• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Biofuel Research Journal
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 5 (2018)
Volume Volume 4 (2017)
Volume Volume 3 (2016)
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 2 (2015)
Volume Volume 1 (2014)
Salam, K., Velasquez-Orta, S., Harvey, A. (2016). Surfactant-assisted direct biodiesel production from wet Nannochloropsis occulata by in situ transesterification/reactive extraction. Biofuel Research Journal, 3(1), 366-371. doi: 10.18331/BRJ2016.3.1.6
Kamoru A. Salam; Sharon B. Velasquez-Orta; Adam P. Harvey. "Surfactant-assisted direct biodiesel production from wet Nannochloropsis occulata by in situ transesterification/reactive extraction". Biofuel Research Journal, 3, 1, 2016, 366-371. doi: 10.18331/BRJ2016.3.1.6
Salam, K., Velasquez-Orta, S., Harvey, A. (2016). 'Surfactant-assisted direct biodiesel production from wet Nannochloropsis occulata by in situ transesterification/reactive extraction', Biofuel Research Journal, 3(1), pp. 366-371. doi: 10.18331/BRJ2016.3.1.6
Salam, K., Velasquez-Orta, S., Harvey, A. Surfactant-assisted direct biodiesel production from wet Nannochloropsis occulata by in situ transesterification/reactive extraction. Biofuel Research Journal, 2016; 3(1): 366-371. doi: 10.18331/BRJ2016.3.1.6

Surfactant-assisted direct biodiesel production from wet Nannochloropsis occulata by in situ transesterification/reactive extraction

Article 6, Volume 3, Issue 1, Winter 2016, Page 366-371  XML PDF (6.22 MB)
Document Type: Research Paper
DOI: 10.18331/BRJ2016.3.1.6
Authors
Kamoru A. Salam email ; Sharon B. Velasquez-Orta; Adam P. Harvey
School of Chemical Engineering and Advanced Materials (CEAM), Newcastle University, NE1 7RU, United Kingdom
Abstract
This article reports an in situ transesterification/reactive extraction of Nannochloropsis occulata for fatty acid methyl ester (FAME) production using H2SO4, sodium dodecyl sulphate (SDS) plus H2SO4 and zirconium dodecyl sulphate (ZDS). A maximum 67 % FAME yield was produced by ZDS. Effect of inclusion of sodium dodecyl sulphate (SDS) in H2SO4 for FAME enhancement and water tolerance was also studied by hydrating the algae with 10 % - 30 % distilled water (w/w) dry algae. Treatment with SDS in H2SO4 increases the FAME production rate and water tolerance of the process. Inclusion of SDS in H2SO4 produced a maximum 98.3 % FAME yield at 20 % moisture in the algae. The FAME concentration began to diminish only at 30 % moisture in the algae. Furthermore, the presence of a small amount of water in the biomass or methanol increased the lipid extraction efficiency, improving the FAME yield, rather than inhibiting the reaction. 

Graphical Abstract

Surfactant-assisted direct biodiesel production from wet Nannochloropsis occulata by in situ transesterification/reactive extraction

Highlights
  • Surfactant assisted in situ transesterification of wet algae was studied.

  • A surfactant catalyst (“ZDS”) produced high yields in Nannochloropsis occulata.

  • Inclusion of SDS in H2SO4 increased FAME production in the wet algae.

  • The process was not adversely affected by water in the algae up to 20%. 
Keywords
Wet microalgae; reactive extraction; biodiesel (Fatty acid methyl ester); Surfactant; surfactant catalyst
References
[1] Brown, R.B, Audet, J., 2008. Current techniques for single-cell lysis. J. R. Soc. Interface. 5, S131-S138.

[2] Canakci, M., Gerpen, V.J., 1999. Biodiesel production via acid catalysis. Trans. ASAE.42 (5),1203-1210.

[3] Chen L., Tianzhong L., Zhang, W., Chen X., Wang, J., 2012. Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion. Bioresour. Technol. 111, 208-214.

[4] Chisti Y., 2007. Biodiesel from microalgae. Biotechnol. Adv. 25(3), 294-306.

[5] Chisti, Y., 2013. Constraints to commercialization of algal fuels. J. Biotechnol. 167, 201-214.

[6] Cohen, Z., 1999. Chemicals from microalgae, CRC Press.

[7] Ehimen, E.A., Sun, Z.F., Carrington, C.G., 2010. Variables affecting the in situ transesterification of microalgae lipids. Fuel. 89 (3), 677-684.

[8] El-Shimi, H.I., Attia, N.K., El-Sheltawy, S.T., El-Diwani, G.I., 2013. Biodiesel production from Spirulina-platensis microalgae by in-situ transesterification process. J. Sust. Bioenerg. Syst. 3, 224-233.

[9] Standard UNE-EN 14103, 2003. Determination of ester and linolenic acid methyl ester contents. Issued by Asociación Española de Normalización y Certificación, Madrid.

[10] Eze, V.C., Phan, A.N., Harvey, A.P., 2014. A more robust model of biodiesel reaction, allowing identification of process conditions for enhanced rate and water tolerance. Bioresour. Technol. 156, 222-231.

[11] Folch, J., Lees, M., Stanley, G.H.S., 1956. A simple method for the isolation and purification of total lipids from animal tissue. J. Biol. Chem. 1, 497-509.

[12] Garces, R., Mancha, M., 1993. One-step lipid extraction and fatty acid methyl esters preparation from fresh plant tissues. Anal Biochem. 211, 139-143.

[13] Gerde, J.A., Montalbo-Lomboy, M., Yao, L., Grewell, D., Wanga, T., 2012.  Evaluation of microalgae cell disruption by ultrasonic treatment. Bioresour. Technol. 125, 175-181.

[14] Gerken, H.G., Donohoe, B., Knoshaug, E.P., 2012. Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production. Planta. 1, 239-253.

[15] Ghesti, G.F., Macedo, J.L., Parente, V.C.I., Dias, J.A., Dias, S.C.L., 2009. Synthesis, characterization and reactivity of Lewis acid/surfactant cerium trisdodecylsulfate catalyst for transesterification and esterification reactions. Appl. Catal, A. 355 (1), 139-147.

[16] Guldhe, A., Singh, B., Rawat, I., Ramluckan, K., Bux, F., 2014. Efficacy of drying and cell disruption techniques on lipid recovery from microalgae for biodiesel production. Fuel. 128, 46-52.

[17] Haas, M.J., Wagner, K., 2011. Simplifying biodiesel production:The direct or in situ transesterification of algal biomass. Eur. J. Lipid Sci. Technol. 113, 1219-1229.

[18] Hailegiorgis, S.M., Mahadzir, S., Subbarao, D., 2011. Enhanced in situ ethanolysis of Jatropha curcas L. in the presence of cetyltrimethylammonium bromide as a phase transfer catalyst. Renew. Energ. 36, 2502-2507.

[19] Jeffery, S.W., Humphrey, G.F., 1975. New spectrophotometric equations for determining chlorophylls a, b, c1, and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 167,191-194.

[20] Kaluzny, M.A., Duncan, L.A., Merritt, M.V., Epps, D.E., 1985. Rapid separation of lipid classes in high yield and purity using bonded phase columns. J. Lipid Res. 26, 135-140.

[21] Kasim, F.H., Harvey, A.P., 2011. Influence of various parameters on reactive extraction of Jatropha curcas L. for biodiesel production. Chem. Eng. J. 171, 1373-1378.

[22] Kim, B., Im, H. and Lee, J.W., 2015. In situ transesterification of highly wet microalgae using hydrochloric acid. Bioresour. Technol. 185, 421-425.

[23] Li, Y., Lian, S., Tong, D., Song, R., Yang, W., Fan, Y., Qing, R., Hu, C., 2011. One-step production of biodiesel from Nannochloropsis sp. on solid base Mg-Zr catalyst. Appl. Energy. 88 (10), 3313-3317.

[24] Lotero, E., Liu, Y., Lopez, D.E., Suwannakarn, K., Bruce, D.A., Goodwin, J.G., 2005. Synthesis of biodiesel via acid catalysis. Ind. Eng. Chem. Res. 44, 5353-5363.

[25] Ma, F., Hanna, M.A., 1999. Biodiesel production: a review. Bioresour. Technol.70, 1-15.

[26] Meng, X., Yang, J., Xu, X., Zhang, L., Nie, Q., Xian, M., 2009. Biodiesel production from oleaginous microorganisms. Renew. Energy. 34, 1-5.

[27] Park, J.Y., Nam, B., Choi, S.A., Oh, Y.K., Lee, J.S., 2014. Effects of anionic surfactant on extraction of free fatty acid from Chlorella vulgaris. Bioresour. Technol. 166, 620-624.

[28] Tan, A., Ziegler, A., Steinbauer, B., Seelig, J., 2002. Thermodynamics of sodium decyl sulfate partitioning into lipid membranes. Biophys. J. 83, 1547-1556.

[29] Tuntiwiwattanapun, N., Tongcumpou, C., Haagenson, D., Wiesenborn, D., 2013. Development and Scale-up of Aqueous Surfactant-Assisted Extraction of Canola Oil for Use as Biodiesel Feedstock. J. Am. Oil Chem. Soc. 90(7), 1089-1099.

[30] Velasquez-Orta, S.B., Lee, J.G.M., Harvey, A., 2012. Alkaline in situ transesterification of Chlorella vulgaris. Fuel. 94, 544-550.

[31] Velasquez-Orta, S.B., Lee, J.G.M., Harvey, A.P., 2013. Evaluation of FAME production from wet marine and freshwater microalgae by in situ transesterification. Biochem. Eng. J. 76, 83-89.

[32] Wahlen, B.D, Willis, R.M, Seefeldt, L.C., 2011. Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresour. Technol. 102 (3), 2724-2730.

[33] Widjaja, A., Chien, C., Ju, Y., 2009. Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J. Taiwan Inst. Chem. Eng. 40, 13-20.

[34] Zeng, J., Wang, X., Zhao, B., Sun, J., Wan, Y., 2008. Rapid in situ transesterification of sunflower oil. Ind. Eng. Chem. Res. 48 (2), 850-856.

[35] Zhukov, A.V., Vereshchagrin, A.G., 1981. Current Techniques of extraction, purification and preliminary fractionation of polar lipids of natural origin. Adv. Lipids Res.18, 247-282.

[36] Zolfigol, M.A., Salehi, P., Shiri, M., Tanbakouchian, Z., 2007. A new catalytic method for the preparation of bis-indolyl and tris-indolyl methanes in aqueous media. Catal. Commun. 8, 173-178.

Statistics
Article View: 4,056
PDF Download: 4,735
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by sinaweb.