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Biofuel systems may represent a promising strategy to combat climate change by replacing fossil fuels in electricity generation 

and transportation. First-generation biofuels from sugar and starch crops for ethanol (a gasoline substitute) and

 

from oilseed 

crops for biodiesel (a petroleum diesel substitute) have come under increasing levels of scrutiny due to the uncertainty associated 

with

 

the estimation of climate change impacts of biofuels, such as due to indirect effects on land use. This analysis estimates the 

magnitude of some uncertainty sources: i) crop/feedstock, ii) life cycle assessment (LCA)

 

modelling approach, iii) land-use 

change

 

(LUC), and iv) greenhouse gas (GHG)

 

metrics. The metrics used for characterising the different GHGs (global warming 

potential-GWP and global temperature change potential-GTP at different time horizons) appeared not to play a significant role 

in explaining the variance in the carbon footprint of biofuels, as opposed to the crop/feedstock used, the inclusion/exclusion of 

LUC considerations, and the LCA modelling approach (p<0.001). The estimated climate footprint of biofuels is dependent on 

the latter three parameters and, thus, is context-specific. It is recommended that these parameters be dealt with in a manner 

consistent with the goal and scope of the study. In particular, it is essential to interpret the results of the carbon footprint of 

biofuel systems in light of the choices made in each of these sources of uncertainty, and sensitivity analysis is recommended to 

overcome their influence on the result.

 

                                                  

➢Uncertainty in the carbon footprints of biofuels is 

large.

 ➢Uncertainty comes from crop used, LUC and LCA 

modelling, but not GHG metrics.
 

➢Uncertain parameters should be dealt with 

consistently with the goal and scope.
  

➢Results should be interpreted in light of the 

methodological choices made.
  

➢Sensitivity analysis is recommended.
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1. Introduction 

 

The urgent need for replacing fossil fuels to mitigate climate change has 

stimulated the development of policies promoting biofuels. Policies supporting 
transport biofuels have been implemented over the last two decades, but with 

little critical appraisal of the context in which these systems deliver a net 

reduction in greenhouse gas (GHG) emissions (Searchinger et al., 2008; Plevin 
et al., 2014). Given the wide range of biofuel systems available in terms of 

crops/feedstocks (e.g., sugar, starch, vegetable oil and organic by-products) and 
conversion processes (e.g., esterification, distillation), there is an associated 

large variability in the carbon footprint of those systems (Malça and Freire, 

2010; Pfister and Scherer, 2015).  

It is intuitive that products resulting from bio-based systems will be more 

climate-friendly than those from their fossil counterparts (Weiss et al., 2012). 

The rationale for the early view that biofuels were carbon neutral was that the 
carbon emitted upon combustion had been sequestered from the atmosphere in 

the first place, as crops photosynthesise and grow, giving no net CO2 emissions. 

However, once the whole life cycle is taken into account, including 
agrochemical inputs (e.g., N fertiliser, the production of which is a GHG-

intensive process (Wood and Cowie, 2004), changes in the carbon stock in the 

land where the crops are grown (which may be positive or negative, depending 
on the previous land use), indirect land-use change (iLUC), as well as albedo 

effects, it becomes evident that bioenergy’s impact on climate change is not 

neutral (see, e.g., Searchinger et al., 2008; Cherubini et al., 2009, Johnson, 
2009; Haberl et al., 2012; Zanchi et al., 2012; Wiloso et al., 2016), highlighting 

the need to support only the systems that can result in real climate change 

mitigation. 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 The application of environmental systems analysis tools, such as life 

cycle assessment (LCA), has elucidated that the assumed climate benefit of 

biofuels is not always realised (Brandão et al., 2021), not least because 

indirect effects are usually not accounted for, such as iLUC
 
(Searchinger et 

al., 2008). Clearly, biofuel systems need to be analysed quantitatively and 

comprehensively before robust claims can be made about their relative 

environmental superiority. 
 

The need to assess systems comprehensively along their supply chain 

led to the recognition that LCA is the appropriate decision-support tool for 

assessing the impacts of biofuel systems (EU, 2009). LCA 
comprehensively compares alternative systems with the same functionality, 

providing a proper basis to inform policy to support a transition towards 

more sustainable production and consumption. LCA helps identify trade-

offs between alternatives and highlights risks of shifting burdens between 

impacts, life cycle stages, generations, and countries (Brandão, 2020). 
LCA can elucidate climate change effects of biofuel systems and thereby 

aid in comparing energy systems and in identifying those that meet the 

targets that policymakers have set. LCA has been used to support policy 

development and implementation, e.g., EU RED (EU, 2009). However, 

despite its standardisation (ISO 2006a and b), the application of LCA has 

resulted in quantified benefits of biofuel systems that vary widely and 

depend on methodological choices (Cherubini and Stromman 2011; Ahgren 
et al., 2015; Brandão, 2020). Unresolved methodological issues in applying 

LCA to biofuel systems hinder the generation of robust results for 

supporting policy decisions (McManus et al., 2015; Agostini et al., 2020).  
There are several factors that explain the variability of carbon footprint 

estimates of biofuel systems. Agricultural and other bio-based systems are 

naturally variable, given their susceptibility to local climate vagaries and 
other agroecological factors, such as soil type. Furthermore, uncertainty in 

footprint estimates may be due to management factors (crop/feedstock type, 

inputs, agronomy), as well as processing technologies and scale. 
Altogether, these reflect known variations between biofuel systems. In 

addition, variability comes from methodological aspects, such as the impact 
assessment method (Brandão et al., 2019), which reflect methodological 

choices made by the practitioners. In this article, we consider the combined 

effects of variation in results due to differences in feedstock and 

methodological choices as sources of variability and/or uncertainty. 

Methodological choices relate to the LCA phases of the study: (i) the 

goal and scope definition, including the intended application and system 
boundary, the modelling approach (attributional or consequential) and 

treatment of land-use change; (ii) the life cycle inventory (LCI) analysis, 

including the data type (e.g., marginal or average) and sources, where data 
are collected, and inputs and outputs are quantified, which should be 

consistent with (i); (iii) the life cycle impact assessment (LCIA) method to 

be adopted for characterising emissions of GHGs, and (iv) interpretation, 
including assumptions related to the climate-change-mitigation potential of 

the assessed biofuels. The variation in applied methodologies reflects 

differences in purpose between studies and arises from unresolved issues 
surrounding the LCA of bio-based systems in general and biofuel systems 

in particular (Wiloso et al., 2012; Brandao et al., 2021). Indeed, the freedom 

with which LCA practitioners have applied LCA  to energy  systems, not  
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 Abbreviations 

CF Carbon footprint 

char LCA characterization model 

crop Crop or feedstock 

dLUC direct Land Use Change 

FAME Fatty acid methyl ester 

FAO Food and Agriculture Organization of the United Nations 

GHG Greenhouse gas 

GTP Global temperature change potential 

GWP Global warming potential 

HVO Hydrotreated vegetable oil 

iLUC indirect Land Use Change 

LCA  Life Cycle Assessment 

LUC Land-Use Change 

PVO Pure vegetable oil 

luc Inclusion/exclusion of dLUC or iLUC 

mod LCA modelling approach (ALCA and CLCA) 

𝜂2 Eta-squared, a measure of effect size used in ANOVA 
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always  compliant with the ISO 14040/44 standards (ISO, 2006a and b), has 

resulted in wide variation in the reported values for published GHG emissions 

(see, e.g., Chum et al., 2011; Sathaye et al., 2011; Garcia et al., 2020). In the 

case of biodiesel from microalgae, the results can be highly variable (see Garcia 

et al., 2020), but high variability also applies to other feedstocks and other 
biofuels (Brandão et al., 2021). 

  Uncertainty in LCA has been subject to several analyses, mainly when 

LCA is used for comparative purposes (see, e.g., Groen and Heijungs, 2017; 
Mendoza Beltran et al., 2018; Igos et al., 2019; Cucurachi et al., 2021; 

Heijungs, 2021). In terms of the carbon footprint of biofuels, several sources of 

uncertainty make the estimation of impacts extremely variable, such as i) 
crop/feedstock, ii) land-use change, iii) modelling approach, and iv) GHG 

metrics. 

 

1.1. Crop/feedstock 

 

Crops can be converted to biofuels through several processes. Sugar and 
starch crops can be fermented to produce ethanol, while oilseed crops produce 

pure vegetable oil (PVO) that can be esterified to biodiesel (fatty acid methyl 

ester-FAME) or hydrotreated to produce hydrotreated vegetable oil (HVO), 

also known as renewable diesel. For ethanol, corn is the common feedstock in 

the USA, while sugarcane is used in subtropical regions such as Brazil, and 

wheat and barley are used in Europe. Oilseed crops are also geographically-
specific: while oil palm is grown in South-East Asia, e.g., Indonesia and 

Malaysia, oilseed rape is produced in Europe and soybean in South America. 

The different crops have different agronomic requirements and product 
properties, thus, feature different production and processing systems. 

 

 

1.2. Modelling approach 

 

In the first phase of LCA, the goal and scope definition, a decision is made 
on how the biofuel system is represented. The particular modelling approach 

for calculating life cycle GHG emissions relies on a specific delimitation of the 

system boundary, whereby by-products are excluded via substitution or 
allocation.  

When representing the product system under assessment, mainly two 

modelling approaches are followed: attributional LCA (ALCA) and 
consequential LCA (CLCA). According to the Shonan LCA database guidance 

principles, the two LCA modelling approaches are defined as follows 

(Sonnemann and Vigon, 2011): 
 

• Attributional approach: A system modelling approach in which inputs 

and outputs are attributed to the functional unit of a product system by 

linking and/or partitioning the unit processes of the system according to 

a normative rule. 

• Consequential approach: A system modelling approach in which 

activities in a product system are linked so that activities are included in 
the product system to the extent that they are expected to change as a 

consequence of a change in demand for the functional unit. 

 
The two approaches answer different questions: whilst ALCA attributes a 

share of the global environmental burden to a product or activity, a CLCA 

quantifies the consequences that an increase in supply or demand for a 

particular product is likely to have on the environment in a given context. It has 

been argued that ALCA cannot support decision-making, while CLCA can, as 

ALCA does not attempt to estimate the consequences of decisions (Brandão, 
2014); some authors even argue that ALCA is unequivocally misleading in 

guiding policy, e.g., climate policy (Plevin et al., 2014).  

In practice, the main differences between the two approaches relate to: i) the 
data adopted (average for ALCA and marginal for CLCA; e.g., for modelling 

the input of electricity supply mix or land-use reference system), and ii) the 

manner by which co-production is handled. ALCA commonly allocates 
environmental burdens among co-products according to energy content or 

economic value, while CLCA typically follows a substitution approach 

whereby the determining product (e.g., wheat ethanol) is credited with the 
avoided burdens that the use of the by-product (e.g., energy recovery from 

wheat straw) incurs via displacing a marginal product yielding the same 

function as the by-product (e.g., 1 MJ of heat from straw displacing an 
equivalent amount of heat from natural gas). More information on these two 

modelling approaches can be found in Weidema (2003), Brandão et al. 

(2014), Brandão et al. (2017), and Ekvall (2019).  

Regardless of the support that either modelling approach may have in 

the LCA community, which remains a divisive issue, it is undeniable that 

applying the two approaches results in highly disparate outcomes (Brandão 
et al., 2021). For example, when modelling palm oil, Schmidt and de Rosa 

(2020) reported considerably variable results, but the variability found 

depended on the impact category under consideration (from -63% for 
respiratory inorganics to +730% for mineral extraction when comparing 

attributional to consequential results). It has also been argued that beyond 

this dichotomy between ALCA and CLCA, other forms of LCA exist and 
that the goal should be to develop useful models (Suh and Yang 2014). 

In addition to the two LCA modelling approaches discussed above, 

hybrid approaches exist that use both substitution and energy allocation, 
like that described in RED (EU, 2009). The RED (EU, 2009), now 

superseded by Directive (EU) 2018/2001 (EU, 2018), stipulated that 

biofuels should abide by certain criteria and targets, such as having a carbon 
footprint 35% lower than fossil fuels. In order to calculate GHG savings, 

RED follows a life cycle approach to estimate the climate change impacts 

of biofuel systems - see Annex V of the RED (EU, 2009) – which is used 

to calculate the default values for various biofuel systems, to support 

identification of biofuel systems that met the criterion of 35% GHG 

emission savings relative to the fossil-fuel comparator of 83.8 gCO2-eq., 
and it showed that some pathways did not meet the threshold of minimum 

GHG savings, such as wheat ethanol, soybean biodiesel, and palm oil 

biodiesel (saving 16%, 31% and 19%, respectively; EU, 2009). 
 

1.3. Land-use change (LUC) 

 
LUC refers to conversion between land uses (e.g., forest, grassland, 

cropland), generating carbon fluxes between terrestrial ecosystems and the 

atmosphere. The use of land for biofuel crops causes CO2 emissions if the 
carbon stock of the biofuel crop is lower than the carbon stock of the 

reference land use.  If the land used for annual biofuel crops has existed as 

cropland for a “reasonable” time – usually considered 20 yr – then no 
emissions for LUC are ascribed to the biofuel as there were no significant 

biogenic carbon emissions over the previous two decades. However, if 

grassland or forest is used for biofuel crops, the magnitude of emissions 
would be considerably higher and should be ascribed to the activity 

responsible for LUC, i.e., biofuel, in this case. Replacing annual crops with 

perennial biofuel crops can lead to carbon dioxide removal.  
The particular land use adopted as a reference may depend on whether 

the modelling approach is attributional or consequential and has a decisive 

contribution to the outcome of the analysis (Soimakallio et al., 2015; 
Koponen et al., 2018; Donke et al., 2020). In addition, a more complex 

concern exists for indirect LUC (iLUC). As opposed to direct LUC (dLUC), 

iLUC refers to changes in land use that take place indirectly to compensate 
for the diversion of crops from, e.g., food and feed purposes, into biofuel 

production. For example, the diversion of corn from animal feed to ethanol 

in the USA could lead to the expansion of soybean on pastures in South 
America to meet feed demand, indirectly causing forests to be cleared for 

grazing (Brandão, 2008; Song et al., 2021).    
Concerns over the indirect implications for climate change of using land 

for biofuels were expressed in the European Commission (2015) iLUC 

“Directive” (2015/1513) (European Commission, 2015), where it was 

recognised that the emissions associated with some biofuels receiving EU 

subsidies could exceed the fossil fuels that they replaced when indirect 

effects were included. A subsequent review of iLUC factors by Valin et al. 
(2015) and Woltjer et al. (2017) illustrated the high variability of iLUC 

factors as determined by a range of models, including partial and general 

economic-equilibrium models, and questioned whether models were 
suitable for determining factors to quantify an effect that cannot be directly 

observed or measured (Munoz et al., 2015). It is widely acknowledged that 

estimating iLUC emissions is highly challenging. 
 

1.4. GHG metrics 

 
As discussed above, biofuel systems are not carbon neutral. However, 

the biogenic part of the carbon emission has been considered neutral in 

many LCA studies for the reasons mentioned above. Provided carbon is 
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emitted as CO2 and not as CH4, biogenic carbon emissions from combustion of 

biofuels could indeed be considered neutral and disregarded, as long as 

allocation between co-products is treated consistently, i.e., allocated on the 

basis of their carbon content (see Luo et al., 2009). This assumption is valid as 

long as there is no substantial divergence between the timing of uptake and 
emissions, such as in the case of annual crops, and no dLUC emissions, such 

as due to a decline in soil carbon stocks.  

In the case of perennial crops, there is a rationale for differentiating 
emissions based on their timing, even if overall biogenic emissions are 

balanced by an equivalent amount of carbon sequestered as biofuel feedstocks 

grow. The reason is that one may legitimately want to credit systems that keep 
carbon out of the atmosphere for longer periods of time (e.g., while an annual 

crop removes atmospheric carbon for one year, a forest plantation can remove 

carbon for as much as 100 yr). This has justified the emergence of several 
methods that account for the timing of emissions. A recent comparison of 15 

methods by Brandão et al. (2019) found wide variation between methods, 

particularly where biofuel crops replace forest, such that, depending on the 
method applied, a biofuel may appear better or worse than the fossil fuel it 

replaces.  

In addition to the aspect of time, different GHG characterisation models 

reflect different cause-effect mechanisms. The most common LCIA 

characterisation models are those from which Global Warming Potentials 

(GWPs) and Global Temperature change Potential (GTPs) are derived. While 
the former reflects the cumulative radiative forcing over a period (e.g., 20 and 

100 yr), the latter reflects temperature changes at the end of the period 

(Cherubini et al., 2016; Levasseur et al., 2016; Jolliet et al., 2018). These GHG 
metrics also vary in the weighting they attribute to short-lived climate forcers 

such as methane relative to CO2 (Jolliet et al., 2018).  

The aim of this study is to identify the sources of uncertainty that make the 
estimation of the carbon footprint of biofuels extremely variable. With 

reference to a range of biofuel systems, this paper quantifies the magnitude of 

the uncertainty associated with each of the main sources: i) crop/feedstock, ii) 
land-use change, iii) modelling approach and iv) GHG metrics, which is 

currently lacking in the existing scientific literature on the topic. The goal is 

that this study will contribute to improved assessments with reduced 
uncertainty and greater consistency that provide more accurate, comparable 

data to inform decision-making. 

 
2. Research Methodology 

 

The magnitude of the different sources of uncertainty associated with 
modelling the carbon footprint of biofuels was quantified: i) crop/feedstock, ii) 

LUC considerations, iii) LCA modelling approach, and iv) LCIA 

characterisation model for GHG emissions. The inventory data and modelling 
for the 20 biofuel pathways are based on Brandão et al. (2021), extended in this 

work to include two LCIA methods (over two periods) and visualisations of 

variability. 
Specifically, estimates reflect the inclusion or exclusion of dLUC and iLUC, 

as well as 2 different characterisation models (GWP and GTP) over two time 

frames (20 and 100 yr). In total, each pathway’s different permutations of the 
modelling approach, LUC considerations and LCIA characterisation models 

resulted in 28 estimates, giving a total of 560 data points.  
 

 

2.1. Crop/feedstock 

 

The GHG emissions (i.e., CO2, CH4, and N2O) associated with the life cycle 

of 20 biofuel production pathways from 10 crops/feedstocks (including supply 
chain data: country- and crop-specific yields, fertilizer, and fuel use, etc.) were 

modelled, as described in Brandão et al. (2021):  

 

• ethanol (7 pathways): corn from the USA, sugar beet from France and 

Germany, sugar cane from Brazil, and wheat from France and Germany 

(4); 

• FAME (6 pathways): palm oil from Malaysia and Indonesia (2), rapeseed 

oil from France and Germany, sunflower oil from the Ukraine, soybean 
oil from the USA and Argentina and waste oil;  

• HVO (4 pathways): palm oil from Malaysia and Indonesia (2), rapeseed 

oil from France and Germany, and sunflower from Ukraine; 

• PVO (1 pathway): rapeseed oil from France and Germany; and  

• biogas (2 pathways): wet and dry manure from dairy cows in France 

and Germany. 

 

2.2. Modelling approach 

 
Each of the biofuel pathways was modelled in three different ways 

reflecting the different modelling approaches: ALCA, CLCA, and EU-RED 

(see Section 1.2 for a description of the different modelling approaches). 
While the ALCA and CLCA approaches respectively applied energy 

allocation and substitution consistently, the EC-RED approach applied a 

mixture of energy allocation and substitution. 
 

2.3. Land-use change (LUC) 

 
Estimating dLUC and iLUC emissions is challenging (see Section 1.3). 

For dLUC, values from the study by Brandão et al. (2021) were used, which 

takes into account how much the land area devoted to a specific crop 
changed over the preceding 20 yr. IPCC data were used, as well as FAO 

data on cropland expansion in specific countries where the feedstocks are 
grown and compared with the contraction of other land uses, such as 

grassland and forest, to estimate LUC emissions. LUC emissions were 

calculated from the average share of production that came from cropland 
expansion over that period. Reference land use (e.g., arable land, grassland, 

and forest) and associated carbon stock were determined as a weighted 

average of those land uses that contracted over the same period. This was 
applied across all modelling approaches. 

The need for standardisation of iLUC factors for policy implementation 

led the EU (2015) to base their adopted default values on a general-
equilibrium model Modeling International Relationships in Applied 

General Equilibrium (MIRAGE), developed by the International Food 

Policy Research Institute (IFPRI): 12 (8-16) g CO2-eq. MJ-1 for cereals and 
other starch-rich crops, 13 (4-17) g CO2-eq. MJ-1 for sugar crops, and 55 

(33-66) g CO2-eq. MJ-1 for vegetable oil crops. These iLUC values were 

adopted in the RED approach. For the ALCA and CLCA approaches, the 
framework developed by Schmidt et al. (2015) was adopted, whereby a 

single emission factor was estimated for iLUC under each LCA modelling 

approach for agricultural land used in the foreground biofuel system, as 

well as in the background feed and vegetable oil systems in the case of 

CLCA. These factors were estimated based on the following biophysical 

step procedure: i) the land requirement per MJ of biofuel was estimated, 
taking into account the location where the feedstocks are grown; ii) the 

potential net primary production (NPP0) of those locations was estimated; 

iii) the productivity factor was estimated by dividing the biofuel crop yield 
by the global average productivity of arable land, that is, 6.11 t C·ha-1·yr-1; 

iv) the actual occupied area (ha·yr) was converted into units of 

productivity-weighted hectare-years (pw ha·yr); v) GHG emissions were 
estimated for both attributional and consequential approaches by 

multiplying the iLUC GHG emissions per pw ha·yr for arable land reported 

by Schmidt et al. (2015) of 1.260 and 0.042 t CO2·pw ha-1·yr-1 for CLCA 
and ALCA, respectively, by the total pw ha·yr of each biofuel pathway. 

The calculated result was included in the inventories. 

 
2.4. GHG metrics 

 

GWP and GTP over/at both 20 and 100 yr from IPCC’s fifth assessment 
report (Myhre et al., 2013) were applied as the LCIA characterisation model 

to estimate climate change effects. This yielded four results per 

combination of crop/feedstock, modelling approach and LUC/iLUC 
approach. The timing of emissions/removals was not differentiated. 

 

2.5. Statistical analysis 

 

Analysis of variance (ANOVA) was applied to estimate the contribution 

of the four uncertainty sources: i) crop/feedstock, ii) dLUC/iLUC 
considerations, iii) LCA modelling approach, and iv) LCIA 

characterisation model for GHG emissions. A 4-way ANOVA was 

performed with the above four parameters, without interaction, using the 
model which is symbolically written as Equation 1: 

 
𝐶𝐹𝑐,𝑙𝑢𝑐,𝑚𝑜𝑑,𝑐ℎ𝑎𝑟= 𝜇𝑜𝑣𝑒𝑟𝑎𝑙𝑙+𝛼𝑐𝑟𝑜𝑝+𝛼𝑙𝑢𝑐+𝛼𝑚𝑜𝑑+𝛼𝑐ℎ𝑎𝑟+𝜀    Eq. 1 
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where 𝐶𝐹𝑐𝑟𝑜𝑝,𝑙𝑢𝑐,𝑚𝑜𝑑,𝑐ℎ𝑎𝑟 is the carbon footprint of a biofuel in 𝑔𝐶𝑂2𝑒𝑞.𝑀𝐽
−1 

with certain crop (crop/feedstock) characteristics, luc (treatment of land-use 

change) choice, mod (modelling approach), and char (characterisation model). 

The term 𝛼 indicates the mean effect in each group, 𝜇𝑜𝑣𝑒𝑟𝑎𝑙𝑙 the mean of all 

carbon footprints, and 𝜀 is the residual term of the statistical model. This model 

assumes that the effects of the four parameters (𝑐𝑟𝑜𝑝, 𝑙𝑢𝑐, 𝑚𝑜𝑑, and 𝑐ℎ𝑎𝑟) are 

independent. The null hypothesis is that the mean effects 𝛼 of all four terms is 

zero. 
 

3. Results and Discussion 

 

 Figure 1 shows the variation of data points, which is particularly high for 

sugar cane ethanol, palm oil biodiesel (both FAME and HVO, with and without 

methane capture), and soybean oil biodiesel. The reader is referred to Brandão 
et al. (2021) to discuss the factors driving differences between the feedstocks. 

Figure 2 shows the variability of results in each of the four dimensions. In 

terms of crop/feedstock, results are particularly variable for palm oil biodiesel 
(with and without CH4 capture), soybean oil biodiesel, and sugar cane ethanol. 

In terms of LUC, results are variable when both dLUC and iLUC are included, 

but also when only dLUC is included. In terms of the modelling approach, 
CLCA shows the most considerable variability. Finally, in the last dimension, 

choice of the characterisation model, results were similar. 

The ANOVA table (Table 1) shows that the factors crop (crop/feedstock 
used), luc (LUC considerations), and mod (modelling approach) provide a 

highly significant explanatory effect, the first factor explaining more than 30% 

of the variance. Factor char (GHG characterisation factors) is not a significant 

explanatory variable. The 𝜂2 shows that these four factors explain 40.75% of 

the variation in CF results.    

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Table 1. 4-way ANOVA table. 

 

Factor1  Df  Sum Sq  Mean Sq  F value  Pr (>F)  Partial  η2  

crop  14  2,175,257  155,376  22.101  <2 *10-16  ***2  0.366  

mod  2  519,130  259,565  36.921  9.47  * 10-16  ***  0.086  

luc  3  133,976  44,659  6.352  0.000309  ***  0.034  

char  3  42,648  14,216  2.022  0.109783   0.011  

Residuals  537  3,775,303  7,030  -  -  -  
 

1 Abbreviations:  crop (crop/feedstock used), luc (LUC considerations), mod  (modelling 

approach), and char (GHG characterisation factors). Df: degrees of freedom and Pr: 

Probability. 
2 Significance codes: ‘***’ = p<0.001 

 
One of the assumptions of ANOVA is that the residuals are normally 

distributed. This is not the case, as can be seen in a QQ-plot (Fig. 3). 
However, this is not concerning because ANOVA is reasonably robust 

against non-normality (Ott and Longnecker, 2015), the sample size is fairly 

large, and the effects are clear; it is believed that the conclusion is justified: 
the factors crop/feedstock, LUC and model, have a highly significant 

influence on the resulting carbon footprint, while the characterisation model 

is insignificant for these biofuel pathways. 

Despite the existence of previous research on the uncertainty in life cycle 

assessment, focusing on that associated with biofuel systems (e.g., Pfister 

and Scherer, 2015; Lo Piano and Benini, 2022) or with the choice of 
modelling approach (e.g., Brandão et al., 2021; Schaubroeck et al., 2021; 

Bamber et al., 2020), or with handling co-production (e.g., Obydenkova et 

al., 2021) or choice of LCIA methods (e.g., Cherubini et al., 2018; Brandão 
et al., 2019), or with modelling LUC (e.g., De Rosa et al., 2018), and with 

which our results are compatible, the simultaneous consideration of 

crop/feedstock, LCA modelling approach, LUC and GHG metrics, and the 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

Fig. 1. Carbon footprint of ethanol, biodiesel (FAME), renewable diesel (HVO), and biogas produced from 20 different feedstocks estimated with the three modelling approaches (ALCA, CLCA, EC-

RED), inclusion/exclusion of dLUC and iLUC considerations, four LCA characterisation models (GWP over 20 and 100 yr, and GTP after 20 and 100 yr). The legend read from top-down corresponds 

to the bars read from left to right. 
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Fig. 3. QQ-plot of the residuals of the ANOVA model. The vertical axis shows the quantiles of 

the estimated residual, and the horizontal axis shows the theoretical quantiles for a standard 

normal distribution.  

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

sensitivity of results to the modelling choices made in these four 

parameters, has not been subject to scrutiny in published literature.
 

 

4. Conclusions and future research directions
 

 
It was estimated how much each source of uncertainty contributes to the 

overall uncertainty in estimates of carbon footprint for 20 biofuel systems. 
These results were not expected a priori, and they suggest important 

strategies for analysing the benefits of biofuels. While it is concluded that 

LCIA characterisation models for GHG emissions play an insignificant role 

for these biofuel pathways (this would not necessarily be the case for other 

systems with a more significant share of methane or if the timing of 

emissions/removals was included), the modelling approach, the feedstock 
used, and the treatment of LUC all play a significant role in the variability 

of the carbon footprint of biofuels.  

The crop-biofuel pathway affects results because pathways represent 
very different crop production systems in terms of their inputs and outputs, 

and processing technology varies between end-products (ethanol, biodiesel, 

biogas). The differences between crops also reflect their production 
location, as, e.g., carbon stocks and management intensity differ between 

Europe, South America, and South-East Asia, affecting the LUC emissions, 

among others.  
The primary source of variability – e.g., in the most uncertain pathways 

(Palm oil FAME and HVO, with and without CH4 capture, soybean oil 

FAME, and sugar cane ethanol) – is the inclusion or exclusion of both 

Fig. 2. Variability in the carbon footprint (𝑔𝐶𝑂2𝑒𝑞.𝑀𝐽
−1), split by (a) 15 different crops/feedstocks (crop), (b) 3 different LCA modelling approaches (mod), (c) 4 different land-use change treatments 

(luc), and (d) four different LCIA characterisation models (char). 
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dLUC and iLUC. Treatment of LUC is particularly critical given i) the 

locations where these crops are grown: South-East Asia and South America 

(where they may be grown on recently-cleared forest land), and ii) the 

modelling approach due to the different treatment of co-products (and 

associated LUC implications). Biofuels made from temperate crops, such as 
corn, rapeseed, and wheat, are largely grown in regions cleared for agriculture 

hundreds of years ago, and no further deforestation occurs. The variability is 

relatively low when only iLUC is included because only one of the variants of 
the EC-RED approach considers iLUC and excludes dLUC and because the 

indirect emissions are assumed by crop type rather than calculated: similar or 

the same factors across ethanol (12 or 13g CO2-eq. MJ-1) and biodiesel 
feedstocks (55g CO2-eq. MJ-1), respectively, are used.  

It is clear from the analysis that methodological choices regarding, for 

example, the modelling approach and the treatment of LUC do affect the 
results. This does not mean that these sources of uncertainty should be ignored, 

as ignoring uncertainty would not avoid uncertainty and could give misleading 

results (Weidema, 2009). Brandão et al. (2014) highlighted the distinction 
between precision and accuracy, arguing for the relative importance of the 

latter. Attempts at making the modelling of a system precise may lead to low 

accuracy and biased results, while aiming for accuracy may result in low 

precision but representative results. As has been recognised in policy, it is 

crucial that indirect effects, such as iLUC, be included in the assessment of 

biofuel systems, even if doing so may lead to low precision (i.e., high 
variability of estimates). As Tribus and El-Sayed (1982) better stated, “It is 

much more important to be able to survey the set of possible systems 

approximately than to examine the wrong system exactly. It is better to be 
approximately right than precisely wrong.” It would be unwise to support 

systems for their alleged climate change mitigation potential if, when taking 

indirect effects into account, these systems are likely to have the opposite 
effect. 

The insignificant effect of GHG metrics in this study is because the modelled 

systems had a similarly tiny fraction of emissions as CH4. In addition, GWP 
and GTP do not differentiate emissions with respect to their timing. It is 

emphasised that the result is particular to the biofuel systems assessed here, 

where most of the biofuels modelled are made from annual crops and assessed 
with LCIA methods that do not distinguish the timing of emissions. A more 

significant effect may be likely when studying systems where asynchrony 

between the timing of emissions and removals occurs, such as bioenergy 
systems from forestry if methods distinguishing the timing of emissions are 

adopted (see Brandão et al., 2019).  

Parameters additional to the four studied here may also significantly 
influence the results. However, it is believed that this paper addresses the main 

sources of uncertainty. 

Biofuel systems have come under increasing scrutiny due to the urgent need 
to replace fossil fuels in order to mitigate climate change. This paper has 

clarified the importance of choices related to key methodological issues in the 

carbon footprinting of biofuel systems and demonstrated the dependency of 
climate-change results on the crop modelled, inventory-modelling approach 

adopted, land-use reference system, indirect land-use change, the inclusion of 

biogenic carbon flows, and LCIA method applied for characterising GHGs.  
LCA is the established framework to assess the climate effects of biofuel 

systems. However, the above methodological choices required when 
performing an LCA study significantly impact the results and their 

interpretation. Furthermore, these methodological choices are the topic of 

ongoing debate; there is no consensus amongst experts and, therefore, no clear, 

agreed guidance to practitioners. The inconsistent handling of these 

methodological choices has led to an inconclusive evidence base for the climate 

effects of biomass and biofuel systems, with the biofuel systems reported as 
both positive and negative relative to their fossil counterpart. 

The carbon footprint of biofuel systems can help identify the systems that 

meet policy targets, such as those that show a relatively lower carbon footprint. 
However, this study makes clear that methodological choices do determine the 

results and that the delimitation of the system boundary derived from the 

modelling approach, which determines the extent to which indirect effects are 
included, is a significant source of uncertainty. It is crucial that the models 

produced do not misrepresent the system under analysis by placing relevant 

activities outside the system boundary, which would go against the whole 
rationale for adopting a life cycle approach: not shifting burdens nor incurring 

“leakage”. In particular, it is important to interpret the results of the carbon 

footprint of biofuel systems in light of the choices made in each of these sources 

of uncertainty, and a sensitivity analysis is recommended to overcome their 

influence on the result.  

Despite their uncertainty, the relevance of LCA and carbon footprinting 

for policy support is growing (Sala et al., 2021). Nonetheless, the lack of 

scientific consensus on handling critical methodological choices makes 
clear the need for increasing harmonisation in LCA and carbon-footprinting 

practice in order to improve the robustness and reproducibility of the results 

generated. We encourage scientists and decision-makers to address this 
issue urgently so that actions aimed at climate-change mitigation can be 

identified and realised. In this vein, more research on the robustness of 

carbon-footprint estimates via LCA is an important gap to be filled. 
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