12% (leading to increase from 62 to 68%), 

and (3) decreasing sugar to cell mass from 0.12 to 0.02 (leading to increase 

from 68 to 78%) (Huang and Percival Zhang, 2011).  

The yield of converting carbohydrates to alcohol is the other important 

inherent bottleneck in the economically-viable production of butanol. As 

listed in Table 1, the maximum theoretical yield of acetone-butanol-ethanol 

(ABE) from glucose, which is 0.2-0.4 g/g, is lower than that of ethanol, 

which is 0.51 g/g. Qureshi et al. (2007) reported a relatively high yield of 

0.40 g/g ABE in the medium fermentation containing 50 g/L glucose by C. 

beijerinckii P260. They found that ABE yield was adversely proportional 

with glucose concentration, while a different observation was made for 

ABE titer. More specifically, ABE titer increased by increasing glucose 

concentration up to a certain limit (23.5 g/L for glucose concentration of 

100 g/L) but declined upon further increments (Qureshi et al., 2007).  

ABE fermentation is also associated with the inevitable production of a 

non-fuel product, i.e., acetone. Butanol to acetone ratio varies depending 

on the solvent-producing Clostridia bio-catalyzing the ABE fermentation, 

and the substrate. In the fermentation of xylose-based medium, C. 

butylicum NRRL 597 showed butanol to acetone production ratio of as high 

as 8.8 (Ezeji and Blaschek, 2008). It seems that the ratio of butanol to 

acetone produced through fermentation of pentoses is generally higher than 

hexoses (Table 1). 

In this review, besides presenting different generations of the substrate 

used for butanol production, recent innovations in process designs for 

upstream, mainstream, and downstream operations are critically reviewed 

and discussed. In the upstream, different pretreatments designed and 

optimized based on maximizing cellulose and hemicellulose recovery and 

minimizing lignin degradation are presented. In the mainstream, strain 

development by metabolic engineering and process integration strategies, 

including  in-situ   butanol   removal,   are   scrutinized.   Finally,   in    the  
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Abbreviations  

ABE Acetone-butanol-ethanol 

A-DWC Azeotropic dividing-wall column 

AFEX Ammonium fiber explosion 

CI Compression ignition 

IC Internal combustion 

EROI Energy return on investment 

GAE Gallic acid equivalent 

HMF Hydroxymethyl furfural 

MSW Municipal solid waste 

PM Particulate Matter 

SCSF Simultaneous co-saccharification and fermentation 

SHF Separate hydrolysis and fermentation 

SI Spark-ignition 

SSCF Simultaneous saccharification and co-fermentation 

SSF Simultaneous saccharification and fermentation 

SSFR Simultaneous saccharification, fermentation, and recovery 
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downstream, recent studies on energy-efficient recovery and purification of 

ABE products to obtain promising EROIs are reviewed and discussed.
 

 

2. Reviving the old ABE fermentation
 

 

Sugar fermentation, the genius microbial metabolism for survival in the 

absence of an electron acceptor, is a unique route for converting carbohydrate 

resources into alcoholic fuels, e.g., ethanol and butanol. ABE fermentation by 
Clostridia

 
has a long history as one of the largest fermentation industries for 

acetone or butanol production. Despite the yeast fermentation, which won the 

competition with the petrochemical industry for ethanol production, ABE 
fermentation lost its economic attractiveness for butanol production in the 

1950s. The propylene oxo synthesis, i.e., hydroformylation of propylene to 

aldehydes and their subsequent hydrogenation to butanol, was recognized as 
the main route for butanol production (Ndaba et al., 2015). In recent decades, 

however, several factories were built based on the fermentative process, 

especially in China, showing the feasibility of butanol production at least in 
some locations (Jiang

 
et al., 2015). Besides, based on the techno-economic 

analysis performed, the utilization of lignocellulosic biomass for biobutanol 

production can turn the table by reducing the production cost 
 
beneath 

 
that 

 
of

 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

its petrochemical counterpart (Tao et al., 2014). Even though economic 

profitability is one of the prerequisites of any commercial-scale production, 
the recently found application of butanol as a "drop-in" liquid fuel has been 

the main driver for reviving the old ABE fermentation. 
 

 

2.1. Substrate
 

 

The substrate choice has been historically a critical decision in the ABE 
fermentation plants. In the 1940s, along with increasing demands for maize, 

most commercial ABE fermentation plants decided to switch to blackstrap 

molasses, a waste-oriented substrate. However, the reduction of molasses 
quality through technological advancements in the cane sugar industry 

during the 1950s has been reported as one of the main reasons for the 

closure of those plants (Sauer, 2016). The substrate selection is even more 
vital in the case of fuel-grade butanol production, given the enormous 

magnitude of the fuel market. From this viewpoint, lignocellulosic biomass 

is the only non-edible source of carbon available on this scale. 
Lignocellulosic biomass is a "near-zero price" but mostly "land-based" 

waste known as second-generation substrate. The 1970-1990s 

developments in low-cost cellulase production facilitated the enzymatic 

Table 1.
 ABE production from sugars by different wild strains of Clostridia. 

Strain
 

Substrate
 

Production titer
 

 
(g/L)

 

Production yield 

(g/g)
 

Butanol to acetone 

ratio
 

Reference
 

Clostridia
 
acetobutylicum

 
ATCC 824

 

Glucose a

 
18.70

 
0.31

 
2.91

 

Ezeji and Blaschek 

(2008)
 

Cellobiose a

 
9.78

 
0.16

 
3.29

 
Galactose a

 
6.79

 
0.11

 
4.00

 
Mannose a

 
6.64

 
0.11

 
5.00

 
Arabinose a

 
14.18

 
0.24

 
5.50

 
Xylose a

 
12.04

 
0.20

 
4.65

 

C. acetobutylicum
 
ATCC 260

 

Glucose a

 
20.99

 
0.35

 
1.92

 

Ezeji and Blaschek 

(2008)
 

Cellobiose a

 
14.33

 
0.24

 
2.60

 
Galactose a

 
9.96

 
0.17

 
3.13

 
Mannose a

 
12.75

 
0.21

 
3.04

 
Arabinose a

 
12.07

 
0.20

 
2.53

 
Xylose a

 
9.53

 
0.16

 
4.10

 

C. beijerinckii
 
BA101

 

Glucose a

 
17.82

 
0.32

 
3.25

 

Ezeji et al. (2007)
 

Cellobiose a

 
19.10

 
0.35

 
3.21

 
Galactose a

 
10.01

 
0.18

 
4.22

 
Mannose a

 
14.29

 
0.26

 
6.00

 
Arabinose a

 
17.07

 
0.31

 
4.68

 
Xylose a

 
17.48

 
0.32

 
3.10

 

C. beijerinckii
 
P260

 

Glucose (50 g/L)
 

20.10
 

0.40
 

1.89
 

Qureshi et al. (2007)
 

Glucose (60 g/L)
 

20.15
 

0.33
 

1.91
 

Glucose (100 g/L)
 

23.49
 

0.23
 

1.65
 

Glucose (150 g/L)
 

22.84
 

0.15
 

1.63
 

Glucose (200 g/L)
 

14.65
 

0.07
 

2.23
 

Glucose (250 g/L)
 

<0.10
 

<0.01
 

NA
 

C. saccharobutylicum
 
262

 

Glucose a

 
16.72

 
0.28

 
1.93

 

Ezeji and Blaschek, 

(2008)
 

Cellobiose a

 
10.72

 
0.18

 
3.44

 
Galactose a

 
11.02

 
0.18

 
3.45

 
Mannose a

 
5.31

 
0.09

 
4.57

 
Arabinose a

 
11.25

 
0.19

 
5.13

 
Xylose a

 
9.04

 
0.15

 
4.94

 

C. butylicum
 
NRRL 592

 

Glucose a

 
19.90

 
0.33

 
2.13

 

Ezeji and Blaschek 

(2008)
 

Cellobiose a

 
18.28

 
0.30

 
1.80

 
Galactose a

 
13.13

 
0.22

 
2.85

 
Mannose a

 
16.41

 
0.27

 
2.56

 
Arabinose a

 
13.30

 
0.22

 
3.23

 
Xylose a

 
4.63

 
0.08

 
8.80

 
a: 50 g/L
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hydrolysis of cellulose and could be regarded as a turning point in converting 

lignocellulosic biomass into fermentable sugars (Wyman, 2001).  

Different lignocellulosic biomasses have been evaluated as substrates for 

biobutanol production, including rice straw (Amiri et al., 2014), corn stover 

(Qureshi et al., 2010b), corncobs (Zhang et al., 2013), corn fiber (Qureshi et 
al., 2008a), wheat straw (Qureshi et al., 2007), barley straw (Qureshi et al., 

2010a), and sorghum bagasse (Jafari et al., 2016). Besides, different types of 

wood such as pine (Amiri and Karimi, 2015a and b), elm (Amiri and Karimi, 
2015a and b), and aspen poplar (Parekh et al., 1988) were also utilized for 

butanol production. Other lignocellulosic waste streams like wood pulping 

hydrolysate (Lu et al., 2013) and birch Kraft black liquor (Kudahettige-Nilsson 
et al., 2015) as well as food wastes like potato peel waste (Abedini et al., 2020), 

banana peel waste (Mishra et al., 2020), orange peel waste (Joshi et al., 2015), 

and pineapple waste (Khedkar et al., 2017) have also been suggested for 
biobutanol production.  

Micro- and macroalgal (seaweeds) biomass are considered the third-

generation feedstock for biobutanol production and are associated with 
important advantages vs. plant-based biomass.  Those advantages include 

higher photosynthetic efficiency, faster growth rate, and land-independency. 

Among three classes of seaweeds, i.e., Phaeophyceae (brown), Rhodophyceae 

(red) and Chlorophyceae (green), green seaweeds have higher protein, 

carbohydrate, and nutritional values (Potts et al., 2012b). Ulva lactuca, a green 

macroalgae with a high growth rate, has been evaluated for butanol production 
(Potts et al., 2012b; van der Wal et al., 2013). However, the high capital and 

operating costs of cultivation is the main drawback of this substrate. Even 

though pairing biofuel production with nitrogen and phosphorous remediation 
is recommended for cost-effective algal cultivation, seasonal variations of 

polluted water make the steady supply of the feedstock questionable (Wang et 

al., 2017). In addition, the processing of seaweeds with relatively low 
carbohydrate content leads to a relatively dilute hydrolysate and dilute 

fermentation beer. The presence of protein inhibitors in the algal structure and 

the formation of furan derivatives through chemical treatments are the other 
important drawbacks of using algae for butanol production.  

Farmanbordar et al. (2018b) showed that complex and blended wastes in the 

organic fraction of municipal solid waste (MSW) are suitable substrates for 
biobutanol production. From the scale point of view, the MSW generated by 

each person daily can be converted to 220 g gasoline-equivalent butanol, 

providing 15-100% of that individual's energy requirement for daily 
transportation (Farmanbordar et al., 2020). MSW is a "negative-price" waste-

oriented feedstock, and its utilization for liquid fuel production can 

simultaneously serve energy security and waste management purposes. 
Furthermore, it was found that co-processing of lignocellulose wastes and 

organic fraction of MSW in an integrated process based on ABE fermentation 

led to 10-49% higher ABE production than what was obtained from the 
individual substrates (Farmanbordar et al., 2020). A similar synergistic effect 

was observed in the co-fermentation of starch and hemicellulosic hydrolysates, 

where a 35% improvement in ABE production and 78% increase in xylose 
utilization were obtained (Mirfakhar et al., 2020). Therefore, it can be 

concluded that the combined utilization of substrates is likely to result in yield 

improvements in addition to cost reductions.  
 

2.2. Upstream process 
 

Pretreatment, enzymatic hydrolysis (of the cellulose fraction of pretreated 

substrate), and ABE fermentation of the resulting hydrolysate are the main 

stages of "cellulosic butanol" production. The efficiency of cellulosic butanol 

production in terms of overall ABE yield and titer is affected by different 

parameters (Amiri and Karimi, 2018). In the earlier studies, such as those 
performed by Qureshi et al. (2008c and 2010a), dilute sulfuric acid 

pretreatment followed by enzymatic hydrolysis was mostly used without 

evaluating the effects of pretreatment conditions, i.e., temperature, acidity, and 
residence time on ABE production efficiency. However, further studies on 

lignocellulosic butanol production revealed the crucial roles of pretreatment 

type and conditions (Amiri and Karimi, 2018). After decades of research 
devoted to developing an effective pretreatment leading to enhanced enzymatic 

hydrolysis, the main criteria were first defined for lignocellulosic bioethanol 

production: (1) extent of required  size  reduction, (2) possibility of preserving 
the hemicellulose fraction, (3) extent of inhibitory degradation products 

formation, (4) amount of energy consumption, (5) cost of pretreatment 

especially catalyst cost, and (6) generation of high-value lignin-derived 

products (Mosier et al., 2005). Even though these criteria are also valid for 

lignocellulosic butanol production, they may not cover all the biobutanol 

process features. First of all, unlike ethanolic fermentation, the yield of 

ABE fermentation is highly controlled by the concentration of fermentable 

sugars. In a medium with sugar concentrations lower than a threshold, i.e., 
7 g/L (Long et al., 1984), the shift from the acidogenesis phase to the 

solventogenesis phase (where butanol is produced) does not occur in C. 

acetobutylicum (Long et al., 1984) and C. beijerinckii (Ezeji et al., 2005). 
Secondly, furan aldehyde compounds, including furfural and 

hydroxymethyl furfural (HMF), which form respectively through 

dehydration of pentose and hexoses during pretreatment, are severe 
inhibitors of ethanolic fermentation, whereas these compounds have 

stimulatory effects on ABE fermentation. It was shown that through the 

ABE fermentation, C. acetobutylicum has the ability of biotransforming 
furfural and HMF to stimulatory compounds of furfuryl alcohol and 2,5-

bis-hydroxymethylfuran, respectively (Zhang et al., 2012). On the other 

hand, several compounds, mainly phenolic compounds derived from lignin 
degradation (Ezeji et al., 2007), tannins present in organic wastes like 

sorghum grain (Mirfakhar et al., 2017) and acorn (Heidari et al., 2016), and 

glycoalkaloids present in potato peel waste (Abedini et al., 2020) exert 

significantly higher inhibitory effects in ABE fermentation than in 

ethanolic fermentation.  

Different pretreatment methods, including steam explosion (Marchal et 
al., 1992), alkaline pretreatment (Cheng et al., 2012), ammonium fiber 

explosion (AFEX) (Ezeji and Blaschek, 2008), autohydrolysis (Amiri and 

Karimi, 2015a), dilute sulfuric acid pretreatment (Gottumukkala et al., 
2013), ethanol organosolv pretreatment (Amiri et al., 2014), acetone 

organosolv pretreatment (Jafari et al., 2016), and phosphoric acid 

pretreatment (Moradi et al., 2013), were developed considering the butanol 
production features as mentioned above. In the process of lignocellulosic 

butanol production, the pretreatment type/conditions affect both enzymatic 

hydrolysis and ABE fermentation in direct and indirect manners. As shown 
in Figure 1, the pretreated sample might have different mass fractions of 

glucan and lignin as the most important components. The enzymatic 

hydrolysis yield of the pretreated sample might also vary considerably. 
Both of these could affect the ABE process parameters, including yield and 

titer. In the processes developed based on cellulose content of the 

lignocellulosic feedstock, between 30-130 g ABE/kg feedstock was 
produced. As shown in Figure 1, the highest yield of cellulosic ABE 

production, 124.3 g ABE/kg feedstock, was obtained using the organosolv 

pretreatment of sweet sorghum bagasse, through which a pretreated solid 
containing 60% glucan (Fig. 1a) and 13% lignin (Fig. 1b) was obtained. 

The pretreated biomass was subsequently hydrolyzed with a yield of 94% 

and fermented, resulting in 11.4 g/L ABE.  
Since solvent-producing Clostridia can efficiently uptake pentoses, the 

hemicellulose content of lignocellulosic biomass is also a potential source 

of carbon for biobutanol production. Chemical hydrolysis of hemicellulose, 
detoxification of hydrolysate, followed by its fermentation are the stages of 

"hemicellulosic butanol" production. Dilute acid hydrolysis was 

extensively used for hemicellulose recovery and hemicellulosic butanol 
production from brewing bagasse (Juanbaró and Puigjaner, 1986), corn 

stover and switchgrass (Qureshi et al., 2010b), wheat bran (Liu et al., 2010), 
rice straw(Ranjan et al., 2013), corn fiber (Ezeji et al., 2007), sweet 

sorghum bagasse (Cai et al., 2013), sugar maple (Sun and Liu, 2012), and 

brewer's spent grain (Plaza et al., 2017). Other chemical hydrolysis methods 

like autohydrolysis combined with dilute acid post-hydrolysis (Sun and 

Liu, 2012) and liquid hot water treatment (Qureshi et al., 2016) were also 

suggested for hemicellulosic butanol production. 
To obtain a hydrolysate with a higher total sugar concentration, also 

known as "overall hydrolysate", the cellulase-driven hydrolysis of 

lignocelluloses` cellulose fraction can be performed in a medium 
containing previously-obtained hemicellulosic hydrolysate (Amiri and 

Karimi, 2018). This approach has been implemented on wheat straw 

(Qureshi et al., 2008b), pinewood (Amiri and Karimi, 2015a), corncob 
(Zhang et al., 2013), and corn stover (Qureshi et al., 2010b)  by the 

hemicellulosic hydrolysate obtained using alkaline peroxide pretreatment, 

autohydrolysis, wet disk milling, and dilute acid hydrolysis, leading to 29, 
105, 282, and 305 g ABE/kg lignocellulose, respectively. As shown in 

Figure 2, the highest butanol yield and titer was obtained from corn stover 

through  a   process   including   (1)  dilute   sulfuric   acid   hydrolysis,   (2)  
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Fig. 1. The titer (inner bubbles) and yield (outer bubbles) of ABE production from rice straw 

pretreated by organosolv pretreatment (Amiri et al., 2014) or autohydrolysis-organosolv 

pretreatment (Amiri and Karimi, 2016), pinewood and elmwood pretreated by organosolv 

pretreatment (Amiri and Karimi, 2016), autohydrolysis (Amiri and Karimi, 2015a), or combined 

autohydrolysis-organosolv (Amiri and Karimi, 2016), and sweet sorghum bagasse pretreated by 

acetone organosolv pretreatment (Jafari et al., 2016). (a) Glucan mass fraction (%) and (b) Lignin 

mass fraction (%). The top three titer and yield values are shown by gold, silver, and bronze color, 

respectively.   
 

 
enzymatic hydrolysis by addition of cellulase to the slurry leading to a 

hydrolysate with 60 g/L sugar, and (3) ABE fermentation of the resulting 

hydrolysate with C. beijerinckii P260. 
Less severe upstream processes are needed for biobutanol production from 

microalgal and macroalgal biomass. In the absence of lignin and presence of 

amorph or less crystalline cellulose, a mild chemical hydrolysis (Potts et al., 
2012a) or enzymatic hydrolysis after a mild pretreatment (van der Wal et al., 

2013) can be utilized to obtain a fermentable hydrolysate. Potts et al. (2012a) 

utilized dilute acid hydrolysis at 125 °C for 30 min using 1% sulfuric acid for 
hydrolysis of Jamaica Bay macroalgae, Ulva lactuca, leading to 15.2 g/L total 

sugar, which was subsequently fermented to approx. 4 g/L butanol. Trying to 

produce ABE from rhamnose-rich U. lactuca, van der Wal et al. (2013) used 
dilute acid (1 M H2SO4 at 150 °C for 10 min) and dilute alkaline (6% NaOH at 

85 °C for 4 h) treatments followed by enzymatic hydrolysis with commercial 

cellulase which led to 19.3 g sugars (7.5 g/L rhamnose, 8.4 g/L glucose, and 
3.4 g/L other sugars) and 15.8 g sugars (6.2 g/L rhamnose, 6.9 g/L glucose, and 

2.7  g/L  other   sugars),   respectively.  ABE   fermentation  of   the   resulting  

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 
Fig. 2. The titer (inner bubbles) and yield (outer bubbles) of "hemicellulosic" and "overall" 

ABE production from rice straw, pinewood, elmwood, switchgrass, corn stover, and wheat 

bran using dilute acid hydrolysis, autohydrolysis, and integrated autohydrolysis-organosolv 

pretreatment. 
 

 

 
hydrolysates by C. beijerinckii priduced less than 4.5 g/L ABE. However, 

due to inefficient rhamnose uptake, the hydrolysates were poorly fermented 

by C. acetobutylicum (van der Wal et al., 2013).  
Biobutanol production from complex feedstocks, e.g., MSW, containing 

a broad spectrum of fermentable carbon sources (cellulose, starch, and 

hemicellulose) and different phenolic compounds acting as fermentation 
inhibitors, is challenging. Hence, upstream process design and optimization 

should be performed based on a trade-off between maximizing inhibitor 

removal and minimizing carbohydrate loss. It has been found that phenolic 
compounds, especially tannins, significantly inhibit ABE fermentation. In 

a study on butanol production from tannin-containing sorghum grain, 

Mirfakhar et al. (2017) showed that solvent-producing Clostridia could 
tolerate less than 0.20 mM gallic acid equivalent (GAE) tannin. Lower 

tannin concentrations led to a reduction in ABE production due to inhibiting 

the culture's amylolytic activity (responsible for 62% of the drop) and 
inhibiting the ABE fermentation itself (28% of the drop). Therefore, tannin-

rich feedstocks such as MSW should be treated before the ABE 

fermentation process. Farmanbordar et al. (2018b) showed that most MSW 
phenolic compounds are extractable (up to 87%) by different solvents, 

including acetone, butanol, or ethanol. A process including dilute acid 

hydrolysis of the extractives-free MSW, enzymatic hydrolysis of the solid 
fraction, fermentation of the liquor obtained by dilute acid hydrolysis, and 

fermentation of the hydrolysate obtained by enzymatic hydrolysis led to the 

production of 142 g ABE from each kg MSW (Farmanbordar et al., 2018b). 
On the contrary, when the same process was repeated using tannin-rich 

MSW (control), the ABE produced was undetectable. In another study, 

ethanol organosolv pretreatment was evaluated for the simultaneous 
extraction of phenolic compounds and pretreatment of the lignocellulosic 

and starchy fractions of organic matter of MSW. The hydrolysis of the 

pretreated solid followed by its fermentation resulted in the production of 
160 g ABE from each kg MSW (Farmanbordar et al., 2018a). 

 

2.3. Mainstream process 
 

ABE fermentation by strictly anaerobic bacteria, e.g., C. acetobutylicum 

and C. beijerinckii, has been studied for butanol or acetone production for 
over a century. Different microbial aspects of this fermentation have been 

previously reviewed (Lan and Liao, 2013; Xue et al., 2017). Even though 

ABE fermentation was implemented at the commercial scale during World 
War I and II, mostly for acetone production, the inherent drawbacks of this 

natural  metabolism  stand  in  the  way  of  developing a  commercial-scale  

1260



Amiri / Biofuel Research Journal 28 (2020) 1256-1266 

 

 Please cite this article as: Amiri H. Recent innovations for reviving the ABE fermentation for production of butanol as a drop-in liquid biofuel. Biofuel Research 

Journal 27 (2020) 1256-1266.  DOI: 10.18331/BRJ2020.7.4.4  

 

 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 Fig. 3. Comparison of different studies in terms of (a)
 
ABE titer vs.

 
ABE yield and (b)

 
ABE titer 

vs.
 
butanol to acetone ratio. The size of the bubbles represents ABE productivities during the 

fermentation of 50 g/L glucose by C. acetobutylicum
 
ATCC 260 (Ezeji and Blaschek, 2008), C. 

acetobutylicum
 
ATCC 824 (Ezeji and Blaschek, 2008), C. beijerinckii

 
BA101 (Ezeji et al., 2007), 

beijerinckii
 
P260 (Qureshi et al., 2007), C. saccharobutylicum

 
262 (Ezeji and Blaschek, 2008), 

and C. butylicum
 
NRRL 592 (Ezeji and Blaschek, 2008).

 
The diameters of bubbles are scaled 

based on the productivity of 0.30 g/L.h obtained by C. beijerinckii
 
BA101.

 

 
 

process for the production of butanol as a biofuel (Amiri and Karimi, 2018). In 

recent years, many studies were performed to enhance the ABE fermentation 

using either strain modification (Jiang et al., 2018; Cho et al., 2019; Yu et al., 

2019) or process engineering tools (Jafari et al., 2017; Seifollahi and Amiri, 

2020).  

As the most preferred sugar for most solvent-producing Clostridia to 

glucose fermentation ABE varies in yield, titer, and productivity depending on 

the strain (Fig. 3). In a study on fermentation of mixed sugars, Ezeji and 

Blaschek (2008) found that, although glucose was the most preferred 

monosaccharide of solventogenic Clostridia, all sugars were utilized 

concurrently but with different rates. As shown in Figure 3a, for ABE titer and 

yield during glucose fermentation, Clostridia species/strains are ranked in 

descending order as follows: C. beijerinckii P260 (Qureshi et al., 2007), C. 

acetobutylicum ATCC 260 (Ezeji and Blaschek, 2008), C. butylicum NRRL 

592 (Ezeji and Blaschek, 2008), C. acetobutylicum ATCC 824 (Ezeji and 

Blaschek, 2008), C. beijerinckii BA101 (Ezeji et al., 2007), and C. 

saccharobutylicum 262 (Ezeji and Blaschek, 2008). In the case of xylose 

fermentation, as shown in Figure 4a, the highest ABE yields and titers are 

associated with the following species/strains (in descending order): C. 

beijerinckii BA101 (Ezeji et al., 2007), C. acetobutylicum ATCC 824 (Ezeji 

and Blaschek, 2008), C. acetobutylicum ATCC 260 (Ezeji and Blaschek, 2008), 

C. saccharobutylicum 262 (Ezeji and Blaschek, 2008), and C. butylicum NRRL 

592 (Ezeji and Blaschek, 2008). However, the butanol to acetone ratio is 

decreased when the ABE titer and yield from xylose are increased (Fig. 

4b). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Comparison of different studies in terms of (a)

 
ABE titer vs.

 
ABE yield and

 
(b)

 
ABE 

titer vs.
 
butanol to acetone ratio. The size of the bubbles represents ABE productivities during 

the fermentation of 50 g/L xylose by C. acetobutylicum
 
ATCC 260 (Ezeji and Blaschek, 

2008), C. acetobutylicum
 
ATCC 824 (Ezeji and Blaschek, 2008), C. beijerinckii

 
BA101

 
(Ezeji et al., 2007), C. saccharobutylicum

 
262 (Ezeji and Blaschek, 2008), and C. butylicum

 
NRRL 592 (Ezeji and Blaschek, 2008).

 
The diameters of bubbles are scaled based on the 

productivity of 0.20 g/L.h obtained by C.
 
acetobutylicum

 
ATCC 824.

 

 

 
Strain development for butanol production can be achieved by 

improving (1) cellular performance and (2) cellular robustness. Several 

studies have been devoted to enhancing cellular performance in terms of 
solvent production (Harris et al., 2001; Jang et al., 2012b; Yu et al., 2019), 

butanol selectivity (Jiang et al., 2009; Lee et al., 2009; Cho et al., 2019), 
carbohydrate utilization (Perret et al., 2004; Xiao et al., 2011; Xiao et al., 

2012; Yu et al., 2015; Jiang et al., 2018), and stable and continuous 

production of butanol (Nguyen et al., 2018). These 
improvements/modifications are mainly accomplished by cell mutation (Hu 

et al., 2011; Li et al., 2016), metabolic engineering (Yoo et al., 2020), and 

enzyme engineering (Mann and Lütke-Eversloh, 2013). Metabolic 
engineering of Clostridia is mainly performed through gene inactivation 

(Jang et al., 2014), genome edition by CRISPR/CRISPR-associated protein 

9 systems (CRISPR-Cas9) (Wang et al., 2015; Xu et al., 2015; Zhang et al., 
2018), and control or knockdown of gene expression by a synthetic small 

regulatory RNAs (sRNAs) (Cho and Lee, 2017). The second class of cell 

modifications is performed by improving cell robustness through reducing 
acid stress (Borden et al., 2010), solvent stress (Borden and Papoutsakis, 

2007), or synergistic stresses (Alsaker et al., 2010). The studies performed 

on strain modifications for improved ABE production have been 
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comprehensively reviewed previously by Lütke-Eversloh and Bahl (2011), 

Yoo et al. (2020), Jang et al. (2012a), and Cheng et al. (2019).  

Besides strain development, process engineering also has played an 

important role in developing mainstream processes. "Process integration" with 

several different strategies has shown promising impacts on ABE production. 
Integration of enzymatic hydrolysis and fermentation, i.e., simultaneous 

saccharification and fermentation (SSF), is one of the relatively oldest 

strategies firstly suggested by Gauss et al. (1976) for reduction of end-product 
inhibition in ethanolic fermentation and for saving on equipment and operation 

costs. This integration strategy was evaluated for butanol production from 

wheat straw (Qureshi et al., 2008c), rice straw (Valles et al., 2020), aspen wood 
(Shah et al., 1991), kraft paper mill sludge (Guan et al., 2016), and acorns and 

wood chips (Sasaki et al., 2014). SSF process led to improved butanol 

production in some cases, whereas it was unsuccessful in some other cases, 
primarily due to the relatively low hydrolysis rate, which was insufficient for 

Clostridial activity. For instance, in the study by Qureshi et al. (2008c) on wheat 

straw, a lower ABE production was recorded by SSF in comparison with 
separate hydrolysis and fermentation (SHF). In light of that, modifications of 

SSF process in the form of simultaneous co-saccharification and fermentation 

(SCSF) (Seifollahi and Amiri, 2020) or simultaneous saccharification and co-

fermentation (SSCF) (Jafari et al., 2017) were suggested. Providing additional 

source of carbon in the form of a readily digestible polymer (in SCSF), e.g., 

cellulose oligomers (Seifollahi and Amiri, 2020), or a fermentable monomer 
(in SSCF), e.g., sweet sorghum juice (Jafari et al., 2017), for Clostridial activity 

led to improved ABE production.  

In-situ butanol recovery during the fermentation process is a technically-
successful but economically- and energetically-questionable option. Different 

butanol separation operations especially adsorption (Yang et al., 1994), liquid-

liquid extraction (Teke and Pott, 2020), pervaporation (Azimi et al., 2019; Li 
et al., 2020; Zhu et al., 2020), and gas stripping (Xue et al., 2013a), were 

evaluated for butanol recovery. In a comparative study on in-situ butanol 

recovery technologies, Groot et al. (1992) found the pervaporation and liquid-
liquid extraction more promising. Efforts have also been put into integrating 

in-situ butanol recovery into the SSF process. For instance, simultaneous 

saccharification, fermentation, and recovery (SSFR) was evaluated for 
biobutanol production from wheat straw (Qureshi et al., 2008c) and corn stover 

(Qureshi et al., 2014). Despite higher yields and productivities achieved by 

integrating in-situ butanol recovery, the cost and energy consumption 
associated with these processes may exceed their advantages (Xue et al., 

2013b). 

 
2.4. Downstream process 

 

The fermentation beer obtained after ABE fermentation is an aqueous 
mixture of the main products, i.e., acetone, butanol, and ethanol along with 

several other chemicals ranging from unused nutrients to fermentation by-

products, e.g., acetic and butyric acid. Several different separation 
technologies, including adsorption (Oudshoorn et al., 2009; Sharma and 

Chung, 2011; Lin et al., 2012), gas stripping (Qureshi and Blaschek, 2001; 

Setlhaku et al., 2013; Liao et al., 2014), liquid-liquid extraction(Kurkijärvi et 
al., 2014; Kurkijärvi and Lehtonen, 2014), membrane extraction (Qureshi and 

Maddox, 2005), membrane distillation (Banat and Al-Shannag, 2000), reverse 
osmosis (Garcia III et al., 1986), thermopervaporation (Borisov et al., 2011), 

sweeping gas pervaporation (Plaza et al., 2013), and vacuum pervaporation 

(Borisov et al., 2014; Liu et al., 2014; Rozicka et al., 2014) were evaluated for 

product recovery and purification in the downstream of ABE production 

processes.  

Based on the differences in the boiling point of the main products, 
distillation is a reasonable, robust and proven but at the same time energy-

intensive separation technology for ABE recovery and purification (Green, 

2011). Also, the formation of a heterogeneous water-butanol azeotrope 
facilitates the distillation process without requiring the addition of any 

compounds. However, purification of butanol from the fermentation beer with 

a low butanol concentration requires relatively high energy consumption, in the 
range of 14.7-79.05 MJ/kg butanol (Kujawska et al., 2015). 

The classic distillation process consists of four columns, i.e., acetone 

column, ethanol column, water stripper, and butanol stripper, where acetone 
(99.5 wt%), ethanol (95 wt%), and butanol (99.7 wt%) are obtained from the 

top of the first column, top of the second column, and bottom of the fourth 

column, respectively. Having separated acetone and ethanol in the first two 

columns, the stream remaining in the bottom of the ethanol column contains 

two immiscible phases of water and butanol. After splitting these phases in 

a decanter, the water stripper and butanol stripper columns are used to 

recover butanol from the water-phase and the butanol-phase, respectively. 

However, the energy balance of this classic process is not favorable and 
could be even negative in some cases. More specifically, the energy 

consumption to recover butanol through distillation stands at 14.5-79.5 MJ/ 

kg butanol, which might exceed the final product's energy density of 36 
MJ/kg (Patraşcu et al., 2018).  

In 2012, the utilization of pressure-swing azeotropic distillation was 

suggested, which reduced the process's energy consumption to some extent 
(Luyben, 2012). Later, Patraşcu et al. (2017) proposed a new distillation 

sequence to perform the separation process with less energy and less 

equipment. In this sequence, a decanter was used as the first unit to (1) 
eliminate the necessity of beer stripper for initial water removal and (2) to 

prevent phase splitting throughout the columns (Patraşcu et al., 2017). The 

butanol phase was processed in a butanol stripper, while the water phase 
was sent to a pre-fractionator interconnected with a dividing-wall column 

to separate water (bottom product), recycle butanol (middle product), and 

provide an acetone-ethanol stream as feed for the final column. This 

distillation sequence reduced downstream energy consumption of a 40 kt/yr 

butanol plant from 11,428 to 8,635 kW (from 5.90 to 4.46 MJ/kg butanol), 

corresponding to 1.44 MJ/kg butanol (Patraşcu et al., 2017). In 
continuation, the same researchers utilized a heat pump (vapor 

recompression)-assisted azeotropic dividing-wall column (A-DWC) and 

managed to further decrease the energy consumption from 4.46 to 2.70 
MJ/kg butanol (Patraşcu et al., 2018). Based on the payback period of 10 

months, investing in the new technology was found economically viable 

(Patraşcu et al., 2018). 
 

3. Concluding remarks and future directions 

 

Butanol can be used as a drop-in fuel in the existing engines, supplying 

the transportation sector with a sustainable and renewable energy source. 

Compared with ethanol, butanol is advantageous in terms of ease of 
blending, volatility, hygroscopicity, corrosiveness, and pipe transportation. 

Accordingly, the butanol market could be extended by two orders of 

magnitude. However, there are critical inherent challenges to be addressed 
before commercial-scale butanol production could be realized. Butanol is a 

toxic chemical even for Clostridia, and its purification from the resulting 

dilute beer requires relatively high energy input. Furthermore, the yield of 
biobutanol production is relatively low, primarily due to the co-production 

of acetone, ethanol and acids.  

To address these bottlenecks, process development for utilization of 
negative price substrates and strain modifications for obtaining higher 

cellular performance or robustness, process integrations for improving 

ABE yield and productivity, and developing more efficient separation 
technologies to reduce energy consumption have been suggested. Despite 

advances made in the domain mentioned above, there are still significant 

challenges to overcome for cost-effective and energy-efficient biobutanol 
production. Hence, future research should focus on developing (1) a cost- 

and energy-efficient pretreatment stage satisfying the requirements of ABE 
fermentation, in particular, maximizing hemicellulose and cellulose 

recovery with least degradation of lignin, (2) a microbial system either 

single or co-culture with enhanced butanol yield and titer, and (3) processes 

for maximizing mass and heat integration.  
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