Boosting the circularity of waste management: pretreated mature landfill leachate enhances the anaerobic digestion of market waste

Document Type : Research Paper

Authors

Università degli Studi Mediterranea di Reggio Calabria, Department of Civil, Energy, Environmental and Materials Engineering, Via Zehender, loc. Feo di Vito, 89122, Reggio Calabria, Italy.

Abstract

Adequate waste management is essential not only to ensure healthy living conditions but also to mitigate climate change. Accordingly, the research on developing strategies to boost the circularity of waste management systems is ongoing. In this context, two waste streams are concurrently managed to recover energy and materials in the present study. Specifically, real leachate collected from a full-scale mature landfill site was preliminarily treated through active filtration to remove inhibitory substances partially and then tested, at the laboratory scale, as a nutrient solution for semi-continuous anaerobic digestion of a carbonaceous substrate represented by market waste. The results demonstrate that, at an organic loading rate of 1.0 gVS∙L-1∙d-1, the process was impossible without using the nutrient solution, while the nitrogen present in the pretreated leachate could balance the carbon content of the market waste and provide the system with the necessary buffering capacity, ensuring process stability. The average methane yield (approximately 0.29 NL∙gVS-1) was satisfactory and consistent with the literature. Despite the increases in both the organic loading rate (up to 1.5 gVS∙L-1∙d-1) and volume of added pretreated leachate (up to 100% of the dilution medium), the process remained stable with a slightly lower methane yield of 0.21 NL∙gVS-1, thanks to nitrogen supplementation. The potential use of produced methane as a renewable energy source and residual digestate as fertilizer would close the loop of managing these waste streams.

Graphical Abstract

Boosting the circularity of waste management: pretreated mature landfill leachate enhances the anaerobic digestion of market waste

Highlights

  • Recovery of mature landfill leachate (MLL) from a full-scale landfill was explored.
  • MLL was pretreated to prepare it for further use in anaerobic digestion (AD).
  • Pretreated MLL was used as a nutrient solution for the AD of market waste.
  • The process irreversibly failed in the reactor without MLL addition after 47 d.
  • MLL allowed a successful AD at an increased organic loading rate of 1.5 gVS∙L-1∙d-1.

Keywords


  1. Ambika, S., Kumar, M., Pisharody, L., Malhotra, M., Kumar, G., Sreedharan, V., Singh, L., Nidheesh, P. V., Bhatnagar, A., 2022. Modified biochar as a green adsorbent for removal of hexavalent chromium from various environmental matrices: mechanisms, methods, and prospects. Chem. Eng. J. 439, 135716.
  2. APHA, AWWA, WEF, 2012. Standard methods for the examination of water and wastewater, 22nd edition. American Public Health Association, American Water Works Association, Water Environment Federation.
  3. Bansal, R.C., Goyal, M., 2005. Activated Carbon Adsorption. Taylor Francis Group.
  4. Berenjkar, P., Islam, M., Yuan, Q., 2019. Co-treatment of sewage sludge and mature landfill leachate by anaerobic digestion. J. Environ. Sci. Technol. 16, 2465-2474.
  5. Bilardi, S., Calabrò, P.S., Greco, R., Moraci, N., 2020. Removal of heavy metals from landfill leachate using zero valent iron and granular activated carbon. Technol. 41(4), 498-510.
  6. Bouallagui, H., Touhami, Y., Cheikh, R.B., Hamdi, M., 2005. Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochem. 40(3-4), 989-995.
  7. Calabrò, P.S., Fòlino, A., Tamburino, V., Zappia, G., Zema, D.A., 2018. Increasing the tolerance to polyphenols of the anaerobic digestion of olive wastewater through microbial adaptation. Biosyst. Eng. 172, 19-28.
  8. Calabrò, P.S., Gori, M., Lubello, C., 2015. European trends in greenhouse gases emissions from integrated solid waste management. Technol. 36(16), 2125-2137.
  9. Calabrò, P.S., Satira, A., 2020. Recent advancements toward resilient and sustainable municipal solid waste collection systems. Opin. Green Sustainable Chem. 26, 100375.
  10. Cossu, R., Ehrig, H.-J., Muntoni, A., 2019. Physical-chemical leachate treatment, in: Cossu, R., Stegmann, (Eds.) Solid Waste Landfilling: Concepts, Processes, Technology. Elsevier Inc. pp. 575-632.
  11. Dhakal, S., J.C. Minx, F.L. Toth, A. Abdel-Aziz, M.J. Figueroa Meza, K. Hubacek, I.G.C. Jonckheere, Yong-Gun Kim, G.F. Nemet, S. Pachauri, X.C. Tan, T. Wiedmann, 2022. Emissions Trends and Drivers. In IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA.
  12. de Quadros, T.C.F., Sicchieri, I.M., Perin, J.K.H., Challiol, A.Z., Bortoloti, M.A., Fernandes, F., Kuroda, E.K., 2022. Valorization of fruit and vegetable waste by anaerobic digestion: definition of co-substrates and inoculum. Waste Biomass Valorization. 14, 407-419.
  13. Di Iaconi, C., Pagano, M., Ramadori, R., Lopez, A., 2010. Nitrogen recovery from a stabilized municipal landfill leachate. Bioresour Technol. 101(6), 1732-1736.
  14. dos Santos, H.A.P., de Castilhos Júnior, A.B., Nadaleti, W.C., Lourenço, V.A., 2020. Ammonia recovery from air stripping process applied to landfill leachate treatment. Environ. Sci. Pollut. Res. 27, 45108-45120.
  15. Du, K., Ang, E.H., Wu, X., Liu, Y., 2022. Progresses in sustainable recycling technology of spent lithium-ion batteries. Energy Environ. Mater. 5(4), 1012-1036.
  16. Edwiges, T., Frare, L., Mayer, B., Lins, L., Triolo, J.M., Flotats, X., de Mendonça Costa, M.S.S., 2018a. Influence of chemical composition on biochemical methane potential of fruit and vegetable waste. J. Waste Manage. 71, 618-625.
  17. Edwiges, T., Frare, L.M., Lima Alino, J.H., Triolo, J.M., Flotats, X., Silva de Mendonça Costa, M.S., 2018b. Methane potential of fruit and vegetable waste: an evaluation of the semi-continuous anaerobic mono-digestion. Technol. 41(7), 921-930.
  18. Ehrig, H.J., Stegmann, R., 2018. Leachate quality, Chapter 10.2. Solid Waste Landfilling. Elsevier. 511-539.
  19. Eljamal, O., Eljamal, R., Maamoun, I., Khalil, A.M., Shubair, T., Falyouna, O., Sugihara, Y., 2022. Efficient treatment of ammonia-nitrogen contaminated waters by nano zero-valent iron/zeolite composite. Chemosphere. 287, 131990.
  20. Espro, C., Paone, E., Mauriello, F., Gotti, R., Uliassi, E., Bolognesi, M.L., Rodríguez-Padrón, D., Luque, R., 2021. Sustainable production of pharmaceutical, nutraceutical and bioactive compounds from biomass and waste. Chem. Soc. Rev. 50(20), 11191-11207.
  21. European Council, 2013. Directive 2008/98/EC. Off. J. Eur. Union.
  22. European Union, 1999. Council Directive 1999/31/EC on the landfill. Off. J. Eu. Commun. L182/1-19.
  23. Fazzino, F., Folino, A., Mauriello, F., Pedullà, A., Calabrò, P.S., 2021a. Biofuel production from fruit and vegetable market waste and mature landfill leachate by an active filter-anaerobic digestion integrated system. Energy Convers. Manage. X, 12, 100130.
  24. Fazzino, F., Bilardi, S., Moraci, N., Calabrò, P.S., 2021b. Integrated treatment at laboratory scale of a mature landfill leachate via active filtration and anaerobic digestion: preliminary results. 13(20), 2845.
  25. Gao, M., Li, S., Zou, H., Wen, F., Cai, A., Zhu, R., Tian, W., Shi, D., Chai, H., Gu, L., 2021. Aged landfill leachate enhances anaerobic digestion of waste activated sludge. J. Environ. Manage. 293, 112853.
  26. Ghomi, A.G., Asasian-Kolur, N., Sharifian, S., Golnaraghi, A., 2020. Biosorpion for sustainable recovery of precious metals from wastewater. J. Environ. Chem. Eng. 8(4), 103996.
  27. Guo, Q., Majeed, S., Xu, R., Zhang, K., Kakade, A., Khan, A., Hafeez, F.Y., Mao, C., Liu, P., Li, X., 2019. Heavy metals interact with the microbial community and affect biogas production in anaerobic digestion: a review. J Environ. Manage. 240, 266-272.
  28. Gupta, V.K., Ali, I., Saleh, T.A., Siddiqui, M.N., Agarwal, S., 2013. Chromium removal from water by activated carbon developed from waste rubber tires. Environ. Sci. Pollut. Res. 20, 1261-1268.
  29. Halim, A.A., Aziz, H.A., Johari, M.A.M., Ariffin, K.S., 2010. Comparison study of ammonia and COD adsorption on zeolite, activated carbon and composite materials in landfill leachate treatment. Desalination. 262(1-3), 31-35.
  30. Holliger, C., Alves, M., Andrade, D., Angelidaki, I., Astals, S., Baier, U., Bougrier, C., Buffière, P., Carballa, M., De Wilde, V., Ebertseder, F., Fernández, B., Ficara, E., Fotidis, I., Frigon, J.C., De Laclos, H.F., Ghasimi, D.S.M., Hack, G., Hartel, M., Heerenklage, J., Horvath, I.S., Jenicek, P., Koch, K., Krautwald, J., Lizasoain, J., Liu, J., Mosberger, L., Nistor, M., Oechsner, H., Oliveira, J.V., Paterson, M., Pauss, A., Pommier, S., Porqueddu, I., Raposo, F., Ribeiro, T., Pfund, F.R., Strömberg, S., Torrijos, M., Van Eekert, M., Van Lier, J., Wedwitschka, H., Wierinck, I., 2016. Towards a standardization of biomethane potential tests. Water Sci. Technol. 74(11), 2515-2522.
  31. Horváth, I.S., Tabatabaei, M., Karimi, K., Kumar, R., 2016. Recent updates on biogas production-a review. Biofuel Res. J. 3(2), 394-402.
  32. Kaveeshwar, A.R., Kumar, P.S., Revellame, E.D., Gang, D.D., Zappi, M.E., Subramaniam, R., 2018. Adsorption properties and mechanism of barium (II) and strontium (II) removal from fracking wastewater using pecan shell based activated carbon. J. Clean. Prod. 193, 1-13.
  33. Kaza, S., Yao, L.C., Bhada-Tata, P., Van Woerden, F., 2018. What a waste 2.0: a global snapshot of solid waste management to 2050. Washington, DC, World Bank
  34. Li, J., Hao, X., van Loosdrecht, M.C., Luo, Y., Cao, D., 2019. Effect of humic acids on batch anaerobic digestion of excess sludge. Water Res. 155, 431-443.
  35. Liao, X., Zhu, S., Zhong, D., Zhu, J., Liao, L., 2014. Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors. J. Waste Manage. 34(11), 2278-2284.
  36. Liczbiński, P., Borowski, S., Cieciura-Włoch, W., 2022. Anaerobic co-digestion of kitchen waste with hyperthermophilically pretreated grass for biohydrogen and biomethane production. Bioresour. Technol. 364, 128053.
  37. Liebetrau, J., Pfeiffer, D., Thrän, D., 2016. Collection of methods for biogas, collection of measurement methods for biogas-methods to determine parameters for analysis purposes and parameters that describe processes in the biogas sector. Series of the funding programme "Biomass energy use". DBFZ, Leipzig.
  38. Lim, J.W., Park, T., Tong, Y.W., Yu, Z., 2020. The microbiome driving anaerobic digestion and microbial analysis. Adv. Bioenergy. Elsevier. 5, 1-16.
  39. Liu, Y., Lv, Y., Cheng, H., Zou, L., Li, Y.Y., Liu, J., 2022. High-efficiency anaerobic co-digestion of food waste and mature leachate using expanded granular sludge blanket reactor. Technol. 362, 127847.
  40. Luo, H., Zeng, Y., Cheng, Y., He, D., Pan, X., 2020. Recent advances in municipal landfill leachate: a review focusing on its characteristics, treatment, and toxicity assessment. Sci. Total Environ. 703, 135468.
  41. Lv, Y., Chang, N., Li, Y.Y., Liu, J., 2021. Anaerobic co-digestion of food waste with municipal solid waste leachate: a review and prospective application with more benefits. Resour. Conserv. Recycl. 174, 105832.
  42. Malode, S.J., Prabhu, K.K., Mascarenhas, R.J., Shetti, N.P., Aminabhavi, T.M., 2021. Recent advances and viability in biofuel production. Energy Convers. Manage. X, 10, 100070.
  43. Mata-Alvarez, J., Llabrés, P., Cecchi, F., Pavan, P., 1992. Anaerobic digestion of the Barcelona central food market organic wastes: experimental study. Technol. 39(1), 39-48.
  44. Mattsson, L., Williams, H., Berghel, J., 2018. Waste of fresh fruit and vegetables at retailers in Sweden-Measuring and calculation of mass, economic cost and climate impact. Resour. Conserv. Recycl. 130, 118-126.
  45. Mohammad-pajooh, E., Turcios, A.E., Cuff, G., Weichgrebe, D., Rosenwinkel, K.H., Vedenyapina, M.D., Sharifullina, L.R., 2018. Removal of inert COD and trace metals from stabilized landfill leachate by granular activated carbon (GAC) adsorption. J. Environ. Manage. 228, 189-196.
  46. Montusiewicz, A., Bis, M., Pasieczna-Patkowska, S., Majerek, D., 2018. Mature landfill leachate utilization using a cost-effective hybrid method. Waste Manage. 76, 652-662.
  47. Moraci, N., Bilardi, S., Calabrò, P.S., 2016. Critical aspects related to Fe0 and Fe0/pumice PRB Environ. Geotech. 3(2), 114-124.
  48. Parkin, G.F., Owen, W.F., 1986. Fundamentals of anaerobic digestion of wastewater sludges. J. Environ. Eng. 112(5), 867-920.
  49. Peng, Y., Li, L., Yuan, W., Wu, D., Yang, P., Peng, X., 2022. Long-term evaluation of the anaerobic co-digestion of food waste and landfill leachate to alleviate ammonia inhibition. Energy Convers. Manage. 270, 116195.
  50. Renou, S., Givaudan, J.G., Poulain, S., Dirassouyan, F., Moulin, P., 2008. Landfill leachate treatment: review and opportunity. J. Hazard Mater 150(3), 468-493.
  51. Rohers, F., Dalsasso, R.L., Nadaleti, W.C., Matias, M.S., de Castilhos Júnior, A.B., 2021. Physical-chemical pre-treatment of sanitary landfill raw leachate by direct ascending filtration. Chemosphere. 285, 131362.
  52. Ruffino, B., Fiore, S., Roati, C., Campo, G., Novarino, D., Zanetti, M., 2015. Scale effect of anaerobic digestion tests in fed-batch and semi-continuous mode for the technical and economic feasibility of a full scale digester. Bioresour Technol. 182, 302-313.
  53. Scano, E.A., Asquer, C., Pistis, A., Ortu, L., Demontis, V., Cocco, D., 2014. Biogas from anaerobic digestion of fruit and vegetable wastes: experimental results on pilot-scale and preliminary performance evaluation of a full-scale power plant. Energy. Convers. Manage. 77, 22-30.
  54. Sharma, H.B., Vanapalli, K.R., Samal, B., Cheela, V.S., Dubey, B.K., Bhattacharya, J., 2021. Circular economy approach in solid waste management system to achieve UN-SDGs: solutions for post-COVID recovery. Sci. Total Environ. 800, 149605.
  55. Sniatala, B., Kurniawan, T.A., Sobotka, D., Makinia, J., Othman, M.H.D., 2023. Macro-nutrients recovery from liquid waste as a sustainable resource for production of recovered mineral fertilizer: uncovering alternative options to sustain global food security cost-effectively. Sci. Total Environ. 856, 159283.
  56. Speece, R.E., 1996. Anaerobic biotechnology for industrial wastewater treatments. Environ. Sci. Technol. 17(9), 416A-427A.
  57. Steinhauser, A., Deublein, D., 2011. Biogas from waste and renewable resources: an introduction. John Wiley & Sons.
  58. Sultana, N., Roddick, F., Gao, L., Guo, M., Pramanik, B.K., 2022. Understanding the properties of fat, oil, and grease and their removal using grease interceptors. Water Res. 225, 119141.
  59. Weichgrebe, D., 2009. FOS / TAC-deduction, methods, application and significance. Int. Winenschaftskonferenz ‘‘Biogas Sci. 1-7.
  60. Xu, Y., Lu, Y., Zheng, L., Wang, Z., Dai, X., 2020. Perspective on enhancing the anaerobic digestion of waste activated sludge. J. Hazard. Mater. 389, 121847.
  61. Xu, F., Li, Yangyang, Ge, X., Yang, L., Li, Y., 2018. Anaerobic digestion of food waste-Challenges and opportunities. Bioresour. Technol. 247, 1047-1058.
  62. Yenigün, O., Demirel, B., 2013. Ammonia inhibition in anaerobic digestion: a review. Process Biochem. 48(5-6), 901-911.
  63. Zhang, C., Su, H., Baeyens, J., Tan, T., 2014. Reviewing the anaerobic digestion of food waste for biogas production. Renew. Sust. Energy Rev. 38, 383-392.
  64. Zhou, D., Li, Y., Zhang, Y., Zhang, C., Li, Xiongfei, Chen, Z., Huang, J., Li, Xia, Flores, G., Kamon, M., 2014. Column test-based optimization of the permeable reactive barrier (PRB) technique for remediating groundwater contaminated by landfill leachates. J. Contam. Hydrol. 168, 1-16.
  65. Zhu, L., Wu, B., Liu, Y., Zhang, J., Deng, R., Gu, L., 2022. Strategy to enhance semi-continuous anaerobic digestion of food waste by combined use of calcium peroxide and magnetite. Water Res. 221, 118801.