Producing hydrogen-rich syngas via microwave heating and co-gasification: a systematic review

Document Type : Review Paper


1 Department of Mechanical Engineering, Sebelas Maret University, Surakarta, Indonesia.

2 Department of Mechanical Engineering, Sultan Ageng Tirtayasa University, Banten, Indonesia.

3 Mechanical Engineering Department, Universitas Kebangsaan Republik Indonesia, Bandung, Indonesia.

4 Universitas Muhammadiyah Yogyakarta, Yogyakarta, Indonesia.


Co-gasification contributes significantly to the generation of hydrogen-rich syngas since it not only addresses the issue of feedstock variation but also has synergistic benefits. In this article, recent research on hydrogen concentration and yield, tar content, gasification efficiency, and carbon conversion efficiency is explored systematically. In feedstocks with high water content, steam gasification and supercritical hydrothermal gasification technologies are ideal for producing hydrogen at a concentration of 57%, which can be increased to 82.9% using purification technology. Carbonized coals, chars, and cokes have high microwave absorption when used as feedstocks. Moreover, coconut activated carbon contains elements that provide a high tan δ value and are worthy of further development as feedstocks, adsorbents or catalysts. Meanwhile, the FeSO4 catalyst has the greatest capacity for storing microwave energy and producing dielectric losses; therefore, it can serve as both a catalyst and microwave absorber. Although microwave heating is preferable to conventional heating, the amount of hydrogen it generates remains modest, at 60% and 32.75% in single-feeding and co-feeding modes, respectively. The heating value of syngas produced using microwaves is 17.44 MJ/m³, much more than that produced via conventional heating. Thus, despite a lack of research on hydrogen-rich syngas generation based on co-gasification and microwave heating, such techniques have the potential to be developed at both laboratory and industrial scales. In addition, the dielectric characteristics of feedstocks, beds, adsorbents, and catalysts must be further investigated to optimize the performance of microwave heating processes.

Graphical Abstract

Producing hydrogen-rich syngas via microwave heating and co-gasification: a systematic review


  • Role of microwave technology in gasification and co-gasification processes for hydrogen-rich syngas production explored.
  • Effects of various process parameters on hydrogen-rich syngas formation via conventionally- and microwave-heated gasification processes described.
  • Co-feeding configurations, ideal for hydrogen-rich syngas production via microwave heating co-gasification, are explained.
  • Knowledge gaps and future research directions in microwave-assisted gasification and co-gasification for hydrogen-rich syngas synthesis identified.
  • The most recent achievements in hydrogen yield, concentration, and cost are discussed.


  1. Ahmad, N.A., Al-attab, K.A., Zainal, Z.A., Lahijani, P., 2021. Microwave assisted steam-CO₂ char gasification of oil palm shell. Bioresour. Technol. Reports. 15, 100785.
  2. Ahmad, R., Ishak, M.A.M.M., Ismail, K., Kassim, N.N., Kasim, N.N., 2019. Influence of microwave pre-treated Palm Kernel Shell and Mukah Balingian coal on co-gasification. J. Mech. Eng. Sci. 13(4), 5791-5803.
  3. Ahmad, S.S., Morgan, M.T., Okos, M.R., 2001. Effects of microwave on the drying, checking and mechanical strength of baked biscuits. J. Food Eng. 50(2), 63-75.
  4. Akkache, S., Hernández, A.B., Teixeira, G., Gelix, F., Roche, N., Ferrasse, J.H., 2016. Co-gasification of wastewater sludge and different feedstock: feasibility study. Biomass Bioenergy. 89, 201-209.
  5. Al-Rahbi, A.S., Williams, P.T., 2017. Hydrogen-rich syngas production and tar removal from biomass gasification using sacrificial tyre pyrolysis char. Appl. Energy. 190, 501-509.
  6. Arpia, A.A., Nguyen, T.B., Chen, W.H., Dong, C.D., Ok, Y.S., 2022. Microwave-assisted gasification of biomass for sustainable and energy-efficient biohydrogen and biosyngas production: a state-of-the-art review. Chemosphere. 287, 132014.
  7. Azadi, P., Khan, S., Strobel, F., Azadi, F., Farnood, R., 2012. Hydrogen production from cellulose, lignin, bark and model carbohydrates in supercritical water using nickel and ruthenium catalysts. Appl. Catal., 117, 330-338.
  8. Aznar, M.P., Caballero, M.A., Sancho, J.A., Francés, E., 2006. Plastic waste elimination by co-gasification with coal and biomass in fluidized bed with air in pilot plant. Fuel Process. Technol. 87(5), 409-420.
  9. Bai, X., Tiwari, S., Robinson, B., Killmer, C., Li, L., Hu, J., 2018. Microwave catalytic synthesis of ammonia from methane and nitrogen. Catal. Sci. Technol. 8(24), 6302-6305.
  10. Baloch, H.A., Yang, T., Li, R., Nizamuddin, S., Kai, X., Bhutto, A.W., 2016. Parametric study of co-gasification of ternary blends of rice straw, polyethylene and polyvinylchloride. Clean Technol. Environ. Policy. 18(4), 1031-1042.
  11. Bandara, J.C., Jaiswal, R., Nielsen, H.K., Moldestad, B.M.E., Eikeland, M.S., 2021. Air gasification of wood chips, wood pellets and grass pellets in a bubbling fluidized bed reactor. Energy. 233, 121149.
  12. Beheshti, S.M., Ghassemi, H., Shahsavan-Markadeh, R., 2015. Process simulation of biomass gasification in a bubbling fluidized bed reactor. Energy Convers. Manage. 94, 345-352.
  13. Beneroso, D., Bermúdez, J.M., Arenillas, A., Menéndez, J.A., 2014. Integrated microwave drying, pyrolysis and gasification for valorisation of organic wastes to syngas. Fuel. 132, 20-26.
  14. Beneroso, D., Fidalgo, B., 2016. Microwave technology for syngas production from renewable sources. in: Myers R. (Ed.), Syngas. Nova Science Publishers Inc., pp. 117-152.
  15. Budarin, V.L., Clark, J.H., Lanigan, B.A., Shuttleworth, P., Macquarrie, D.J., 2010. Microwave assisted decomposition of cellulose: a new thermochemical route for biomass exploitation. Bioresour. Technol. 101(10), 3776-3779.
  16. Bunma, T., Kuchonthara, P., 2018. Synergistic study between CaO and MgO sorbents for hydrogen rich gas production from the pyrolysis-gasification of sugarcane leaves. Process Saf. Environ. Prot. 118, 188-194.
  17. Cai, J., Zeng, R., Zheng, W., Wang, S., Han, J., Li, K., Luo, M., Tang, X., 2021. Synergistic effects of co-gasification of municipal solid waste and biomass in fixed-bed gasifier. Process Saf. Environ. Prot. 148, 1-12.
  18. Chan, Y.H., Rahman, S.N.F.S.A., Lahuri, H.M., Khalid, A., 2021. Recent progress on CO-rich syngas production via CO₂ gasification of various wastes: a critical review on efficiency, challenges and outlook. Environ. Pollut. 278, 116843.
  19. Chang, K.L., Lin, Y.C., Shangdiar, S., Chen, S.C., Hsiao, Y.H., 2020. Hydrogen production from dry spirulina algae with downstream feeding in microwave plasma reactor assisted under atmospheric pressure. J. Energy Inst. 93(4), 1597-1601.
  20. Chen, G., Jamro, I.A., Samo, S.R., Wenga, T., Baloch, H.A., Yan, B., Ma, W., 2020. Hydrogen-rich syngas production from municipal solid waste gasification through the application of central composite design: an optimization study. Int. J. Hydrogen Energy. 45(58), 33260-33273.
  21. Chen, J., Xu, W., Wu, X., Jiaqiang, E., Lu, N., Wang, T., Zuo, H., 2019. System development and environmental performance analysis of a pilot scale microbial electrolysis cell for hydrogen production using urban wastewater. Energy Convers. Manag. 193, 52-63.
  22. Chen, S., Sun, Z., Zhang, Q., Hu, J., Xiang, W., 2017. Steam gasification of sewage sludge with CaO as CO₂ sorbent for hydrogen-rich syngas production. Biomass Bioenergy. 107, 52-62.
  23. Cheng, Y.W., Lee, Z.S., Chong, C.C., Khan, M.R., Cheng, C.K., Ng, K.H., Hossain, S.S., 2019. Hydrogen-rich syngas production via steam reforming of palm oil mill effluent (POME)-a thermodynamics analysis. Int. J. Hydrogen Energy. 44(37), 20711-20724.
  24. Chiang, K.Y., Lu, C.H., Liao, C.K., Hsien-Ruen Ger, R., 2016. Characteristics of hydrogen energy yield by co-gasified of sewage sludge and paper-mill sludge in a commercial scale plant. Int. J. Hydrogen Energy. 41(46), 21641-21648.
  25. Cho, M.H., Mun, T.Y., Kim, J.S., 2013. Air gasification of mixed plastic wastes using calcined dolomite and activated carbon in a two-stage gasifier to reduce tar. Energy. 53, 299-305.
  26. Cho, M.H., Mun, T.Y., Choi, Y.K., Kim, J.S., 2014. Two-stage air gasification of mixed plastic waste: Olivine as the bed material and effects of various additives and a nickel-plated distributor on the tar removal. Energy. 70, 128-134.
  27. Cho, M.H., Choi, Y.K., Kim, J.S., 2015. Air gasification of PVC (polyvinyl chloride)-containing plastic waste in a two-stage gasifier using Ca-based additives and Ni-loaded activated carbon for the production of clean and hydrogen-rich producer gas. Energy. 87, 586-593.
  28. Choi, Y.K., Cho, M.H., Kim, J.S., 2015. Steam/oxygen gasification of dried sewage sludge in a two-stage gasifier: effects of the steam to fuel ratio and ash of the activated carbon on the production of hydrogen and tar removal. Energy. 91, 160-167.
  29. Chun, Y.N., Song, H.G., 2020. Microwave-induced carbon-CO₂ gasification for energy conversion. Energy. 190, 116386.
  30. Cormos, C.C., 2013. Assessment of flexible energy vectors poly-generation based on coal and biomass/solid wastes co-gasification with carbon capture. Int. J. Hydrogen Energy. 38(19), 7855-7866.
  31. Dashtestani, F., Nusheh, M., Siriwongrungson, V., Hongrapipat, J., Materic, V., Pang, S., 2021. Effect of H₂S and NH₃ in biomass gasification producer gas on CO₂ capture performance of an innovative CaO and Fe₂O₃ based sorbent. Fuel. 295, 120586.
  32. Demirbas, A., 2016. Comparison of thermochemical conversion processes of biomass to hydrogen-rich gas mixtures. Energy Sources Part A. 38(20), 2971-2976.
  33. Demirbaş, A., 2005. Thermochemical conversion of hazelnut shell to gaseous products for production of hydrogen. Energy sources. 27(4), 339-347.
  34. Djebabra, D., Dessaux, O., Goudmand, P., 1991. Coal gasification by microwave plasma in water vapour. Fuel. 70(12), 1473-1475.
  35. Domínguez, A., Fernández, Y., Fidalgo, B., Pis, J.J., Menéndez, J.A., 2007. Biogas to syngas by microwave-assisted dry reforming in the presence of c Energy Fuels. 21(4), 2066-2071.
  36. Đurišić-Mladenović, N., Škrbić, B.D., Zabaniotou, A., 2016. Chemometric interpretation of different biomass gasification processes based on the syngas quality: assessment of crude glycerol co-gasification with lignocellulosic biomass. Renew. Sust. Energy Rev. 59, 649-661.
  37. Edreis, E.M., Luo, G., Li, A., Xu, C., Yao, H., 2014. Synergistic effects and kinetics thermal behaviour of petroleum coke/biomass blends during H₂O co-gasification. Energy Convers. Manage. 79, 355-366.
  38. Effendi, A., Hellgardt, K., Zhang, Z.G., Yoshida, T., 2003. Characterisation of carbon deposits on Ni/SiO₂ in the reforming of CH₄-CO₂ using fixed-and fluidised-bed reactors. Catal. Commun. 4(4), 203-207.
  39. Elif, D., Nezihe, A., 2016. Hydrogen production by supercritical water gasification of fruit pulp in the presence of Ru/C. Int. J. Hydrogen Energy. 41(19), 8073-8083.
  40. Emami-Taba, L., Irfan, M.F., Daud, W.A.M.W., Chakrabarti, M.H., Emami Taba, L., Irfan, M.F., Wan Daud, W.A.M., Chakrabarti, M.H., 2012. The effect of temperature on various parameters in coal, biomass and CO-gasification: a review. Renew. Sust. Energy Rev. 16(8), 5584-5596.
  41. Emami-Taba, L., Irfan, M.F., Wan Daud, W.M.A., Chakrabarti, M.H., 2013. Fuel blending effects on the co-gasification of coal and biomass-a Biomass Bioenergy. 57, 249-263.
  42. Fermoso, J., Corbet, T., Ferrara, F., Pettinau, A., Maggio, E., Sanna, A., 2018. Synergistic effects during the co-pyrolysis and co-gasification of high volatile bituminous coal with microalgae. Energy Convers. Manag. 164, 399-409.
  43. Fremaux, S., Beheshti, S.M., Ghassemi, H., Shahsavan-Markadeh, R., 2015. An experimental study on hydrogen-rich gas production via steam gasification of biomass in a research-scale fluidized bed. Energy Convers. Manag. 91, 427-432.
  44. Gai, C., Guo, Y., Liu, T., Peng, N., Liu, Z., 2016. Hydrogen-rich gas production by steam gasification of hydrochar derived from sewage sludge. Int. J. Hydrogen Energy. 41(5), 3363-3372.
  45. Gao, M., Yang, Z., Wang, Y., Bai, Y., Li, F., Xie, K., 2017. Impact of calcium on the synergistic effect for the reactivity of coal char gasification in H₂O/CO₂ mixtures. Fuel. 189, 312-321.
  46. Garcia, G., Arauzo, J., Gonzalo, A., Sanchez, J.L., Abrego, J., 2013. Influence of feedstock composition in fluidised bed co-gasification of mixtures of lignite, bituminous coal and sewage sludge. Chem. Eng. J. 222, 345-352.
  47. Gil-Lalaguna, N., Sánchez, J.L., Murillo, M.B., Rodríguez, E., Gea, G., 2014. Air-steam gasification of sewage sludge in a fluidized bed. Influence of some operating conditions. Chem. Eng. J. 248, 373-382.
  48. Granados-Pichardo, A., Granados-Correa, F., Sánchez-Mendieta, V., Hernández-Mendoza, H., 2020. New CaO-based adsorbents prepared by solution combustion and high-energy ball-milling processes for CO₂ adsorption: Textural and structural influences. Arab. J. Chem. 13(1), 171-183.
  49. Guler, M., Dogu, T., Varisli, D., 2017. Hydrogen production over molybdenum loaded mesoporous carbon catalysts in microwave heated reactor system. Appl. Catal., 219, 173-182.
  50. Hamad, M.A., Radwan, A.M., Heggo, D.A., Moustafa, T., 2016. Hydrogen rich gas production from catalytic gasification of biomass. Renew. Energy. 85, 1290-1300.
  51. Haque, K.E., 1999. Microwave energy for mineral treatment processes-a brief review. Int. J. Miner. Process. 57(1), 1-24.
  52. He, C., Chen, C.L., Giannis, A., Yang, Y., Wang, J.Y., 2014. Hydrothermal gasification of sewage sludge and model compounds for renewable hydrogen production: a review. Renew. Sust. Energy Rev. 39, 1127-1142.
  53. Ho, G.S., Faizal, H.M., Ani, F.N., 2017. Microwave induced plasma for solid fuels and waste processing: a review on affecting factors and performance criteria. Waste Manage. 69, 423-430.
  54. Hosseinzadeh, A., Zhou, J.L., Li, X., Afsari, M., Altaee, A., 2022. Techno-economic and environmental impact assessment of hydrogen production processes using bio-waste as renewable energy resource. Renew. Sust. Energy Rev. 156, 111991.
  55. Hrycak, B., Czylkowski, D., Miotk, R., Dors, M., Jasinski, M., Mizeraczyk, J., 2014. Application of atmospheric pressure microwave plasma source for hydrogen production from ethanol. Int. J. Hydrogen Energy. 39(26), 14184-14190.
  56. Hu, B., Huang, Q., Buekens, A., Chi, Y., Yan, J., 2017. Co-gasification of municipal solid waste with high alkali coal char in a three-stage gasifier. Energy Convers. Manag. 153, 473-481.
  57. Hu, J., Li, C., Guo, Q., Dang, J., Zhang, Q., Lee, D.J., Yang, Y., 2018a. Syngas production by chemical-looping gasification of wheat straw with Fe-based oxygen carrier. Bioresour. Technol. 263, 273-279.
  58. Hu, Z., Jiang, E., Ma, X., 2018b. Microwave pretreatment on microalgae: effect on thermo-gravimetric analysis and kinetic characteristics in chemical looping gasification. Energy Convers. Manag. 160, 375-383.
  59. Huang, Y.W., Chen, M.Q., Li, Q.H., Xing, W., 2018. Hydrogen-rich syngas produced from co-gasification of wet sewage sludge and torrefied biomass in self-generated steam agent. Energy. 161, 202-213.
  60. Hunt, J., Ferrari, A., Lita, A., Crosswhite, M., Ashley, B., Stiegman, A.E., 2013. Microwave-specific enhancement of the carbon-carbon dioxide (Boudouard) reaction. J. Phys. Chem. C. 117(51), 26871-26880.
  61. Inayat, A., Tariq, R., Khan, Z., Ghenai, C., Kamil, M., Jamil, F., Shanableh, A., 2020. A comprehensive review on advanced thermochemical processes for bio-hydrogen production via microwave and plasma technologies. Biomass Convers. Biorefin. 1-10.
  62. Inayat, M., Sulaiman, S.A., Kurnia, J.C., Shahbaz, M., 2019. Effect of various blended fuels on syngas quality and performance in catalytic co-gasification: a Renew. Sust. Energy Rev. 105, 252-267.
  63. Irfan, M., Li, A., Zhang, L., Ji, G., Gao, Y., 2021. Catalytic gasification of wet municipal solid waste with HfO₂ promoted Ni-CaO catalyst for H₂-rich syngas production. Fuel. 286, 119408.
  64. Jie, W.S., Abdullah, H., Yusof, N., Abbas, Z., 2015. Dielectric properties of oil palm trunk core. J. Clean Energy Technol. 3(6), 3-8.
  65. Kai, X., Li, R., Yang, T., Shen, S., Ji, Q., Zhang, T., 2017. Study on the co-pyrolysis of rice straw and high density polyethylene blends using TG-FTIR-MS. Energy Convers. Manag. 146, 20-33.
  66. Kapusta, K., Stańczyk, K., Wiatowski, M., Chećko, J., 2013. Environmental aspects of a field-scale underground coal gasification trial in a shallow coal seam at the Experimental Mine Barbara in Poland. Fuel. 113, 196-208.
  67. Ke, C., Zhang, Y., Gao, Y., Pan, Y., Li, B., Wang, Y., Ruan, R., 2019. Syngas production from microwave-assisted air gasification of biomass: part 1 model development. Renew. Energy. 140, 772-778.
  68. Koido, K., Kurosawa, K., Endo, K., Sato, M., 2021. Catalytic and inhibitory roles of K and Ca in the pyrolysis and CO₂ or steam gasification of Erianthus, and their effects on co-gasification performance. Biomass Bioenergy. 154, 106257.
  69. Lahijani, P., Zainal, Z.A., Mohamed, A.R., Mohammadi, M., 2014. Microwave-enhanced CO₂ gasification of oil palm shell char. Bioresour. Technol. 158, 193-200.
  70. Lepage, T., Kammoun, M., Schmetz, Q., Richel, A., 2021. Biomass-to-hydrogen: a review of main routes production, processes evaluation and techno-economical assessment. Biomass Bioenergy. 144, 105920.
  71. Li, S., Zheng, H., Zheng, Y., Tian, J., Jing, T., Chang, J.S., Ho, S.H., 2019. Recent advances in hydrogen production by thermo-catalytic conversion of biomass. Int. J. Hydrogen Energy. 44(28), 14266-14278.
  72. Lin, K.C., Lin, Y.C., Hsiao, Y.H., 2014a. Microwave plasma studies of Spirulina algae pyrolysis with relevance to hydrogen production. Energy. 64, 567-574.
  73. Lin, Y.C., Wu, T.Y., Liu, W.Y., Hsiao, Y.H., 2014b. Production of hydrogen from rice straw using microwave-induced pyrolysis. Fuel. 119, 21-26.
  74. Liu, Q., He, H., Li, H., Jia, J., Huang, G., Xing, B., Zhang, C., Cao, Y., 2019. Characteristics and kinetics of coal char steam gasification under microwave heating. Fuel. 256, 115899.
  75. Liu, Y., Wang, T., Zhang, X., Hu, X., Liu, T., Guo, Q., 2021. Chemical looping staged conversion of microalgae with calcium ferrite as oxygen carrier: pyrolysis and gasification characteristics. J. Anal. Appl. Pyrolysis. 156, 105129.
  76. Lopes, M.H., Pinto, F., Crujeira, A.T., Andre´, R., Dias, M. rio, Gulyurtlu, I., Cabrita, I., 2006. Environmental impact of sewage sludge co-gasification with coal. Turbo Expo Power Land, Sea, Air. 42371, 401-408.
  77. Lopez, G., Erkiaga, A., Amutio, M., Bilbao, J., Olazar, M., 2015. Effect of polyethylene co-feeding in the steam gasification of biomass in a conical spouted bed reactor. Fuel. 153, 393-401.
  78. Luo, M., Zhang, H., Wang, S., Cai, J., Qin, Y., Zhou, L., 2022. Syngas production by chemical looping co-gasification of rice husk and coal using an iron-based oxygen carrier. Fuel. 309, 122100.
  79. Lupa, C.J., Wylie, S.R., Shaw, A., Al-Shamma’a, A., Sweetman, A.J., Herbert, B.M.J., 2013. Gas evolution and syngas heating value from advanced thermal treatment of waste using microwave-induced plasma. Renew. Energy. 50, 1065-1072.
  80. Mallick, D., Mahanta, P., Moholkar, V.S., 2017. Co-gasification of coal and biomass blends: chemistry and engineering. Fuel. 204, 106-128.
  81. Mastellone, M.L., Zaccariello, L., Arena, U., 2010. Co-gasification of coal, plastic waste and wood in a bubbling fluidized bed reactor. Fuel. 89(10), 2991-3000.
  82. Mastuli, M.S., Kamarulzaman, N., Kasim, M.F., Mahat, A.M., Matsumura, Y., Taufiq-Yap, Y.H., 2019. Catalytic supercritical water gasification of oil palm frond biomass using nanosized MgO doped Zn catalysts. J. Supercrit. Fluids. 154, 104610.
  83. Menéndez, J.A., Domínguez, A., Inguanzo, M., Pis, J.J., 2005. Microwave-induced drying, pyrolysis and gasification (MWDPG) of sewage sludge: vitrification of the solid residue. J. Anal. Appl. Pyrolysis. 74(1-2), 406-412.
  84. Menéndez, J.A., Domínguez, A., Fernández, Y., Pis, J.J., 2007. Evidence of self-gasification during the microwave-induced pyrolysis of coffee hulls. Energy Fuels. 21(1), 373-378.
  85. Metaxas, A.C., Meredith, R.J., 1983. Industrial microwave heating. IET.
  86. Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., Group, P., 2009. Reprint-preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Phys. Ther. 89(9), 873-880.
  87. Muradov, N., Smith, F., Huang, C., Ali, T., 2006a. Autothermal catalytic pyrolysis of methane as a new route to hydrogen production with reduced CO2 Catal. today. 116(3), 281-288.
  88. Muradov, N., Smith, F., Huang, C., T-Raissi, A., 2006b. Decentralized production of hydrogen from hydrocarbons with reduced CO₂ emission.
  89. Nanda, S., Isen, J., Dalai, A.K., Kozinski, J.A., 2016. Gasification of fruit wastes and agro-food residues in supercritical water. Energy Convers. Manage. 110, 296-306.
  90. Nanda, S., Rana, R., Hunter, H.N., Fang, Z., Dalai, A.K., Kozinski, J.A., 2019. Hydrothermal catalytic processing of waste cooking oil for hydrogen-rich syngas production. Chem. Eng. Sci. 195, 935-945.
  91. Ng, W.C., You, S., Ling, R., Gin, K.Y.H., Dai, Y., Wang, C.H., 2017. Co-gasification of woody biomass and chicken manure: syngas production, biochar reutilization, and cost-benefit analysis. Energy. 139, 732-742.
  92. Nguyen, V.T., Chiang, K.Y., 2021. Sewage and textile sludge co-gasification using a lab-scale fluidized bed gasifier. Int. J. Hydrogen Energy.
  93. Okolie, J.A., Rana, R., Nanda, S., Dalai, A.K., Kozinski, J.A., 2019. Supercritical water gasification of biomass: a state-of-the-art review of process parameters, reaction mechanisms and catalysis. Sustainable Energy F 3(3), 578-598.
  94. Okolie, J.A., Nanda, S., Dalai, A.K., Berruti, F., Kozinski, J.A., 2020a. A review on subcritical and supercritical water gasification of biogenic, polymeric and petroleum wastes to hydrogen-rich synthesis gas. Renew. Sustain. Energy Rev. 119, 109546.
  95. Okolie, J.A., Nanda, S., Dalai, A.K., Kozinski, J.A., 2020b. Hydrothermal gasification of soybean straw and flax straw for hydrogen-rich syngas production: experimental and thermodynamic modeling. Energy Convers. Manage. 208, 112545.
  96. Okolie, J.A., Nanda, S., Dalai, A.K., Kozinski, J.A., 2020c. Optimization and modeling of process parameters during hydrothermal gasification of biomass model compounds to generate hydrogen-rich gas products. Int. J. Hydrogen Energy. 45(36), 18275-18288.
  97. Oliveira, A.M., Beswick, R.R., Yan, Y., 2021. A green hydrogen economy for a renewable energy society. Curr. Opin. Chem. Eng. 33, 100701.
  98. Omar, R., Idris, A., Yunus, R., Khalid, K., Isma, M.I.A., 2011. Characterization of empty fruit bunch for microwave-assisted pyrolysis. Fuel. 90(4), 1536-1544.
  99. Pandey, B., Prajapati, Y.K., Sheth, P.N., 2019. Recent progress in thermochemical techniques to produce hydrogen gas from biomass: a state of the art review. Int. J. Hydrogen Energy. 44(47), 25384-25415.
  100. Papalas, T., Polychronidis, I., Antzaras, A.N., Lemonidou, A.A., 2021. Enhancing the intermediate-temperature CO₂ capture efficiency of mineral MgO via molten alkali nitrates and CaCO₃: characterization and sorption mechanism. J. CO₂ Util. 50, 101605.
  101. Parthasarathy, P., Narayanan, K.S., 2014. Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield-a Renewable Energy. 66, 570-579.
  102. Parvez, A.M., Wu, T., Afzal, M.T., Mareta, S., He, T., Zhai, M., 2019. Conventional and microwave-assisted pyrolysis of gumwood: a comparison study using thermodynamic evaluation and hydrogen production. Fuel Process. Technol. 184, 1-11.
  103. Peng, L., Wang, Y., Lei, Z., Cheng, G., 2012. Co-gasification of wet sewage sludge and forestry waste in situ steam agent. Bioresour. Technol. 114, 698-702.
  104. Pinto, F., Franco, C., André, R.N., Miranda, M., Gulyurtlu, I., Cabrita, I., 2002. Co-gasification study of biomass mixed with plastic wastes. Fuel. 81(3), 291-297.
  105. Pinto, F., André, R.N., Franco, C., Lopes, H., Gulyurtlu, I., Cabrita, I., 2009. Co-gasification of coal and wastes in a pilot-scale installation 1: effect of catalysts in syngas treatment to achieve tar abatement. Fuel. 88(12), 2392-2402.
  106. Pinto, F., André, R.N., Carolino, C., Miranda, M., 2014. Hot treatment and upgrading of syngas obtained by co-gasification of coal and wastes. Fuel Process. Technol. 126, 19-29.
  107. Qian, L., Wang, S., Xu, D., Guo, Y., Tang, X., Wang, L., 2016. Treatment of municipal sewage sludge in supercritical water: a Water Res. 89, 118-131.
  108. Raheem, A., Cui, X., Mangi, F.H., Memon, A.A., Ji, G., Cheng, B., Dong, W., Zhao, M., 2020. Hydrogen-rich energy recovery from microalgae (lipid-extracted) via steam catalytic gasification. Algal Res. 52, 102102.
  109. Ramos, A., Monteiro, E., Silva, V., Rouboa, A., 2018. Co-gasification and recent developments on waste-to-energy conversion: a Renew. Sust. Energy Rev. 81, 380-398.
  110. Ramos, A., Teixeira, C.A., Rouboa, A., 2019. Environmental assessment of municipal solid waste by two-stage plasma gasification. Energies. 12(1), 137.
  111. Rostrupnielsen, J.R., Hansen, J.H.B., 1993. CO₂-reforming of methane over transition metals. J. Catal. 144(1), 38-49.
  112. Salema, A.A., Yeow, Y.K., Ishaque, K., Ani, F.N., Afzal, M.T., Hassan, A., 2013. Dielectric properties and microwave heating of oil palm biomass and biochar. Ind. Crops Prod. 50, 366-374.
  113. Schmid, M., Hafner, S., Scheffknecht, G., 2021. Experimental parameter study on synthesis gas production by steam-oxygen fluidized bed gasification of sewage sludge. Appl. Sci. 11(2), 1-27.
  114. Sekiguchi, H., Orimo, T., 2004. Gasification of polyethylene using steam plasma generated by microwave discharge. Thin Solid Films. 457(1), 44-47.
  115. Shahabuddin, M., Krishna, B.B., Bhaskar, T., Perkins, G., 2020. Advances in the thermo-chemical production of hydrogen from biomass and residual wastes: summary of recent techno-economic analyses. Bioresour. Technol. 299, 122557.
  116. Shahbaz, M., Al-Ansari, T., Aslam, M., Khan, Z., Inayat, A., Athar, M., Naqvi, S.R., Ahmed, M.A., McKay, G., 2020a. A state of the art review on biomass processing and conversion technologies to produce hydrogen and its recovery via membrane separation. Int. J. Hydrogen Energy. 45(30), 15166-15195.
  117. Shahbaz, M., Al-Ansari, T., Inayat, M., Sulaiman, S.A., Parthasarathy, P., McKay, G., 2020b. A critical review on the influence of process parameters in catalytic co-gasification: current performance and challenges for a future prospectus. Renew. Sust. Energy Rev. 134, 110382.
  118. Sheikhdavoodi, M.J., Almassi, M., Ebrahimi-Nik, M., Kruse, A., Bahrami, H., 2015. Gasification of sugarcane bagasse in supercritical water; evaluation of alkali catalysts for maximum hydrogen production. J. Energy Inst. 88(4), 450-458.
  119. Shi, K., Yan, J., Luo, X., Lester, E., Wu, T., 2017. Microwave-assisted pyrolysis of bamboo coupled with reforming by activated carbon for the production of hydrogen-rich syngas. Energy Procedia. 142, 1640-1646.
  120. Shi, W., Laabs, M., Reinmöller, M., Bai, J., Guhl, S., Kong, L., Li, H., Meyer, B., Li, W., 2021. In-situ analysis of the effect of CaO/Fe₂O₃ addition on ash melting and sintering behavior for slagging-type applications. Fuel. 285, 119090.
  121. Shin, D.H., Hong, Y.C., Lee, S.J., Kim, Y.J., Cho, C.H., Ma, S.H., Chun, S.M., Lee, B.J., Uhm, H.S., 2013. A pure steam microwave plasma torch: gasification of powdered coal in the plasma. Surf. Coatings Technol. 228, S520-S523.
  122. Smoliński, A., Howaniec, N., 2016. Co-gasification of coal/sewage sludge blends to hydrogen-rich gas with the application of simulated high temperature reactor excess heat. Int. J. Hydrogen Energy. 41(19), 8154-8158.
  123. Song, T., Wu, J., Shen, L., Xiao, J., 2012. Experimental investigation on hydrogen production from biomass gasification in interconnected fluidized beds. Biomass B 36, 258-267.
  124. Stańczyk, K., Kapusta, K., Wiatowski, M., Świądrowski, J., Smoliński, A., Rogut, J., Kotyrba, A., 2012. Experimental simulation of hard coal underground gasification for hydrogen production. Fuel. 91(1), 40-50.
  125. State, R.N., Volceanov, A., Muley, P., Boldor, D., 2019. A review of catalysts used in microwave assisted pyrolysis and gasification. Bioresour. Technol. 277, 179-194.
  126. Stefanidis, G.D., Munoz, A.N., Sturm, G.S.J., Stankiewicz, A., 2014. A helicopter view of microwave application to chemical processes: reactions, separations, and equipment concepts. Rev. Chem. Eng. 30(3), 233-259.
  127. Sturm, G.S.J., Muñoz, A.N., Aravind, P. V, Stefanidis, G.D., 2016. Microwave-driven plasma gasification for biomass waste treatment at miniature scale. IEEE Trans. Plasma Sci. 44(4), 670-678.
  128. Su, H., Yan, M., Wang, S., 2022. Recent advances in supercritical water gasification of biowaste catalyzed by transition metal-based catalysts for hydrogen production. Renew. Sust. Energy Rev. 154, 111831.
  129. Suard, C., Mourel, R.M., Cerdan, B., Bart, G., Feinberg, M.H., 1996. Modeling energy transfer in a focused microwave digestor. Anal. Chim. Acta. 318(3), 261-273.
  130. Sun, Z., Toan, S., Chen, S., Xiang, W., Fan, M., Zhu, M., Ma, S., 2017. Biomass pyrolysis-gasification over Zr promoted CaO-HZSM-5 catalysts for hydrogen and bio-oil co-production with CO₂ capture. Int. J. Hydrogen Energy. 42(25), 16031-16044.
  131. Thiagarajan, J., Srividhya, P.K., Balasubramanian, P., 2020. Thermochemical behaviors and co-gasification kinetics of palm kernel shells with bituminous coal. Biomass Convers. Biorefin. 10(3), 697-706.
  132. Tungalag, A., Lee, B.J., Yadav, M., Akande, O., 2020. Yield prediction of MSW gasification including minor species through ASPEN plus simulation. Energy. 198, 117296.
  133. Tursun, Y., Xu, S., Wang, C., Xiao, Y., Wang, G., 2016. Steam co-gasification of biomass and coal in decoupled reactors. Fuel Process. Technol. 141, 61-67.
  134. Udomsirichakorn, J., Salam, P.A., 2014. Review of hydrogen-enriched gas production from steam gasification of biomass: the prospect of CaO-based chemical looping gasification. Renew. Sust. Energy Rev. 30, 565-579.
  135. Valero, A., Usón, S., 2006. Oxy-co-gasification of coal and biomass in an integrated gasification combined cycle (IGCC) power plant. Energy. 31(10-11), 1643-1655.
  136. Vecten, S., Wilkinson, M., Bimbo, N., Dawson, R., Herbert, B.M.J., 2021. Hydrogen-rich syngas production from biomass in a steam microwave-induced plasma gasification reactor. Bioresour. Technol. 337, 125324.
  137. Wang, J., Cheng, G., You, Y., Xiao, B., Liu, S., He, P., Guo, D., Guo, X., Zhang, G., 2012. Hydrogen-rich gas production by steam gasification of municipal solid waste (MSW) using NiO supported on modified dolomite. Int. J. Hydrogen Energy. 37(8), 6503-6510.
  138. Wang, J., Chen, J., Liu, J., Liu, H., Wang, M., Cheng, J., 2022. Synergistic effects of mixing waste activated carbon and coal in co-slurrying and CO₂ co-gasification. Powder Technol. 395, 883-892.
  139. Wang, M., Wan, Y., Guo, Q., Bai, Y., Yu, G., Liu, Y., Zhang, H., Zhang, S., Wei, J., 2021. Brief review on petroleum coke and biomass/coal co-gasification: syngas production, reactivity characteristics, and synergy behavior. Fuel. 304, 121517.
  140. Wang, Z., Ouyang, P., Cui, L., Zong, B., Wu, G., Zhang, Y., 2020. Valorizing petroleum coke into hydrogen-rich syngas through K-promoted catalytic steam gasification. J. Energy Inst. 93(6), 2544-2549.
  141. Wei, J., Gong, Y., Guo, Q., Chen, X., Ding, L., Yu, G., 2019. A mechanism investigation of synergy behaviour variations during blended char co-gasification of biomass and different rank coals. Renewable 131, 597-605.
  142. Wnukowski, M., van de Steeg, A.W., Hrycak, B., Jasiński, M., van Rooij, G.J., 2021. Influence of hydrogen addition on methane coupling in a moderate pressure microwave plasma. Fuel. 288, 119674.
  143. Wolfesberger, U., Aigner, I., Hofbauer, H., 2009. Tar content and composition in producer gas of fluidized bed gasification of wood-influence of temperature and pressure. Environ. Prog. Sust. Energy Off. Publ. Am. Inst. Chem. Eng. 28(3), 372-379.
  144. Wu, C., Budarin, V.L., Wang, M., Sharifi, V., Gronnow, M.J., Wu, Y., Swithenbank, J., Clark, J.H., Williams, P.T., 2015. CO₂ gasification of bio-char derived from conventional and microwave pyrolysis. Appl. Energy. 157, 533-539.
  145. Xiang, X., Gong, G., Shi, Y., Cai, Y., Wang, C., 2018. Thermodynamic modeling and analysis of a serial composite process for biomass and coal co-gasification. Renew. Sust. Energy Rev. 82, 2768-2778.
  146. Xiao, N., Luo, H., Wei, W., Tang, Z., Hu, B., Kong, L., Sun, Y., 2015. Microwave-assisted gasification of rice straw pyrolytic biochar promoted by alkali and alkaline earth metals. J. Anal. Appl. Pyrolysis. 112, 173-179.
  147. Xiao, X., Meng, X., Le, D.D., Takarada, T., 2011. Two-stage steam gasification of waste biomass in fluidized bed at low temperature: parametric investigations and performance optimization. Bioresour. Technol. 102(2), 1975-1981.
  148. Xiao, Y., Watson, M., 2019. Guidance on conducting a systematic literature r J. Plann. Educ. Res. 39(1), 93-112.
  149. Xie, Q., Borges, F.C., Cheng, Y., Wan, Y., Li, Y., Lin, X., Liu, Y., Hussain, F., Chen, P., Ruan, R., 2014. Fast microwave-assisted catalytic gasification of biomass for syngas production and tar removal. Bioresour. Technol. 156, 291-296.
  150. Xu, C., Hu, S., Xiang, J., Zhang, L., Sun, L., Shuai, C., Chen, Q., He, L., Edreis, E.M.A., 2014. Interaction and kinetic analysis for coal and biomass co-gasification by TG-FTIR. Bioresour. Technol. 154, 313-321.
  151. Xu, F., Xing, X., Gao, S., Zhang, W., Zhu, L., Wang, Y., Chen, J., Chen, H., Zhu, Y., 2021. Direct chemical looping gasification of pine sawdust using Fe₂O₃-rich sludge ash as an oxygen carrier: thermal conversion characteristics, product distributions, and gasification performances. Fuel. 304, 121499.
  152. Yan, B., Jiao, L., Li, J., Zhu, X., Ahmed, S., Chen, G., 2021. Investigation on microwave torrefaction: parametric influence, TG-MS-FTIR analysis, and gasification performance. Energy. 220, 119794.
  153. Yang, C., Wang, S., Yang, J., Xu, D., Li, Y., Li, J., Zhang, Y., 2020. Hydrothermal liquefaction and gasification of biomass and model compounds: a Green Chem. 22(23), 8210-8232.
  154. Yang, Y., Zhu, J., Yang, L., Zhu, Y., 2019. Co-gasification characteristics of scrap tyre with pine sawdust using thermogravimetric and a whole-tyre gasifier reactor. Energy Procedia. 158, 37-42.
  155. Yao, X., Zhou, H., Xu, K., Xu, Q., Li, L., 2019. Evaluation of the fusion and agglomeration properties of ashes from combustion of biomass, coal and their mixtures and the effects of K₂CO₃ additives. Fuel. 255, 115829.
  156. Yoon, S.J., Lee, J.G.G., 2012. Hydrogen-rich syngas production through coal and charcoal gasification using microwave steam and air plasma torch. Int. J. Hydrogen Energy. 37(22), 17093-17100.
  157. Yoon, S.J., Lee, J.G.G., Huang, Y.F., Kuan, W.H., Chang, C.C., Tzou, Y.M., Yoon, S.J., Lee, J.G.G., 2013a. Catalytic and atmospheric effects on microwave pyrolysis of corn stover. Bioresour. Technol. 131, 274-280.
  158. Yoon, S.J., Yun, Y.M., Seo, M.W., Kim, Y.K., Ra, H.W., Lee, J.G., 2013b. Hydrogen and syngas production from glycerol through microwave plasma gasification. Int. J. Hydrogen Energy. 38(34), 14559-14567.
  159. Yousef, S., Eimontas, J., Striūgas, N., Abdelnaby, M.A., 2021. Pyrolysis and gasification kinetic behavior of mango seed shells using TG-FTIR-GC-MS system under N₂ and CO₂ atmospheres. Renewable 173, 733-749.
  160. Zamri, A.A., Ong, M.Y., Nomanbhay, S., Show, P.L., Aiman, A., Ong, M.Y., Nomanbhay, S., Show, P.L., 2021. Microwave plasma technology for sustainable energy production and the electromagnetic interaction within the plasma system: a Environ. Res. 197, 111204.
  161. Zhang, D., Lu, L., Ren, Y., Jin, H., Wei, W., Cheng, Z., Guo, L., 2021. K₂CO₃-catalytic supercritical water gasification of coal with NaAlO₂ addition to inhibit ash agglomeration and decrease the volatility of alkali metals. Fuel. 303, 121312.
  162. Zhang, Q., Liu, H., Li, W., Xu, J., Liang, Q., 2012. Behavior of phosphorus during co-gasification of sewage sludge and coal. Energy F 26(5), 2830-2836.
  163. Zhang, Y., Ke, C., Fu, W., Cui, Y., Rehan, M.A., Li, B., 2020a. Simulation of microwave-assisted gasification of biomass: a Renewable Energy. 154, 488-496.
  164. Zhang, Y., Chen, G., Wang, L., Tuo, K., Liu, S., 2020b. Microwave-assisted pyrolysis of low-rank coal with K₂CO₃, CaCl₂, and FeSO₄ c ACS Omega. 5(28), 17232-17241.
  165. Zhao, K., Fang, X., Huang, Z., Wei, G., Zheng, A., Zhao, Z., 2021a. Hydrogen-rich syngas production from chemical looping gasification of lignite by using NiFe₂O₄ and CuFe₂O₄ as oxygen carriers. Fuel. 303, 121269.
  166. Zhao, X., Tian, Y., Guo, B., Sun, C., Zhou, P., Chen, G., Wang, W., Sun, J., Wang, P., Mao, Y., Song, Z., 2021b. Microwave steam gasification of semi-coke derived from co-pyrolysis of fungus chaff and lignite. Int. J. Coal Prep. Util. 41(11).