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Editorial 

Biofuel contributions to the global energy supply over the last three decades 

can inter alia be attributed to (i) energy security, (ii) improved trade balances 

from limiting oil imports, (iii) socio-economic development of developing 
nations, (iv) concern over fossil fuel reserves, and (v) the need to mitigate 

greenhouse gas emissions (Vohra et al., 2014). Bioethanol was rapidly adopted 

as a liquid transport fuel due to established production technologies and relative 
compatibility with existing infrastructure. Current bioethanol production is 

dominated by conversion of cane sugar and grain starch to (1st generation) 
bioethanol. Given food vs. fuel debates, lignocellulosic biomass feedstocks 

offer the only viable alternative renewable source of (2nd generation) liquid 

biofuels and green chemicals in the immediate future if technologies can be 
established to make conversions economically feasible (Den Haan et al., 2013). 

Although commercial 2nd generation bioethanol facilities are becoming 

operative to deliver on the promise of cellulosic ethanol and other green 
chemicals, biomass conversion to commodity products is far from optimal 

(Lynd et al., 2017). Factors hampering the growth and sustainability of this 

industry include the recalcitrance of feedstocks, variation in feedstock 
composition, high hydrolytic enzyme cost, and the requirement for 

ethanologens able to thrive in the hostile fermentation environments. The 

biological conversion of pretreated lignocellulose to ethanol requires 

depolymerising enzyme production, hydrolysis of biomass polysaccharides,

and fermentation of resultant pentoses and hexoses (Olson et al., 2012; van 

Rensburg et al., 2014). Whereas achieving these four steps through separate 
hydrolysis and fermentation (SHF)  and simultaneous saccharification  and 

fermentation (SSF) represent the status quo in commercial 2nd generation 
ethanol production (Lynd et al., 2017), commercial enzymes add cost while 

productivity is frequently low. On the other hand, consolidated bioprocessing 

(CBP) envisions one-step lignocellulose conversion to ethanol or other 
commodity products by organisms that self-produce cellulolytic enzymes in a 

single unit operation. This technology was suggested as a way to improve 

process economics almost twenty years ago, yet no organism with the required 
substrate conversion properties and biofuel productivity parameters has yet 

been isolated or engineered (Lynd et al., 1999; Lynd et al., 2017). 

Challenges facing CBP technology include sufficiently high levels of 
enzyme production without compromising ethanol productivity, co-

fermentation of hexose and pentose sugars, and tolerating harsh fermentation 

environments (Den Haan et al., 2015). The industry standard ethanologen, 
Saccharomyces cerevisiae was engineered to utilise xylose and secrete 

cellulases in efforts to develop a fermentative CBP yeast. However, low 

secretion titres of cellulases lead to poor substrate hydrolysis efficiency and 
slow conversion rates, preventing their commercial application. Strategies 

since employed to improve secretion include engineering of peptide leader 

sequences, optimization of gene copy number, manipulation of promoter 
strength, and engineering the heterologous protein for codon optimization or to 

remove inhibition (Kroukamp et al., 2017). Rational strain improvements, 

including increasing ER-resident chaperones, accelerating vesicle fusion 
events, altering protein glycosylation, modulating cellular stress. and reducing 

proteolytic product loss were also investigated (Idiris et al., 2010; Hou et al., 
2012; Tang et al., 2016; van Zyl et al., 2016; Kroukamp et al., 2017). In 

addition, producing the correct ratio of the different cellulases proved critical 

to enhance enzyme synergies and hence, to decrease the overall amount of 
cellulase required (Liu et al., 2017).

The need for a suitable strain background that can thrive in hostile 

fermentation environments is an additional complicating factor. Pretreatment 
inevitably releases phenolics, furans, and organic acids that inhibit yeast 

performance (Almeida et al., 2007). Strategies for detoxification of 

pretreatment liquor must be weighed against economic impacts and evolving 
or engineering strains amenable to toxic conditions may prove more feasible. 

Recent reports showed an emerging interest in the application of natural yeast 

isolates over lab yeast strains or those used in first generation ethanol 

production as some isolates proved more resistant to inhibitors and may have 

greater capacity to secrete heterologous enzymes (Davison et al., 2016; Jansen 

et al., 2017). Such yeasts could provide a superior starting point for engineering 
the high cellulase secreting, inhibitor-tolerant strains required for CBP. 

Adapting the yeast consolidated bioprocessing paradigm for biorefineries

Abstract

Despite decades long development, no natural or engineered organism 
has been isolated that can produce commodity products at the rates and 

yields required by industry via direct microbial conversion. However, new 

genomic editing tools and systems level knowledge of metabolism 
provides opportunities to develop yeast strains for second-generation 

biorefineries.
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Whereas creating strains with such a vast number of heterologous genes or 

genomic edits in diploid strain backgrounds has proved challenging in the past, 
CRISPR-Cas9 and other recent technologies now provide the marker-less 

transformation tools required for such engineering. In addition, synthetic 

biology technologies such as whole genome engineering and purpose built 
designer genomes broaden possibilities even further (Richardson et al., 2017).  

Considering the genetic malleability of S. cerevisiae, commodity products 

and green chemistry precursors other than ethanol could theoretically be 
produced from lignocellulose in a biorefinery approach. Interestingly, 

engineered xylose metabolism in yeasts elicits a respiratory response making it 

an attractive option in the production of compounds other than ethanol (Lane 
et al., 2018). Xylose consumption may thus be more amenable to redirection 

towards production of acetyl-CoA-derived molecules such as 1-hexadecanol, 

amorphadiene, and squalene. As current xylose-consuming strains of S. 
cerevisiae  consume xylose at lower rates than glucose, converting this pentose 

to higher value products may be advantageous.  

In light of the above, a new paradigm for CBP yeasts is suggested. 

Considering the variation in feedstock content and differences in commodity 

products sought, there is little chance of engineering one yeast strain for all 

required conversions. However, a series of yeast strains can be envisaged, 
based on robust, natural isolates producing ratio-optimised sets of cellulases 

and engineered for enhanced secretion and inhibitor tolerance,  each converting 

a specific pretreated lignocellulosic substrate to a product of interest. In 
addition, sets of strains can be engineered to produce several fine chemicals 

and precursors from lignocellulose or the soluble xylose-containing stream 

produced during some pretreatment methodologies. Such approaches will offer 
biorefineries with the flexibility to adapt to economic factors and market 

requirements for broader product ranges.  
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