
 

* Corresponding author at: Tel.: +1 515 451 0859 
E-mail address: katrina.christiansen@stralendellc.com 

 
 
 

Please cite this article as: Christiansen K., Raman D.R., Hu G., Anex  R. First-order estimates of the costs, input-output energy analysis, and energy returns 

on investment of conventional and emerging biorenewable feedstocks. Biofuel Research Journal 20  (2018) 894-899.  DOI:  10.18331/BRJ2018.5.4.4  

 

 

 

 Biofuel Research Journal 20 (2018) 894-899

Original Research Paper 

First-order estimates of the costs, input-output energy analysis, and energy returns on 

investment of conventional and emerging biofuels feedstocks 

Katrina Christiansen1,*, David Raj Raman2, Guiping Hu3, Robert Anex4 
 

1Stalende, LLC 310 4th Ave SE Jamestown, ND 58401, USA.  

2Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA. 

3Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA, 50011, USA. 

4Department of Biological Systems Engineering, University of Wisconsin, Madison, WI, USA. 

 

HIGHLIGHTS 

 
Compared fuel production metrics from various 

biomass feedstocks.  

Estimated the carbon equivalent emissions 

associated with biofuel produciton.  

Predicted algae biomass production rates of 120 

MG/(ha.a), ten times greater than Maize. 

Predicted algae biofuel costs ranging from 28 to 65 

US $/GJ compared to 17 US $/GJ for Maize ethanol. 

Estimated biofuel energy returns on investment 

near zero for algae and 25 for Switchgrass.  
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Here we report on a static, algebraic, spreadsheet-implemented modeling approach to estimate the costs, energy inputs and 

outputs, and global warming potential of biomass feedstocks. Inputs to the model included literature sourced data for: 

environmental factors, crop physiological-parameters such as radiation use efficiency and water use efficiency, and crop cost 

components. Using an energy-input-output life-cycle-assessment approach, we calculated the energy associated with each cost 

component, allowing an estimate of the total energy required to produce the crop and fuel alongside the energy return on 

investment. We did this for crop scenarios in the upper Midwest US and Far West US (for algae). Our results suggested that 

algae are capable of the highest areal biomass production rates of 120 MG/(ha·a), ten times greater than Maize. Algal fuel 

systems had the highest costs, ranging from 28 to 65

 

US $/GJ, compared to 17 US $/GJ for Maize ethanol. Algal fuel systems 

had the lowest energy returns on investment, nearly 0, compared to 25 for Switchgrass to ethanol. The carbon equivalent 

emissions associated with the production schemes predictions ranged from 40 (Maize) to 180 (algae PBR) CO2eq/GJnet. The 

promise of low cost fuel and carbon neutrality from algae is demonstrated here to be extremely challenging for fundamental 

reasons related to the capital-intensive nature of the cultivation system.                                                                                         
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1. Introduction 

 

Photosynthetically-derived carbon will provide critical material and energy 

resources for humanity in the 21st century, and beyond. Furthermore, barring 

catastrophes, the demand for these resources will rise as human populations 
increase, standards of living increase, and non-renewable (i.e., fossil) carbon 

sources are depleted. The environmentally-sustainable and cost-effective 

production of biorenewable carbon is therefore one of several defining 
challenges for our species in this century. Tackling this challenge will involve 

an array of approaches including developing novel plants and cropping systems 
and optimizing landscape design to meet human needs, and will be facilitated 

by robust estimates of the cost, energy requirements, and environmental 

impacts of various biomass resources are critical.  

The scientific consensus that anthropogenic global warming is occurring 

(Carlton et al., 2015; Cook et al., 2016) has driven a multitude of approaches 

to reducing the carbon-intensity of modern industrial society (Leung et al., 
2014; Huisingh et al., 2016). Although the likelihood is low that these 

approaches, even collectively, can stave off major climate changes that will 

severely impact existing global agricultural production (Schuur et al., 2008; 
Gornall et al., 2010; Jaggard et al., 2010; Lesk et al., 2016), such approaches 

are still worthy of exploration as they can be part of an effort to reduce the 

degree of warming that ultimately occurs (Pacala, et al., 2004). One existing 

yet controversial approach (Keyzer et al., 2008; Tomei and Helliwell, 2016) to 

reducing anthropogenic greenhouse gas emissions is by replacing fossil-based 

liquid transportation fuels (primarily gasoline and diesel) with similar or 
identical fuels derived from biomass resources (Wang, 1999; Richard, 2010). 

Brazil makes 22% of its transportation energy from sugarcane-derived ethanol 

– totaling approximately 31 × 109 L annually (FAO, 2015) – while the US 

makes over 13% of its gasoline volume from Maize-starch-derived ethanol 

– totaling approximately 56 ×109 L annually (EIA, 2016). The economic 
and environmental viability of these biofuels have been questioned for at 

least the last two decades (Hill et al., 2006; Gomiero et al., 2015), with 

concerns on issues such as competition between human food and vehicle 
fuel needs, water quality impacts of increasingly intensive management 

practices, and air quality and wildlife habitat impacts from changing land-

use patterns (Hill et al., 2016; Otto et al., 2016). In addition to a strong 
debate on these claims in the scientific literature, some have sought to 

address the weaknesses of starch-ethanol by developing biofuel production 

systems that convert into fuel the lignocellulosic portion of Maize, or the 
lignocellulosic biomass derived from perennial crops, or the oil and 

lignocellulosic biomass formed by microalgae (Pienkos and Darzins, 

2009). This plethora of approaches to biofuel production has made it 
difficult to understand the fundamental performance of and barriers to these 

different feedstocks. The purpose of this study was to use a generalized 

modeling approach to provide insight into the strengths and weaknesses of 

these potential technologies.  

 

2. Materials and Methods 

 

The model implements an algebraic, static, approach to estimating 

productivity and cost of biomass feedstocks detailed in the model available 
here (https://works.bepress.com/raj_raman/64/). The overall computational 

approach for any feedstock is the same and is as follows: Compute a solar-

energy-limited maximum carbon-capture based upon growing-season solar 
energy inputs and literature reported radiation use efficiency (RUE). In 

parallel, compute a water-limited maximum carbon-capture based upon 

growing-season rainfall and literature reported maximum water use 
efficiency (WUE). De-rate both maximum carbon-capture estimates to 

account for critical losses including respiration and non-harvestable 

fraction, to estimate a maximum light-limited and water-limited yield; 
select the lower of the two to estimate the maximum biomass yield. Use the 

maximum biomass yield to calculate theoretical energy yield based on 

biomass energy content, as well as maximum biofuel yields based upon 
literature estimates of conversion efficiencies from biomass to fuel. The 

Supplementary Methodology “Framework for the Evaluation of Biomass 

Energy Feedstocks (FEBEF)” describes the calculations in detail.  

To estimate costs, the FEBEF divides the cost of production and fuel 

conversion into nine primary line-items that are inclusive of both terrestrial 

and aquatic feedstocks, namely: land rental, amortized capital, direct labor, 
direct energy, biological capital, macronutrients, lime and biocides, 

irrigation, and carbon dioxide. These costs are expressed on a per unit land 

area basis, as literature estimates inform their values. All costs except algae 
capital costs scale by yield to reflect that higher yield typically requires 

more inputs and occurs on higher value land (e.g., Clark et al., 1999; Lobell 

et al., 2009). Algae capital costs scale by area rather than yield. 

The model uses an economic-input-output-life-cycle-analysis approach 

to compute the embedded energy and greenhouse-gas emissions from each 

cost line-item (Carnegie Mellon University Green Design Institute, 2008) 
in 2015 dollars customized for Iowa. The sum of these allows a first-order 

estimate of the total embedded energy as well as of the greenhouse gas 
(GHG) emission associated with feedstock production. 

With maximum yield, biomass cost, energy input, and GHG emissions 

available for each feedstock, FEBEF computes key performance indicators 
such as: Gross Maximum Energy Yield (GJ/(ha·a)), Energy Return on 

Investment (EROI, dimensionless), and Biomass Production Cost (US 

$/ton, US $/Mg). Furthermore, based upon the biomass-to-fuel conversion 
parameters, FEBEF computes other additional key performance indicators 

including Net Maximum Fuel Energy Yield (GJ/(ha·a)), Fuel Energy Cost 

(US $/GJ), and Carbon Intensity of Fuel Energy Source (kg CO2 eq/GJ). A 
summary of the computations and categories is given Table 1.  

 

3. Results and Discussion

 

 

3.1. Model biomass outputs

 

 

The model Maximum Harvested Yields (MHY) as predicted by radiation 

or water use limited computation are shown in Figure 1

  

and 

 

compared

  

to 

 

 

Abbreviations   

AZ Arizona 
bbl Barrel 
BRY Best Reported Yield 
CC Cost of Conversion  
CCFEP Cost for Conversion of Fuel Energy Produced 
CFEP Cost for Fuel Energy Produced 
CIES Carbon Intensity of Energy Source  
CIFES Carbon Intensity of Fuel Energy Source 
CO2 eq Carbon Dioxide Equivalent 
EC Energy Cost 
ECB Energy Content Of Biodiesel 
EIO-LCA Economic Input-Output Life Cycle Assessment 
EROI Energy Return on Investment 

FEBEF 
Framework for the Evaluation of Biomass Energy 

Feedstocks 
HI Haiwaii 
GHG Greenhouse Gas  
MFEYNC Maximum Fuel Energy Yield-Net Converted 
MG Megagram 
MHY Maximum Harvestable Yield 
NM New Mexico 
ORP Open Raceway Pond 
PAR Photosynthetically Available Radiation 
PBR Photobioreactors 
PV Photovoltaic 
RMHY Ratio of Max Light to Max Water Yields 
RUE Radiation Use Efficiency 
TCFEP Total Cost for Fuel Energy Produced 
TCP Total Cost for Production 
TEC Total Energy Cost 
TEU Total Energy Use 
TEUC Total Energy Use for Conversion 
TEUP Total Energy Use for Production 
TEUPC Total Energy Use for Production and Conversion  
TFEO Transportation Fuel Energy Out 
TFEY Total Fuel Energy Yield 
WUE Water Use Efficiency 
  

 

895

https://works.bepress.com/raj_raman/64/


Christiansen et al. / Biofuel Research Journal 20 (2018) 894-899 

 

 Please cite this article as: Christiansen K., Raman D.R., Hu G., Anex  R. First-order estimates of the costs, input-output energy analysis, and energy returns on 

investment of conventional and emerging biorenewable feedstocks. Biofuel Research Journal 20  (2018) 894-899.  DOI: 10.18331/BRJ2018.5.4.4  

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 
Fig. 1. The model estimates of maximum harvestable yield (MHY, Mg/(ha.a)) for each of the 

seven systems is shown as dark bars alongside the best reported yields (BRY, Mg/(ha.a)) for the 

same case (light bars). Approximate collection areas and durations of the BRY values are 

provided for context (*: Extrapolated from 2-Yeat Seasonal Average; **: Extrapolated from daily 

maximum; ***: Extrapolated from historic maximum). 

 

 

Best Reported Yields (BRY) from literature. In many cases, the model appears 

conservative with slightly higher yields reported than predicted. 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

In contrast, when considering large-area averages, actual yields are 

predictably lower, for example, the 2015 Maize grain yield was 12 Mg/ha 
in Iowa and 10.5 Mg/ha in the US overall, or roughly half the maximum 

predicted. But the US overall yield reflects performance over some 32.6 

×106 ha of cropland. The claims by algal fuel proponents regarding the 
superior yield potential is supported by the best-reported yields and the 

model predicted MHY. Continuous yield data sets from commercial or 
large research scale production are scarce for algae as well as for 

Switchgrass and Miscanthus, they were therefore extrapolated from short-

term and/or small-scale results for comparison. As reflected in the 
divergence between large-scale and small plot Maize yields, caution should 

be used in presuming that such yields could actually be realized at present 

in full-scale systems. Algal production systems have the advantage of 
continuous harvest and production, as well as of not leaving inaccessible 

(non-harvestable) biomass underground. This drives their impressive areal 

biomass annual yields, which are more than double the terrestrial crops. 
Furthermore, our results suggest that algae are RUE limited, in contrast to 

the non-irrigated terrestrial crops we modeled which are WUE limited. 

Maize, however, has lower respiration carbon losses (20%)  (Taylor, 1998) 

than algae, (25%) (Christi, 2007). All the terrestrial crops invest carbon in 

unharvested root biomass, lose carbon to soil through root exudates, and 

also have an unharvested biomass above ground. All these biological, 
agricultural, and mechanical differences lead to huge calculated differences 

in the total fixed carbohydrate by the plants; Algae fixing 71%, Maize 

(Grain) 35%, Maize (Grain +Stover) 53%, Switchgrass 34%, and 

 

 

  

 Output  Computation  Units  Abbreviation  

Maximum Harvestable Yield  Maximum Seasonal Biomass Yield multiplied by Harvestable Fraction  Mg/(ha·a)  MHY 

Biomass Energy Content  Higher Heating Value in Literature  MJ/kg  BEC 

Total Production Cost  Sum of all categorical production costs  US $/(ha·a)  TPC 

Total Energy Use-Production  Sum of energies from EIO-LCA applied to each category of production costs GJ/(ha·a)  TEP 

Maximum Energy Yield Gross  MHY × BEC GJ/(ha·a)  MEYG  

Maximum Energy Yield,  Net  MEYG-TEP  GJ/(ha·a)  MEYN  

Energy Return on Investment  MEYG/TEP  Dimensionless  EROI  

Biomass Production Cost  TPC/MHY  US $/ton  BPC 

Energy Production Cost  TPC/MEYG  US $/GJ  EPC 

Total Fuel Energy Yield (Ethanol for terrestrial crops,          

Biodiesel for algae)  
Fuel Converted Yield × Fuel Energy Content  GJ/(ha·a)  TFE 

Green House Gas Emissions-Areal (Biomass only)  
(Greenhouse Gas emission Indirect (literature) +  Greenhouse Gas emission Direct 

(EIO-LCA))  
kg CO2 eq  /(ha·a)  GHG-ArealB  

GHG Intensity (Biomass only)  GHG-Areal  /  Total Fuel Energy Yield  kg CO2 eq  /GJ  GHG-Intensity  

Total Energy Use Fuel Conversion  Sum of Energy Use in Fuel Conversion  GJ/(ha·a)  TEF 

Total Energy Use  TEP + TEF GJ/(ha·a)  TEU 

Transportation Fuel Energy Out  TFE/MHY  GJout  /Mg Biomass  TFEO 

Maximum Fuel Energy Yield–Net Converted  TFE -  TEU GJ/(ha·a)  MFEYNC  

Maximum Fuel Energy Yield–Net Converted with Co-Product 

Credit  
MFEYNC  + Co-product Credit  GJ/(ha·a)  MFEYNC-CCP  

Biofuel Energy Return on Investment without Co-Product Credit  MFEYNC  /  TEU  dimensionless  EROIB  

Energy Return on Investment with Co-Product Credit  MFEYNCCP  /  TEU  dimensionless  EROICPC  

Fuel Energy Cost  (BPC+FPC)  /  TFE  US $/GJ  FPC 

GHG Total–Areal Basis  
Conversion Indirect Emissions  +  Conversion Direct Emissions  +  GHG-Areal  

Basis  
kg CO2 eq/(ha·a)  GHGTAB  

Carbon  Intensity  of  Fuel  Energy  Source  GHGTAB  / MEYN  kg CO2  eq/GJ  CIFES  
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Table 1. 

Conversion computations and key model outputs added to FEBEF. All units are standard SI except for Biomass Production Costs, which we report in US customary units for easy comparison to 

existing feedstock. Categories of cost (and thus of energy use through EIO-LCA) are as follows: Land Rental, Amortized Capital Costs, Direct Labor, Direct Energy, Biological Capital (excluding 

Algae), Nutrients, Biocides and Irrigation (Algae Only). Maximum biomass yield is based on the lesser of the water limited (Water Use Efficiency) or light-limited (Radiation Use Efficiency) seasonal 
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Miscanthus 27%. These processes and practices lead to the biomass yield 

advantage carried by algae.  
Interestingly, Maize grain plus stover outperforms the other cellulosic crops. 

For terrestrial crop yields to approach the BRYs on a broad scale, growers 

would have to replicate the intensive farming practices done at the small scale 
while the algal production would have to overcome the challenges of 

exponential growth and lag phase cycles to maintain high yield consistently on 

an annual basis. 
 

3.2. Annual energy production (raw biomass) 

 
Combining the yield data with assumptions regarding biomass energy 

density results is an estimate of the annual gross energy production for each 

system. To contextualize these values, the values are also expressed on the basis 
of percentage of total annual site solar radiation collected as shown in Figure 

2. The gross energy yield tracks closely to the relative energy capture (ratio of 

energy capture GJ/(ha·a) to solar radiation GJ/(ha·a)) for all production 

scenarios. The benefit of an extended production season with the three southern 

algal production scenarios as well as being photosynthetically limited in carbon 

capture lead to the marked differential in energy yield with the terrestrial crops.  
In contrast are the biomass production costs, it is far more expensive to make 

biomass in aquatic schemes than terrestrial as shown in Figure 3. Aquatic 

systems have large capital costs as well as high labor costs and direct energy 
costs for centrifugation and cooling. The photobioreactor (PBR) system much 

more so, resulting in biomass production costs tens time more than the 

terrestrial and double the other algal scenarios.  
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
Fig. 2. Gross Energy Production Yield (GJ/(ha.a)) and Relative Energy Capture Efficiency (%). 

 

 
 These

 

algae biomass production values are lower than the minimum selling 

price reported in the Billion Ton report (719-2998 US $/dry ton) (US DOE, 

2016).

 

The lowest cost production crop, Switchgrass, is due mostly to the lower 

land rental costs associated with marginal land in addition to being a perennial. 

The biomass production costs between the perennial crops are 30% to 45% 
lower than the annual Maize crop. While there is an established stand cost 

advantage for perennial crops, there is also the risk the growers assume

 

by 

delaying planting of a genetically improved crop

 

every year as one can do with 
Maize.

 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 
Fig. 3. Biomass production costs for the terrestrial and algal production scenarios.

 
 
 

It is important for bioenergy proponents to be cognizant of the constantly 

increasing efficiency of photovoltaic (PV) cells. These systems have seen 
a 0.3% annual increase in efficiency (Detwiler, 2013) with disruptive 

technologies leading to huge increase of 7% efficiency (Mearian, 2015) 

over current commercial cells, much greater than the 1% annual rate of 
yield increase of Maize (Neilsen, 2012). Furthermore, commercially 

available PV are now achieving efficiencies ca. 25%, which is greater than 

all but the algal systems we modeled. Moreover, while all practical energy 
systems are subject to various storage, transport, and conversion losses, 

from a vehicle-propulsion standpoint, PV-based electric vehicles have a 

significant advantage, as shown in Table 2.  
As tabulated in Table 2, current PV systems can achieve photon-to-

wheel efficiencies on the order of 20%. This is over seven times greater 

than the best widely commercially available scenario for biofuel. At 
present, no rechargeable battery comes within an order of magnitude of the 

energy density achieved by ethanol or biodiesel. The benefits of such high 

energy densities are diminishing for surface vehicles, as increasing 
efficiency leads to reduced total energy storage needs, and improved 

materials lead to ever lighter structures which “make room” for heavier 

energy storage systems. But in long-haul aviation, the benefits of high 
energy density are harder to overcome, thus justifying the strategy of 

aviation-biofuels. 

While the fuel conversion costs of oil to biodiesel are less than for 
lignocellulosic biomass to ethanol, the total energy cost for algal biofuels 

systems is still greater than that for terrestrial crops biofuels, as shown in 

Figure 4. Algal fuel technologies suffer from both high capital and 
operating costs. The impact of marginal land costs, lower crop inputs and 

water use efficiencies drive the low cost energy option to be Switchgrass. 

However, the cost of conversion for the lignocellulosic crops pushes the 
total energy cost for Switchgrass above that of Maize. This is not surprising 

and tracks the experience of the US ethanol industry in which slightly over 

200 starch/sugar ethanol plants currently produce 15.7 billion gallons of 
ethanol annually, while 15 cellulosic plants produce a total of 0.1 B gallons 

annually   (Ethanol   Producer   Magazine,  2018).  This   150-fold   volume 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 
 

Table 2. 
 Photon to wheel efficiencies for selected crops, as well as for photovoltaic-supplied battery electric vehicles. (Source: http://www.cleancaroptions.com/html/energy_efficiency.html

 
)
 

 System
 

Photon-Fuel Efficiency
 

(%)
 

Fuel-Wheel Efficiency
 

(%)
 

Overall Efficiency (Photon-Wheel)
 

(%)
 

Fuel Energy Density (MJ/kg)
 

Maize Grain to Gas ICE
 

7
 

23
 

1.6
 

26.4
 

Maize Grain to Hybr. ICE
 

7
 

40
 

2.8
 

26.4
 

Maize Grain + Stover to Gas ICE
 

10
 

23
 

2.3
 

26.4
 

Maize Grain + Stover to Hybr. ICE
 

10
 

40
 

4.0
 

26.4
 

Best-Case Algae to Gas ICE
 

30
 

23
 

6.9
 

42.2
 

Best-Case Algae to Hybr. ICE
 

30
 

40
 

12.0
 

42.2
 

Photovoltaic to BEV
 

25
 

85
 

21.3
 

~1.0
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Fig. 4. Total Energy Production Costs ($/GJ) summed from biomass production cost and fuel 

production cost. Dark horizontal vertical line at left to range of gasoline prices (pre-tax) from 

2012 –

 

2018 projected (Source: EIA 2018; https://www.eia.gov/outlooks/steo/report/us_oil.cfm).

 

 

 
difference is significant and serves as an industrial indicator of biological 

challenges of degrading cellulose and lignin into fermentable sugars. While 

there have been technological advancements made in the conversion of 
cellulose to ethanol (Singh et al., 2015), there has yet to be a disruptive 

technology that halves the cost of conversion in tandem with reducing the cost 

of transporting lower energy dense, cellulosic feedstock to plants at larger radii 
(Hess, 2007). The cost of fuel from algae is not cost competitive with the 

ethanol feedstocks due to the high capital and labor costs even though the cost 
of biodiesel conversion is less than Maize ethanol.  Predicted algal fuel costs 

are 30% more than the terrestrial crop fuels even though there is 1.5 times more 

energy density in biodiesel than ethanol. The low cost of ethanol from 
Switchgrass is due to the low production costs. It is difficult for ethanol and 

biodiesel to compete in the fuel market until oil exceeds a variable breakeven 

point (US $/bbl) given the dependencies of crude oil, gasoline, ethanol, corn, 
and Distiller Grains prices alongside oxygenate premiums and government 

subsidies. 
When we examine the energy production cost for algal systems as function 

of interest rate on the capital, we see that there is a meaningful increase from 

0% interest to 5% and then 10%. The internal rate of return and discount rate 

of 10% is adopted from Efroymson et al. (2016). This is higher than the 
discount rate (6.5%) assumed in analyses of terrestrial feedstocks. However, it 

is lower than the cost of capital that might be required for risk financing. 

Therefore, this rate constitutes a large source of uncertainty in the analysis. 
Moreover, in the techno-economic analyses for several complete algal biofuel 

supply chains in Beal et al. (2015), the minimum bio-crude price is highly 

sensitive to the discount rate, as well as the interest rate, loan term, and tax 

rates. Upon further study in the model, improvements in dewatering only 

reduce the cost of energy production from 0.5 to 1 US $/GJ for algal fuel. A 

5% increase in interest rate from zero to 5% leads to increases of the total 
energy cost of 7%, 11%, 13%, and 19% for Algal slurry, Open Raceway Ponds 

(ORP) New Mexico (NM), PBR Arizona (AZ), and PBR-ORP Hawaii (HI), 

respectively, and from 5% to 10%, the increase in total energy cost was 9%, 
12%, 15%, and 19%, respectively. The rate of increase in total energy cost 

correlates with capital equipment costs.  
Figure 5 shows the differences in net and gross energy yield between the 

biomass fuel production schemes, showing that PBR systems do not lead to 

positive energy gains.  

Upon examination of the energy output, we see the algal systems are not big 
net energy gainers, except in the case of ORPs in New Mexico. Yet, the EROI 

is greater for all terrestrial crops than for algal crops shown in Figure 6.  

Algal production systems may produce more biomass than terrestrial crops 

but the required input energy and component costs are too large to allow the 

production of low cost fuels or provide a high return on investment. Similarly, 

the carbon balance of the biofuel production systems presented in Figure 7 
shows that the lowest GHG emissions are associated with corn grain ethanol. 

This is driven by high corn yields and ease of starch to ethanol conversion 

relative to the difficulties of lignocellulosic fuel processing. Although biofuels 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
Fig. 5. Net energy as compared to Gross energy on an areal basis.   

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 Fig. 6. Energy return on investment with co-product credits.

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 
Fig. 7. Carbon dioxide equivalent emissions per net energy production unit.

 

 are often promoted as a way to address climate change, none of the biofuel 
scenarios result in a negative net GHG balance.

 The high-energy
 

input cost for algal system is obvious in EROI 

comparisons with terrestrial crops. The largest algal scenario EROI is less 
than the lowest terrestrial crop EROI. Given currently available conversion 

technologies,
 
algal biofuel scenarios are unattractive both economically and 

energetically. Secondary benefits from algae cultivation, however, such as 
nutraceutical production, are not considered here and are likely critical to 

the growth of the nascent algal biomass industry.
 

 4. Conclusions and policy implications
 

 The static, algebraic, spreadsheet-implemented modeling approach 

described here allowed us to estimate the costs, energy inputs and outputs, 

and global warming potential of biomass feedstocks. While simplistic in 

conception and execution, this approach allowed insight into the cost 
structure and attendant energetic implications of current, near future, and 

distant future biomass to fuel systems. What is striking in these results is 

the capital intensity of algal fuels. Capital does not assemble itself without 
energy investments, and by using an Economic Input-Output Life Cycle 
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Assessment (EIO-LCA) approach to estimate the energy requirements for algal 

biofuels, the EROI appears extremely small. In contrast, the EROI for perennial 
lignocellulosic feedstocks is quite high (ca. 25), but like algal fuels, their 

deployment at this writing is minimal. The challenges for algal and terrestrial-

perennial biomass feedstocks are different: our work suggests that algal 
approaches need to find order-of-magnitude decreases in capital outlay without 

sacrificing yield, the work of others suggests perennial biomass feedstocks 

need to overcome challenges of low energy density feedstocks, solids 
processing and transportation and storage logistics. A wild but potentially 

fruitful research shift would be to abandon slow progress in reducing algal 

production costs and lignocellulosic fuel conversion costs and explore 
increasing the oil production in Maize kernels. This effort is not so far-fetched 

given all of the successful genetic manipulation and breeding with Maize. 

Doing so would increase the energy density of the feedstock, lower fuel 
conversion costs (biodiesel instead of ethanol), and not have the capital and 

stand investment issues associated with other feedstocks.  
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Supplementary: FEBEF Methodology 
 

Ten worksheets comprise FEBEF, as follow: (a) Background Assumptions 
and Calculations (1. BACC, 2. BACC-Crop, 3. BACC-EconAsmp, 4. BACC-

EIOLCA, 5. BACC-Fertilizer, and 6. BACC-Solar, containing conversion 

factors, constants, elemental compositions for the different feedstocks, and 
climatic data inputs for the model). (b) Cost vs. Yield, containing literature-

based (Vadas et al., 2008; Edwards, 2009; Smeets et al., 2009) factors to enable 

production costs to scale on predicted yields assuming that each line-item in 
the cost model is either linearly-dependent on yield, or completely independent 

of yield. (c) Algae Cost Model, modeling algal production costs in ORPS, 

based primarily on Vadas et al. (2008), scaled to 100 ha. This worksheet also 
includes free water surface evaporation estimates to enable water consumption 

calculations. (d) Primary Assumptions, containing location and crop-

physiological factors, crop-cost components, EIO-LCA GHG and Energy 
computations. (e) Primary Results, containing intermediate and final 

computations for model outputs. The fourth and fifth worksheets constitute the 

core of the model. In both worksheets, feedstocks are organized in columns so 
that cross comparisons between feedstock can be made readily. 

The approach of FEBEF is as follows: Compute an energy-limited carbon-

capture by using growing-season solar energy inputs coupled with knowledge 
of the maximum photosynthetic rates of each feedstock. Similarly, compute a 

water-limited carbon-capture by using growing-season rainfall coupled with 

knowledge of the maximum WUE of each feedstock. De-rate both these 
carbon-capture estimates to account for multiple losses such as respiration and 

non-harvestable fraction, to estimate a light-limited and water-limited yield. 
Pick the lower of the two to estimate the biomass yield. The biomass yield is 

then used to calculate theoretical energy and biofuel yields. Break the cost of 

production and fuel conversion into fewer than a dozen line-items that are 
common across feedstocks, and use literature estimates to populate those cost 

estimates. Scale some of the line-items by yield (details below). Use an EIO-

LCA approach to compute the embedded energy and GHG emissions from each 

cost line-item; sum both of these to find total embedded energy and GHG for 

each feedstock. With maximum yield, cost, energy input, and GHG emissions 

for each feedstock, key model outputs can be computed. These outputs are 
presented in Table S1. 

 

S1. Background Assumptions and Calculations Worksheet 

 

The BACC worksheets contain the following: BACC: (a) Text-color 

conventions used in the workbook. (b) Common conversion factors  in  named 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 cells (e.g., cell B12 is named kg per Mg and has a value of 1000). These 

conversions can be referred to by name elsewhere to reduce the incidence 
of hard-coding errors in the spreadsheet. (c) Molecular weights and 

densities of relevant materials. (d) Energy Contents and Thermodynamic 

Conversions. BACC-Crop: (a) Computations to convert literature data into 
ratios of root-exudate carbon to root stored carbon for Switchgrass and 

Miscanthus. (b) A listing of best-reported yields for each biomass type. 

Ideally these would be from identical environments in plots greater than 10 
ha as the modeled case (central Iowa in this work), but this was only 

possible for corn; values for Switchgrass, Miscanthus, and algae were from 

more distant sites. (c) Theoretical limits on plant physiological parameters 
to allow an upper bound on the performance of the biomass.  BACC-

EconAsmp: (a) Economic assumptions including interest rates, utility 

prices, and inflation factors. (b) Raw data and linear regression of land 
rental costs vs. productivity data. (d) (f) (g) (i) BACC_EIO-LCA energy 

multiplier factors for perennial grass seeding. BACC-Fertilizer: (a) 

Fertilizer costs and pre-computations. (b) Fertilizer application rate 

crosscheck. BACC-Solar Solar and precipitation values. This includes raw 

meteorological data as well as data modified by the planting and harvesting 

dates listed in the Primary Assumptions worksheet. 
 

S2. Cost vs. Yield Worksheet 

 

The Cost vs. Yield worksheet (CvsY) scales line item production costs 

based upon predicted yields by assuming that some line items are yield-

independent (i.e., scale factor n = 0), while others are linearly scaled with 
yield (n = 1). This binary segregation of costs is an oversimplification, but 

one which provides overall cost vs. scale responses is consistent with those 

reported for corn (data not shown). The yield-appropriate costs computed 
in the CvsY worksheet are used by the Primary Assumptions worksheet in 

the core cost model. 

 

S3. Algae Cost Model Worksheet 

 

The Algae Cost Model worksheet (ACM) contains the amortized capital, 
labor, irrigation, and direct energy cost calculations and free water 

evaporation calculation for three different algal production technologies in 

four different locations. The three different types of algal plants and the 
locations are ORP in Ames, IA, ORP in Tucumcari, NM, PBR in Phoenix, 

NM, and a coupled PBR-ORP system in Honolulu, HI. Each operation was 

assumed to have 100 ha production area. The amortized capital cost, labor, 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 

Output Units Abbreviation 

Maximum Energy Yield Gross GJ/(ha·a) MEYG
 

Maximum Harvestable Yield Mg/(ha·a) MHY 

Maximum Energy Yield, Gross  

Maximum Energy Yield, Net 
GJ/(ha·a) 

MEYG
 

MEYN
 

Energy Return on Investment Dimensionless EROI 

Biomass Production Cost 
US $/ton – in US customary units for easy comparison to existing 

feedstock prices 
BPC 

Energy Production Cost US $/GJ EPC 

GHG-Areal  kg CO2 eq/(ha·a) - 

GHG Intensity  kg CO2 eq/GJ - 

Transportation Fuel Energy Out GJout/Mg Biomass TFEO 

Maximum Fuel Energy Yield –Net Converted GJ/(ha·a) MFEYNC
 

Maximum Fuel Energy Yield –Net Converted with Co-Product Credit GJ/(ha·a) MFEYNC-CCP
 

Biofuel Energy Return on Investment without Co-Product Credit Dimensionless EROIB
 

Energy Return on Investment with Co-Product Credit Dimensionless EROICPC
 

Fuel Energy Cost US $/GJ FPC 

GHG Total (areal basis) kg CO2 eq/(ha·a) GHGT 

Carbon Intensity of Fuel Energy Source kg CO2
 
eq/GJ CIFES 

 

Table S1.  

Conversion computations and key model outputs added to FEBEF. 

S1
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and direct energy estimates for the production scenarios were based on 

literature reports, updated for inflation, and supplemented with engineering 
estimates when data was lacking. The irrigation costs were calculated from 

local pan evaporation data, growing season rainfall, and water rates. 

 

S3.1 ORP in Ames, IA 

 

The ORP amortized capital costs were based on the 400 ha, 30 g/m2/d 
production scenario using pure carbon dioxide outlined by Benemann and 

Oswald (1994). Capital costs for conversion equipment of algae oil to biodiesel, 

listed in the original publication, are excluded as a different source/method is 
used for fuel conversion capital cost estimates. 

Line item capital costs were adjusted for inflation from 1994 dollars to 2008 

dollars as shown in Equation 1. 
 

𝐼𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑐𝑜𝑠𝑡 𝑓𝑜𝑟 𝑦𝑒𝑎𝑟 𝑦=𝐾𝑛𝑜𝑤𝑛 𝑐𝑜𝑠𝑡 𝑖𝑛 𝑦𝑒𝑎𝑟 𝑥×

(
𝐼𝑛𝑓𝑙𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 𝑓𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑦𝑒𝑎𝑟 𝑦

𝐼𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛

 

𝑖𝑛𝑑𝑒𝑥 𝑓𝑎𝑐𝑡𝑜𝑟𝑓𝑜𝑟 𝑦𝑒𝑎𝑟 𝑥
)

  
                                                                  

(Eq. 1)

 

    

The total cost per line item for the 400 ha system was calculated. Using scale 
factors, assigned using engineering judgment to each line item, a total cost per 

line item for a 100 ha system is calculated as shown in Equation 2. 
 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑠𝑝𝑒𝑐′𝑑 𝑒𝑞𝑝=𝐾𝑛𝑜𝑤𝑛 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑒𝑞𝑝×

(
𝑆𝑖𝑧𝑒 𝑜𝑓 𝑠𝑝𝑒𝑐′𝑑 𝑒𝑞𝑝

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑒𝑞𝑝
)
𝑠𝑖𝑧𝑖𝑛𝑔 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡  

                                                

(Eq. 2)

 

 
The sum of the line items gives a total capital investment. The yearly capital 

charges are calculated using the PMT function in Excel; the annual rate of 

return assumed in 10%, over a 20-year period, and total capital investment was 
the principal. The yearly capital charges (US $/a) is divided by 100 ha and 

converted to the reported estimate of amortized capital in US $/(acre.a). 

The labor costs were based on Benemann and Oswald (1994) and were 
adjusted for inflation and seasonal labor needs. The baseline labor rate in US 

$/(ha·a) was adjusted for inflation as shown in Equation 1. The labor was 

prorated for the variation in the seasonal labor needs, as shown in Equation 3: 
 

𝐿𝑎𝑏𝑜𝑟 𝑟𝑎𝑡𝑒=𝐼𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝐿𝑎𝑏𝑜𝑟 𝑅𝑎𝑡𝑒×
(𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑌𝑒𝑎𝑟 𝐺𝑟𝑜𝑤𝑖𝑛𝑔 𝐴𝑙𝑔𝑎𝑒+𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑌𝑒𝑎𝑟 𝐼𝑑𝑙𝑒×
𝑃𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑂𝑓𝑓 𝑆𝑒𝑎𝑠𝑜𝑛)                                  

(Eq. 3)

 

 
This prorated value was then scaled by system size, and adjusted for 

inflation. 
The direct energy estimate was based on Benemann and Oswald (1994). The 

power requirements (kWh/(ha·a)) for mixing, centrifugation, water pumping, 

and other (nutrient pumping and building needs) were summed to find the total 

power requirement. The total power requirement (kWh/(ha·a)) was then 

multiplied by the local electricity rate (US $/kWh) (Energy Information 

Administration, 2010) to give a direct energy cost in (US $/(ha·a)), which was 

converted to US $/(acre.a) as reported in the Primary Assumptions worksheet. 
The irrigation costs for all of the algal production scenarios in the four 

different locations were estimated using the same method. We assumed that the 

evaporation of the free standing water at the different production plants was 
similar to lakes (Linacre, 2018), and that all of the evaporation occurred during 

the growing season. Local pan evaporation data (in/a) (Western Regional 

Climate Center, 1986) was manipulated by pan to lake evaporation factor, as 
shown in Equation 4. 

 
𝐿𝑎𝑘𝑒 𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 (

𝑖𝑛

𝑎
)=𝑃𝑎𝑛 𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 (

𝑖𝑛

𝑎
)×

𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝐿𝑎𝑘𝑒 𝑡𝑜 𝑃𝑎𝑛 𝐸𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛                                                  

(Eq. 4)

 

 
Then, daily evaporation rate was calculated as shown in Equation 5. 

 
𝐷𝑎𝑖𝑙𝑦 𝐸𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛(

𝑐𝑚

𝑑
)=𝐿𝑎𝑘𝑒 𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛×

(𝑐𝑚/𝑖𝑛)

𝑆𝑒𝑎𝑠𝑜𝑛 𝑙𝑒𝑛𝑔𝑡ℎ (𝑑)              (Eq. 5)

 

 The daily evaporation rate was converted to m3/d. The mass of water 
evaporated is calculated as shown in Equation 6.

 

                                                                                                               
(Eq. 6)

 
𝑀𝑎𝑠𝑠 𝑤𝑎𝑡𝑒𝑟 𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑒𝑑 (

𝑘𝑔

𝑑
)

=𝐷𝑎𝑖𝑙𝑦 𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛(
𝑚3

𝑑
)×𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓𝑤𝑎𝑡𝑒𝑟(

𝑘𝑔

𝑚3
)

 

 As a cross-check, an effective “WUE” was calculated for the algal 
scenarios as shown in Equation 7:

 

 

𝑊𝑈𝐸=

(
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐻𝑎𝑟𝑣𝑒𝑠𝑡𝑎𝑏𝑙𝑒 𝑌𝑖𝑒𝑙𝑑 (

𝑀𝑔
ℎ𝑎
)

𝑆𝑒𝑎𝑠𝑜𝑛 𝐿𝑒𝑛𝑔𝑡ℎ−𝑑𝑎𝑦𝑠
 × 
1000𝑘𝑔

𝑀𝑔
 × 100ℎ𝑎)

𝑀𝑎𝑠𝑠 𝑤𝑎𝑡𝑒𝑟 𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑒𝑑 𝑘𝑔/𝑑
   

                                                                               

(Eq. 7)

 

 

 Water use was corrected for local, annual precipitation as shown in 

Equation 8.
 

                                                                                                                  

(Eq. 8)
 ₣𝑊𝑎𝑡𝑒𝑟 𝑈𝑠𝑒₤_(𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑) (𝑚/𝑠𝑒𝑎𝑠𝑜𝑛)

=[((𝐸𝑣𝑎𝑝.𝑅𝑎𝑡𝑒(𝑐𝑚/𝑑)×𝐺𝑟𝑜𝑤.𝑆𝑒𝑎𝑠.𝐿𝑒𝑛𝑔.(𝑑))
−(𝑃𝑟𝑒𝑐𝑖𝑝.(𝑐𝑚/𝑎)

×𝐹𝑟𝑎𝑐.𝑊𝑎𝑡𝑒𝑟 𝐴𝑣𝑎𝑖𝑙.𝐷𝑢𝑟𝑖𝑛𝑔 𝐺𝑟𝑜𝑤.𝑆𝑒𝑎𝑠.))/(
𝑐𝑚

𝑖𝑛
)]

 

 

The volume of water evaporated over the whole free water area corrected 

for precipitation was calculated as shown in Equation 9. 

  

                                                                                                           

(Eq. 9)

 

 𝑊𝑎𝑡𝑒𝑟 𝑈𝑠𝑒𝑝𝑟𝑒𝑐𝑖𝑝.𝑐𝑜𝑟𝑟.(
𝑓𝑡3

𝑎
)

=𝑊𝑎𝑡𝑒𝑟 𝑈𝑠𝑒𝑝𝑟𝑒𝑐𝑖𝑝.𝑐𝑜𝑟𝑟. (
𝑚

𝑠𝑒𝑎𝑠𝑜𝑛
)×100 ℎ𝑎

×𝑚2/ℎ𝑎×𝑓𝑡/𝑚3  
 
For the PBR in Phoenix, AZ, the calculation was adjusted to correct for 

the area of water baths, which was a fraction of the 100 ha. 

Annual irrigation costs were calculated by multiplying the local industry 
water rates (US $/cubic feet) (Tucumcari, 2004; City of Phoenix Water 

Rates, 2010; City and County of Honolulu, 2015) by the Seasonal Water 

Use (cubic feet/season). The irrigation costs on an area basis are calculated 
as shown in Equation 10. 

                                                                                                     

(Eq. 10)

 

𝐼𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠 (𝑈𝑆 $ℎ𝑎⁄ 𝑎⁄)=
𝑌𝑒𝑎𝑟𝑙𝑦 𝐼𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 (

𝑈𝑆 $

𝑎
)

100 ℎ𝑎
  

  

The irrigation costs (US $/(ha.a)) are converted to a US $/(acre.a) basis. 

 

S3.2 Algae Harvesting 

 

The harvesting of algae from the production reactors (ORPs or PBRs) 
included the capital costs for a primary settling followed by centrifugation. 

We assumed the centrifugation produced 15% solids from the ORP systems 

and 20% solids from the PBR systems. For the ORPs, we calculated the 
additional direct energy required to reach 20% solids, as shown in 

Equation 11. 

 

Direct Energyalgae slurry =MHY×Hvap×MR%×(MC%/(1−MC%))
 

       (Eq. 11)
 

 
Where, Hvap is the heat of vaporization for water, MR% is the moisture 

(%) needed to remove to reach 10% solids, and MC% is the moisture 
content of the slurry exiting the centrifuge. 

 

S3.3
 
ORP

 
in

 
Tucumcari, NM

 

 

The approach for computing amortized capital costs and labor costs was 

identical to that used for Ames, IA. The direct energy and irrigation costs 
used the same method but with electricity and water rates specific to 

Tucumcari, NM.
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S3.4
 
PBR

 
in

 
Phoenix, NM

 

 

The PBR amortized capital costs were based on
 
Grima et al. (2003) report 

on commercial production of microalgae in PBRs. The basis of that study was 

a facility with a projected biomass productivity of 1.25 kg/m3/d
 
(approximately 

10.7 g/m2/d) in continuous culture. We included only the unit operations and 

the associated costs needed for the cultivation of the algae and up through 

harvesting the algae.
 

The original line item capital costs included in the amortized capital estimate 

in 2001 dollars were adjusted for inflation as shown in Equation 1
 
to 2008 

dollars. The cost estimate was then scaled from the area of foot print 
(approximately 1 ha) of the PBR calculated from measurements given in

 
Grima 

et al. (2003)
 
to a 100 ha area using Equation 2.

 

The centrifugation costs provided by Grima et al. (2003) were replaced with 
a yield scaled centrifugation cost from

 
Vadas et al. (2008)

 
as shown in 

Equation 12. This allowed for consistency with the same unit operation across 

technologies.
 

                                                                                                      

  (Eq. 12)

 

 

𝐶𝑒𝑛𝑡𝑟𝑖𝑓𝑢𝑔𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠𝑡𝑒𝑐ℎ (𝑈𝑆 𝑈𝑆 $)

=(
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐻𝑎𝑟𝑣𝑒𝑠𝑡𝑎𝑏𝑙𝑒 𝑌𝑖𝑒𝑙𝑑𝑡𝑒𝑐ℎ

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐻𝑎𝑟𝑣𝑒𝑠𝑡𝑎𝑏𝑙𝑒 𝑌𝑖𝑒𝑙𝑑𝑂𝑃𝑅
)

×𝐶𝑒𝑛𝑡𝑟𝑖𝑓𝑢𝑔𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡𝑠𝑂𝑃𝑅
 

 

The total capital cost was the summation
 
of the scaled costs. The yearly 

capital charge was computed using an annual rate of return at 10% over a 20-
year

 
period. The yearly capital charge (US $/a) was divided by 100 ha and 

converted to the reported estimate of amortized capital in US $/(acre.a).
 

The labor costs were based on
 
Grima et al. (2003), adjusted for inflation and 

scale. These labor costs were prorated based on the growing season length 

(fewer workers off season).
 

The direct energy estimate was also based on the Grima et al. (2003), using
 

local electrical rates
 
(Energy Information Administration, 2010)

 
in Phoenix, 

AZm
 
and converted to US $/(acre.a)

 
for the direct energy costs.

 

 

S3.5
 
Coupled PBR-ORP system in

 
Honolulu, HI

 

 

The Coupled PBR-ORP amortized capital costs based primarily on
 
Huntley 

and Redalje (2007) which reported the general specifications of the Aquasearch 

(now HP petroleum) coupled production systems for photosynthetic microbes. 
Biomass production was estimated at 10.2 g/m2/d

 
for the PBR and 15.1 g/m2/d

 

for the ORPs. The authors of Huntley and Redalje (2007) relied on the 

Benemann and Oswald (1994)
 

techno-economic analysis (adjusted for 
inflation) for capital costs for the ORPs, and on Hallenbeck and Benemann 

(2002) for PBR
 
cost estimates. We included only the unit

 
operations and the 

associated costs needed for the cultivation of the algae and up through 
harvesting the algae.

 

Capital costs were adjusted for inflation and scaled. Centrifugation costs 

were calculated as outlined above using Equation 11. The yearly capital charge 
was computed using an annual rate of return at 10% over a 20-year

 
period. The 

yearly capital charge (US $/a) was divided by 100 ha and converted to the 

reported estimate of amortized capital in US $/(acre.a).
 

The labor costs were calculated based on both the previous PBR and ORP 

labor estimates. The percentage areas
 
of the PBR and ORP unit operations of 

the total operational area were
 
calculated. The labor costs for the coupled 

system were estimated by distributing the percentage
 
area with the labor costs, 

as shown in Equation 13.
 

 

𝐿𝑎𝑏𝑜𝑟 𝑐𝑜𝑠𝑡𝑃𝐵𝑅−𝑂𝑅𝑃=𝑃𝐵𝑅 𝑎𝑟𝑒𝑎 %×𝐿𝑎𝑏𝑜𝑟 𝐶𝑜𝑠𝑡𝑃𝐵𝑅+𝑂𝑅𝑃 𝑎𝑟𝑒𝑎 %×
𝐿𝑎𝑏𝑜𝑟 𝐶𝑜𝑠𝑡𝑂𝑅𝑃

  

                                                                                                         

(Eq. 13)
 

 

These labor costs were prorated based on the growing season length (fewer 

workers off season).
 

The direct energy costs were calculated from
 
the previous PBR and ORP 

power estimates. The power needs for the coupled system were estimated by 

distributing the percentage area with the direct energy estimates, as shown in 

Equation 14.
 

 

𝑃𝑜𝑤𝑒𝑟 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 𝑃𝐵𝑅−𝑂𝑅𝑃 (
𝑘𝑊ℎ

ℎ𝑎·𝑎
)=𝑃𝐵𝑅 𝑎𝑟𝑒𝑎 %×

𝑃𝑜𝑤𝑒𝑟 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑃𝐵𝑅+𝑂𝑅𝑃 𝑎𝑟𝑒𝑎 %×𝑃𝑜𝑤𝑒𝑟 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑂𝑅𝑃

  
    

                                                                            

(Eq. 14)

 

 This estimated power requirement was then multiplied by the electricity 
rates in HI

 
(Energy Information Administration, 2010)

 
to calculate

 
the 

direct energy cost in US $/(ha·a) and then converted to US $/(acre.a).
 

 

S4. Primary Assumptions Worksheet 

 

The Primary Assumptions worksheet (PA tab) compiled literature-based 
measurements and assumptions about climate, plant growth, production 

costs, energy requirements, GHG emissions, water use, and eutrophication 

potential. In some cases, data came directly from literature sources, while 
in others, it was based on computations in the supporting worksheets that 

have been previously described. In all cases, the data for each feedstock 

was organized in a single column. Details of the contents of the Primary 
Assumptions worksheet follow: 

 

S4.1 Location-Specific Climatic Assumptions 
 

Annual average solar irradiation (W/m2) (Marion and Wilcox, 1995), 

fraction of solar radiation in as photosynthetically available radiation 
(PAR) (Bolton and Hall, 1991), annual total rainfall 

(http://www.weatherbase.com/weather/state.php3?c=US&refer), planting 

date, and harvesting date (Neild and Newman, 1990; Wolf and Fiske, 1995; 
Chisti, 2007) are the four fundamental assumptions entered into the climate 

section of the model. These fundamental assumptions are used to compute 

growing season length, fraction of solar available during growing season, 
and fraction of water available during growing season. To find the latter 

two items, intermediate calculations are conducted in the Background 

Assumptions and Calculations worksheet. 
 

S4.2
 
Crop Physiological Assumptions

 

 

Crop performance data and cost estimates are based on literature values 

without extrapolations based on future technological advances.
 

 

Literature Reported RUE
 
values

 

 

RUE
 
is a measure of biomass accumulation given PAR. Instantaneous 

RUEs
 
(g of biomass/MJ of PAR) were estimated for C4 plants from

 
Nobel 

(1991) and for algae from Melis (1998) by converting gas evolved (CO2
 
or 

O2) and photon flux density converted to an
 
RUE.

 

 

RUE actual to RUE Theoretical Maximum
 
Ratio

 
(RUER)

 
 

The maximum theoretical RUE
 
is assumed to be 30% on PAR basis

 

(Bolton and Hall, 1991). The ratio of the crops’ actual RUE to the RUE 
theoretical maximum is calculated by FEBEF, as shown below in Equation 

15, where RSR is the Root: Shoot Ratio at harvest:
 

 

𝑅𝑈𝐸𝑅=(
𝑅𝑈𝐸𝑎𝑐𝑡𝑢𝑎𝑙(

𝑔 𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑀𝐽
) × 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑡𝑒𝑛𝑡(

𝑀𝐽

𝑔
)

𝑅𝑈𝐸𝑀𝑎𝑥(
𝑔 𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑀𝐽
)

)×(1+𝑅𝑆𝑅)
  

 
                                                                                       

 

(Eq. 15)

 

Literature Reported WUE Values
 

 

The instantaneous WUE
 
values for the terrestrial crops, defined as the 

ratio of biomass accumulated to crop water transpired, was experimentally 
determined in

 
Rochette et al. (1996), and these values were used in the 

model. The term WUE is normally not used when referring to aquatic 

plants. However, if one pictures the entire culture system as a giant “leaf,” 

an effective WUE can be computed. The WUE of the algal crop was 

computed as the growing season evaporation from pond divided by the 
algal biomass produced. The transpiration calculations were previously 

described in Equation 7.
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WUE actual to WUE Theoretical Maximum
 
Ratio

 
(WUER)

 

 

The theoretical maximum WUE was estimated based on an assumed leaf 

temperature, ambient relative humidity, maximum net photosynthetic rate, and 

water vapor flux for a typical Iowa crop. The calculations were shown in the 
Background Assumptions Worksheet. The value estimated and used in the 

model was 0.02 kg biomass/kg water.
 

 

Respiration Loss of Fixed C (RLC) -
 
Growing Seasonal Average (GSA)

 

 

Stored chemical energy is lost via
 
respiration which

 
supports physiological 

needs including transportation and translocation of nutrients, protein and lipid 

synthesis, and cellulose synthesis. While the respiration losses are dependent 

on the needs the plant, we estimated growing seasonal average
 
(Taylor et

 
al., 

1998).
 

 

Root: Shoot Ratio @ harvest (RSR)
 

 

This experimentally determined value is the ratio of dry belowground 

structural root biomass to dry aboveground biomass. Literature-reported values 
for the different terrestrial crops

 
were used

 
(Kiniry

 
et al., 1999; Kahle et al., 

2001; Bonifas et al., 2005).
 

 

C to soil organisms / C in root (GSA) CSORR
 

 

For terrestrial crops, a fraction of the carbon captured is transferred to the 
soil in the form of root turnover, root cap mucigel,

 
and organic exudates

 
(Amos 

and Walters, 2006).
 
Literature-reported values for net rhizodeposited carbon 

for the different terrestrial crops
 
were converted to a root basis ratio

 
(Frank et 

al., 2004; Wanga
 
et al., 2005; Amos and Walters, 2006). Those conversion 

calculations were done in the Background Assumptions worksheet.
 

 

Fraction of Stover Collected
 

 

In light of equipment collection limitations and sustainable collection 
guidelines, the fraction of corn stover collected was assumed to be 60%

 

(Glassner et al., 1998). 
 

 

Harvestable Fraction of Above Ground Biomass (hfAGB )
 

 

This
 
factor accounted for mechanical limitations of the production harvest 

systems. Literature-reported values for the different terrestrial crops and algae
 

were used
 
(El Bassam and Huisman, 2001; Vogel, 2002; Huntley and Redalje, 

2007; Johnson, 2007).
 

 

Harvestable Fraction of Total Biomass (hfTB )
 

 

This factor accounted for the belowground biomass and was calculated in 

FEBEF by Equation 16, as shown below:
 

 

ℎ𝑓𝑇𝐵=
𝐻𝑎𝑟𝑣𝑒𝑠𝑡 𝐼𝑛𝑑𝑒𝑥

1+𝑅𝑆𝑅

     

     
                     

(Eq. 16)
 

 

Harvestable Fraction of Total Fixed Carbohydrate (hfTFC )
 

 

This term represented the harvestable portion of carbon captured by the plant 

over the season. FEBEF calculated this factor by Equation 17:
 

 

ℎ𝑓𝑇𝐹𝐶=
ℎ𝑓𝐴𝐺𝐵

(1+𝑅𝑆𝑅+𝑅𝑆𝑅×(𝐶𝑆𝑂𝑅𝑅))×(1−𝑅𝐿𝐶)

   

    
                                   

(Eq. 17)
 

 

Biomass Energy Content (BEC)
 

 

The higher heating values of the crops were experimentally determined and 

reported in
 
(Beale and Long, 1995; McLaughlin, 1996; Hase et al., 2000; 

Brown Robert, 2003; Pordesimo et al., 2005)
 
and were utilized in the model in 

units of MJ/kg. 
 

 
 

Biomass Moisture Content @ Harvest
 

 

This factor was a
 
literature based estimate for the amount of moisture 

remaining in the biomass following harvesting.
 

 

Additional Moisture Removal Needed
 

 

This is an estimate of the amount of moisture needed to be removed from 
the biomass to allow for storage and/or fuel processing.

 

 

Direct Energy for Moisture Removal 
 

 

This calculation is described earlier in Equation 11
 
to estimate the 

additional direct energy required
 
to reach 10% solids

 
for the algae systems. 

 
 

Technological Improvement in Energy Reduction for Dewatering
 

 

This value is an estimate that attempts to credit algal production 

technologies with harvesting developments that result in lower direct 

energy costs to meet desired moisture content levels. 
 

 

Direct Energy Cost for Moisture Removal 
 

 

This calculation estimates the direct energy cost needed to meet desired 

moisture content using natural gas to remove the moisture while also 

crediting for technological improvements to harvesting as shown in 
Equation 18:

 

 

𝐷𝐸𝐶=

(Direct Energyalgae slurry×1000
kWh

MJ
×

GJ

1000MJ
×Natural Gas Cost

US $

kWh
)×(1−Technological Improvemnt for Dewatering)

(2.471
acres

ha
)

  

                                                                                              

      (Eq. 18)

 

 

S4.3 Crop-Cost Components
 

 

Land rental cost was assumed to be proportional to biomass harvest. A 
linear regression model was developed from the reported cash rental rates 

and typical corn yields for high, medium,
 

and low quality cropland
 

(Edwards, 2009). Arguments have been made that feedstocks other than 
corn, including algae, for biofuels could be grown on marginal land and 

avoid competing for high value land, and therefore lower production costs. 

However, cash rental rates typically reflect average yields and we assume 
that this trend would apply to all bioenergy crops. The application of this 

model not only indirectly reflects nutrient removal from soil given yields 
for the terrestrial crops but also that higher output generates a surplus that 

is likely to be appropriated by the land owner in the charge of rent.
 

Amortized capital, labor, direct energy, biological capital, and lime and 
biocide costs for the terrestrial production scenarios were estimated by 

taking baseline values and either as is, or scaled to yield. Amortized capital 

costs were assumed independent of yield. While this is not true in the 
extremes –

 
greater yields could conceivably require larger machinery –

 
we 

argue it is a good first approximation. In contrast, labor costs, direct energy 

costs,
 
and biological capital are assumed proportional to yield. Lime and

 

biocides (pesticides, herbicides) are assumed to be independent of yield. 

Original production cost values were gleaned from
 
Vadas et al. (2008) and

 

Smeets et al. (2009). Chemical costs, while proportional to yield, were 
computed based on the N, P, and K content of the harvested biomass

 

(Wallace, 1923; Zelibor et al., 1998; Lemus et al., 2002; Tokuşoglu and 

Üunal, 2003; Hoskinson et al., 2007; Johnson et al., 2007; Monti et al., 
2008)

 
and upon an assumption of the fraction of chemicals in the harvested 

biomass compared to the fraction applied. Irrigation costs for algal 

scenarios came from the algae cost model worksheet.
 

 

S4.4 Single Pass Corn Grain and Stover Harvesting Assessment
 

 

Based on
 
Turhollow and Sokhansanj (2007) which

 
assumes

 
that 2/3 

(10% more than for double pass) of the corn stover can be harvested in a 

single pass along with corn grain, with a reduced combine harvesting 
efficiency

   
of

  
55%   from  

 
70%,

  
the

   
following  

 
estimates   were  

 
made
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concerning the crop cost component classes. Assuming a field harvest grind 

that achieves a bulk density of 74 dry kg/m3 for the stover, the amortized capital 
costs are about 10% higher; as the combine costs increase by 30% but combine 

costs make up less than 40% of the amortized capital costs. Given the 15% 

decrease in harvest efficiency, the direct labor requirements increase by 15% 
and the direct energy increases by 30%. These increases only result in a 3% 

increase overall from the system of two passes now modeled, so not that 

different. All crop cost components inputs used in the modeled are reported in 
2009 US $/(acre.a). 

 

S4.5 Economic Assumptions 
 

Utility, fuel, and chemical prices are highly volatile, and therefore introduce 

tremendous variability into the results of the analysis. These values are easily 
changed in the spreadsheet, but for the purposes of the analysis presented 

herein, the average value for 2007, 2008, and 2009 were used. 

 

S4.6 EIO-LCA Greenhouse Gas Computations 

 

The GHG emissions data were divided into two categories: direct emissions 
and indirect emissions. We used EIO-LCA model factors to estimate the supply 

chain, indirect GHG emissions (as CO2, CH4, and N2O) from the EIO-LCA 

model developed by Carnegie Mellon University (Carnegie Mellon University 
Green Design Institute, 2008). The GHG emission rates (units of CO2 eq) were 

expressed on an areal (Mg CO2/(ha·a)) and net fuel (Mg CO2/GJnet and ton 

CO2/gallon-of-gasoline-equivalent) basis. 
When considering direct emissions, the literature is split between the flux 

chamber and the soil organic carbon (SOC) methods, with flux chamber 

methods generally yielding higher CO2 emission estimates. An emission of 
20.9 Mg/(ha·a) was reported in Omonode et al. (2007) on the no-till operation 

system, an emission of 21.6 Mg/(ha·a) for Moldboard Plow (MP) systems, and 

an emission of 22.7 Mg/(ha·a) on short-term chisel (CP) systems. An emission 
of 16.1 Mg/(ha·a) on various types of corn and soybean rotations was reported 

in Hernandez-Ramirez et al. (2009). In contrast, using a SOC method, Moiser 

et al. (2005) report an emission of -0.6 Mg/(ha·a) to 0.5 Mg/(ha·a), depending 
on the farming operation management. This suggests that the long-term 

emission is negligible which is consistent with the guidelines by 

Intergovernmental Panel on Climate Change (IPCC). In Cherubini and 
Jungmeier (2010), the authors adopted a standard inventory time period of 20 

years for the majority of bioenergy crops which means the field reaches a new 

equilibrium and carbon dioxide is no longer sequestered in soil organic matter. 
In this analysis, we adopted the SOC approach so that direct CO2 emissions 

were assumed to be negligible. 

Methane constitutes less than 10% of the N2O emission when converting to 
CO2 emission equivalent measurement. Therefore, in this analysis, we assumed 

it is negligible as well. 

Since N2O emission is most important component, we focused on N2O 
emission in our analysis. In Cherubini and Jungmeier (2010), the authors used 

synthetic fertilizer application rate to estimate N2O emissions. They reported 

that 1.325% of N in synthetic fertilizer is emitted as N in N2O, implying 0.042 
g N2O emitted per g N fertilizer applied. Using a multiplier of 296 kg CO2 eq/kg 

N2O, we estimated the direct GHG emissions from each crop as 0.124 Mg CO2 

eq/kg N applied. When this was done for algae, the numbers were quite high, 

and were hard to compare with any existing literature because of a paucity of 

studies on direct GHG emission from algal systems. The researchers in Clarens 
et al. (2010) only included GHG emissions associated with the inputs for the 

production of algae, including N2O emissions. However, when direct N2O 

emissions from multiple green algae species grown in urea have been reported 
(Cherubini and Jungmeier, 2010), emission rates of up to 6.1 10-8 mol 

N2O/mgdw were found, corresponding to roughly 60 Mg CO2 eq/MTdry, which 

was the same order of magnitude estimated by our 0.124 Mg CO2 eq/kg N 
applied method. 

 

S4.7 Indirect Emissions 
 

We found the EIO-LCA indirect greenhouse gas emissions multipliers for 

seven categories of economic activity in the production of biomass feedstocks. 
For the eighth category – biological capital – we computed an indirect GHG 

emission factor internally based on the direct emission values for each crop. 

The indirect greenhouse gas emissions were then calculated by multiplying the 

economic activity cost with the greenhouse gas emission multiplier. The 

economic activity and the EIO-LCA model categories are presented in 
Table S2 for all five production scenarios. 

 
Table S2.  

Pairings of categories for production activity and EIO-LCA factors. 

 

Economic Activity EIO-LCA Category 

Land rental Real estate 

Amortized capital Amortized capital 

Direct labor 
Agriculture and forestry support activities 

(direct) 

Direct energy costs Power generation and supply** 

Biological capital Biological capital* 

Chemical Fertilizer manufacturing 

Lime and biocides (pesticides, 

herbicides) 

Pesticide and other agricultural chemical 

manufacturing 

Irrigation Water, sewage, and other systems 

*   Computed in FEBEF based on direct emissions.  

** Power generation and supply used for algae, while terrestrial crops used diesel fuel factor   

     computed internally. 

 

S4.8 EIO-LCA Energy Computations
 

 

We used EIO-LCA model factors to estimate the direct and embedded 
energy use from the EIO-LCA model

 
(Turhollow and Sokhansanj, 2007). 

We found the EIO-LCA energy use multipliers for eight categories of 

economic activity in the production of biomass feedstocks. The energy use 
multiplier for Direct Energy was computed internally in the FEBEF model. 

The Energy Use for the different categories of production was then 

calculated by multiplying the economic activity cost with the energy use 
multiplier. The Total Energy Use (TEU) for each crop was computed by 

summing all of the production categorical energy uses. The economic 

activity and the EIO-LCA model categories are the same as those used for 
GHG emissions and are shown in Table S2.

 

 

S5. Primary Results Worksheet
 

 

The Primary Results worksheet (PR tab)
 
receives inputs from the PA 

worksheet and builds out fuel and GHG comparisons.
 
Two performance 

metrics form the foundation of FEBEF model computations: WUE;
 
the 

ratio of carbon captured to water transpired by a plant
 
and RUE;

 
the ratio 

of carbon captured to incident solar energy received by a plant. Multiplying 

WUE with growing-season rainfall and multiplying RUE with growing-

season solar energy enables a first-order approximation of the maximum 
possible biomass accumulation on a water-

 
or light-limited basis. These two 

maximum biomass accumulations are converted into MHYs by accounting 

for losses due to respiration, losses due to root exudates, and the fraction of 
biomass left in the field after harvest. The lower of the two MHYs is 

selected as the predicted yield. The exact calculations are described in detail 

below.
 

 

Maximum Annual Biomass at Theoretical Maximum RUE
 

 

The Maximum Annual Biomass Yield potential based on RUEmax
 
and 

PAR available was calculated in Equation 19, as shown below:
 

 

𝑀𝐴𝐵𝑇𝑀𝑅𝑈𝐸(𝑀𝑔(ℎ𝑎·𝑎))⁄ =
𝐴𝑛𝑛𝑢𝑎𝑙 𝑃𝐴𝑅 (

𝑊

𝑚2
) × 𝑅𝑈𝐸𝑚𝑎𝑥(

𝑔𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑀𝐽
)

𝐵𝐸𝐶 (
𝑀𝐽

𝑔𝑏𝑖𝑜𝑚𝑎𝑠𝑠
)

 

 
                                                                                      

  (Eq. 19)
 

 

Maximum Seasonal Biomass at Theoretical Maximum RUE 
 

The Maximum Seasonal Biomass Yield potential based on RUEmax

 
and 

seasonally available PAR was calculated in Equation 20.
 

 

𝑀𝑆𝐵𝑇𝑀𝑅𝑈𝐸(𝑀𝑔(ℎ𝑎·𝑎))⁄ =𝑀𝐴𝐵𝑇𝑀𝑅𝑈𝐸(𝑀𝑔(ℎ𝑎·𝑎))⁄ ×

𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑆𝑜𝑙𝑎𝑟 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 )
   (Eq. 20) 
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Maximum Seasonal Biomass at Actual RUE 

 
The Maximum Seasonal Biomass Yield potential based on RUEactual and 

seasonally available PAR was calculated in Equation 21, as shown below: 

 

𝑀𝑆𝐵𝐴𝑅𝑈𝐸(𝑀𝑔(ℎ𝑎·𝑎))⁄ =𝑀𝑆𝐵𝑇𝑀𝑅𝑈𝐸(𝑀𝑔(ℎ𝑎·𝑎))⁄ ×𝑅𝑈𝐸𝑅  
                                                                     

(Eq. 21)
 

 
MHY-Light Limited 

 
The Maximum Seasonal Biomass Yield potential based on RUEactual, 

Seasonally available PAR and de-rated for carbon and harvest losses was 

calculated in Equation 22, as shown below: 
 

𝑀𝐻𝑌𝑅𝑈𝐸(𝑀𝑔(ℎ𝑎·𝑎)⁄ =𝑀𝑆𝐵𝐴𝑅𝑈𝐸(𝑀𝑔(ℎ𝑎·𝑎)⁄ ×ℎ𝑓𝑇𝐹𝐶
   

                                                              
(Eq. 22)

 
 

 
Maximum Annual Biomass at Theoretical Maximum WUE 

 

The Maximum Annual Biomass Yield potential based on WUEmax and 
Annual Rainfall available was calculated in Equation 23, as shown below: 

 

𝑀𝐴𝐵𝑇𝑀𝑊𝑈𝐸(𝑀𝑔(ℎ𝑎·𝑎)⁄ =

𝐴𝑛𝑛𝑢𝑎𝑙 𝑇𝑜𝑡𝑎𝑙 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙(𝑐𝑚)×𝑊𝑈𝐸max(
𝑔𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑘𝑔𝐻2𝑂)
 ×(𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑊𝑒𝑖𝑔ℎ𝑡 𝐶𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑊𝑒𝑖𝑔ℎ𝑡 𝐶𝑂2⁄ ) 

𝐶𝑟𝑜𝑝 𝐶𝑎𝑟𝑏𝑜𝑛 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 (
𝑔

𝑘𝑔
)

 

                                                                                       

(Eq. 23)

 
 

 

Maximum Seasonal Biomass at Theoretical Maximum WUE 
 

The Maximum Seasonal Biomass Yield potential based on WUEmax and 

seasonally available PAR was calculated in Equation 24, as shown below: 

 

𝑀𝑆𝐵𝑇𝑀𝑊𝑈𝐸(𝑀𝑔(ℎ𝑎·𝑎))⁄ =𝑀𝐴𝐵𝑇𝑀𝑊𝑈𝐸(𝑀𝑔(ℎ𝑎·𝑎))⁄ ×

𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑊𝑎𝑡𝑒𝑟 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒                   
(Eq. 24)

 

 

 
Maximum Seasonal Biomass at Actual WUE 

 

The Maximum Seasonal Biomass Yield potential based on WUEactual and 
seasonally available rainfall was calculated in Equation 25, as shown below: 

 

𝑀𝑆𝐵𝐴𝑊𝑈𝐸(𝑀𝑔(ℎ𝑎·𝑎))⁄ =𝑀𝑆𝐵𝑇𝑀𝑊𝑈𝐸 𝑀𝑔(ℎ𝑎·𝑎)⁄ ×𝑊𝑈𝐸𝑅
 

  
                                                                      

(Eq. 25)
 

 
 

MHY-Water Limited 

 
The Maximum Seasonal Biomass Yield potential based on WUEactual, 

Seasonally available rainfall and de-rated for carbon and harvest losses was 

calculated in Equation 26, as shown below: 
 

𝑀𝐻𝑌𝑊𝑈𝐸(𝑀𝑔(ℎ𝑎·𝑎))⁄ =𝑀𝑆𝐵𝐴𝑊𝑈𝐸(𝑀𝑔(ℎ𝑎·𝑎))⁄ ×ℎ𝑓𝑇𝐹𝐶
  

                                                                       
(Eq. 26)

 

 

Ratio of Max light to Max water Yields (RMHY) 
 

The ratio of MHYs from the water and light limited scenarios was calculated 

in Equation 27, as shown below: 
 

𝑅𝑀𝐻𝑌=
𝑀𝐻𝑌𝑅𝑈𝐸 (𝑀𝑔(ℎ𝑎·𝑎))⁄

𝑀𝐻𝑌𝑊𝑈𝐸( 𝑀𝑔(ℎ𝑎·𝑎))⁄

     

                                                 

(Eq. 27)
 

 
 

MHY 

 

As mentioned above, the model feeds forward a predicted yield from either 

the MHYWUE or MHAUE, whichever is lower. 

 

S5.1 Anticipated Yield in 2015 assuming historical yield improvements 

 

Assumption is made that yield improvements are smooth and constant 

from year to year. Yearly yield improvement data is based on literature. In 

the FEBEF model, we add one row with the yearly percentage improvement 
from the previous year so that we can calculate yield of any future year of 

interest. 

 
Gross Maximum Energy Yield 

 

The Gross Maximum Energy Yield (MEYG) was calculated by 
Equation 28, as shown below: 

 

𝑀𝐸𝑌𝐺(𝐺𝐽(ℎ𝑎·𝑎))⁄ =𝑀𝐻𝑌 (𝑀𝑔(ℎ𝑎·𝑎))⁄ ×𝐵𝐸𝐶 (𝑀𝐽𝑘𝑔⁄ )
  

                                             
(Eq. 28)

 

 
Net Maximum Energy Yield 

 

The Net Maximum Energy Yield as calculated by Equation 29 shown 
below: 

 

𝑀𝐸𝑌𝑁(𝐺𝐽(ℎ𝑎·𝑎))⁄ =𝑀𝐸𝑌𝐺(𝐺𝐽(ℎ𝑎·𝑎))⁄ −𝑇𝐸(𝐺𝐽(ℎ𝑎·𝑎))⁄   
                                                                

(Eq. 29)
 

 
MEYN was also reported in units of gallons gasoline equivalents 

(gge/(acre.a)). 

 
Water Intensity Factor (Transpired for Biomass vs. Fuel) 

 

The ratio of water use on the basis of that transpired by the crop to fuel 
potential (MEYgn in terms of gasoline equivalent units) was reported in 

units of gal H2O/gge as shown below in Equation 30: 

 

𝑊𝐼𝐹𝑇𝐵=
𝑀𝐻𝑌 (𝑀𝑔ℎ𝑎·𝑎))⁄

𝑊𝑈𝐸𝑎𝑐𝑡𝑢𝑎𝑙(
𝑔𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑘𝑔𝐻2𝑂
)
×

1

𝑀𝐸𝑌𝑛(𝐺𝐽ℎ𝑎·𝑎))⁄
    

                                                                       

(Eq. 30)

 

 

S5.2 Net eutrophication potential (N and P discharges) for all crops 

 

The net eutrophication analysis is based on DAYCENT simulation of 

corn at eight sites in the Midwest. We have taken raw data from Kim et al. 

(2009) for yield, fertilization, and eutrophication. They express 
eutrophication on the basis of g PO4

- eq/kg grain basis. We have then 

computed eutrophication potential on an areal basis. We have also 

computed N applied per unit grain produced, total N and P applied per unit 
area, and N+P per unit grain. Each of these has been correlated on total 

eutrophication per unit grain produced and per unit area. The highest 

correlation is between N/grain and eutrophication per unit grain (linear r = 

0.97, r2 = 0.95). Fitting this to a logarithmic curve gives r2 = 0.976, so this 

expression was used. The equation 2.6602ln(x) + 11.836 is then used with 

the FEBEF model data on N/grain to compute the eutrophication potential 
per unit grain for the grain scenario. 

 

Energy Return on Investment (EROI) 
 

The EROI was calculated based on MEYG and TEU. Equation 31 shown 

below was used for the calculation: 
 

𝐸𝑅𝑂𝐼=
𝑀𝐸𝑌𝐺(𝐺𝐽(ℎ𝑎·𝑎))⁄

𝑇𝐸(𝐺𝐽(ℎ𝑎·𝑎))⁄
     

                               

(Eq. 31)

 

 Total Production Cost (TPC)
 

 The total cost of production was calculated and reported in terms of US 

$/ha and US $/ac. The calculation used is shown in Equation 32
 
below:

                                                                                                  
(Eq. 32) 𝑇𝑃𝐶 (𝑈𝑆 $(ℎ𝑎·𝑎)⁄ )

=∑ (

𝐿𝑎𝑛𝑑 𝑅𝑒𝑛𝑡𝑎𝑙,𝐴𝑚𝑜𝑟𝑖𝑡𝑖𝑧𝑒𝑑 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝐶𝑜𝑠𝑡𝑠,𝐷𝑖𝑟𝑒𝑐𝑡 𝐿𝑎𝑏𝑜𝑟,𝐷𝑖𝑟𝑒𝑐𝑡 𝐸𝑛𝑒𝑟𝑔𝑦,

𝐵𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝐶𝑎𝑝𝑖𝑡𝑎𝑙(𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝐴𝑙𝑔𝑎𝑒),𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡𝑠,

 𝐵𝑖𝑜𝑐𝑖𝑑𝑒𝑠,𝑎𝑛𝑑 𝐼𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 (𝐴𝑙𝑔𝑎𝑒 𝑜𝑛𝑙𝑦)
) 
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Biomass Production Cost (BPC) 

 

The biomass production cost was calculated and reported in terms as shown 

in Equation 33 below: 

 

𝐵𝑃𝐶 (
𝑈𝑆 $

𝑀𝑔
)=

𝑇𝑃𝐶 (𝑈𝑆 $(ℎ𝑎·𝑎))⁄

𝑀𝐻𝑌(𝑀𝑔(ℎ𝑎·𝑎))⁄

     

    
                             

(Eq. 33)
 

 

BPC was also reported in US $/ton. 

 

Energy Cost (EC) 

 

The energy cost, which accounts for production up to the harvesting of the 
biomass, was calculated as shown in Equation 34 below: 

 

𝐸𝐶 (
𝑈𝑆 $

𝐺𝐽
)=

𝑇𝑃𝐶(𝑈𝑆 $(һ𝑎·𝑎))⁄

𝑀𝐸𝑌𝐺(𝐺𝐽һ𝑎·𝑎))⁄

     

    
                       

 
       

(Eq. 34)
 

 

EC was also reported in terms of US $/gge. 

 

 

Carbon Intensity of Energy Source (CIES) 

 

The global climate change potential intensity was estimated by calculating 
the ratio of total GHG to net energy produced for each crop. The CIES was 

calculated as shown in Equation 35 below: 

 

𝐶𝐼𝐸𝑆(𝑀𝑇 𝐶𝑂2 𝑒𝑞(ℎ𝑎·𝑎))⁄ =
𝐺𝐻𝐺𝑇(𝑘𝑔 𝐶𝑂2(ℎ𝑎·𝑎))⁄

𝑀𝐸𝑌𝑁(𝐺𝐽(һ𝑎·𝑎))⁄

    

  
                                                                  

 
    

(Eq. 35)
 

 

Ratio of MHY to Best Reported Yields (BRY) 
 

In order to place the MHY predicted by FEBEF in a realistic context, we 

found BRYs in the literature (for the different crops under similar climatic 
conditions and on plots greater than 10 ha when possible) and computed a ratio 

(RY) and reported as a percentage as shown below in Equation 36: 

 

𝑅𝑌=
𝑀𝐻𝑌 (𝑀𝑔(ℎ𝑎·𝑎))⁄

𝐵𝑅𝑌 (𝑀𝑔(ℎ𝑎·𝑎))⁄

      

    
                                

(Eq. 36)
 

 

Transportation Fuel Energy Out (TFEO) 
 

The TFEO was based on algal oil content, Transesterification Efficiency 

(mass biodiesel/mass raw oil), and the energy content of biodiesel (ECB) from 
microalgae, 41 MJ/kg (ref), as shown in Equation 37: 

 

𝑇𝐹𝐸𝑂(
𝐺𝐽𝑜𝑢𝑡

𝑑𝑟𝑦 𝑀𝑔 𝑏𝑖𝑜𝑚𝑎𝑠𝑠
)=𝐴𝑂𝐶(

𝑘𝑔 𝑜𝑖𝑙

𝑘𝑔 𝑏𝑖𝑜𝑚𝑎𝑠𝑠
)×𝑇𝑟𝑎𝑛𝑠𝑒𝑠𝑡𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦×

𝐸𝐶𝐵(
𝐺𝐽

𝑀𝑔
)                                                                                         (Eq. 37)

 

 

 

Total Fuel Energy Yield
 
(TFEY)

 
 

The TFEY was based on TFEO and the MHY
 
as shown in Equation 38:

 

 

𝑇𝐹𝐸𝑌(
𝐺𝐽𝑜𝑢𝑡

(ℎ𝑎·𝑎)
)=𝑇𝐹𝐸𝑂(

𝐺𝐽𝑜𝑢𝑡

𝑑𝑟𝑦 𝑀𝑔 𝑏𝑖𝑜𝑚𝑎𝑠𝑠
)×𝑀𝐻𝑌(

𝑑𝑟𝑦 𝑀𝑔 𝑏𝑖𝑜𝑚𝑎𝑠𝑠

(ℎ𝑎·𝑎)
)

 

         (Eq. 38)

 

  

 

Co-Product Credit

  
 

The Co-Product Credit was assumed to be the energy content in the de-oiled 

algal biomass sold as feed as shown in Equation 39:

 
 

 

𝐶𝑃𝐶(
𝐺𝐽𝑜𝑢𝑡

𝐿 𝑏𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙
)=

𝐷𝑒𝑜𝑖𝑙𝑒𝑑 𝐴𝑙𝑔𝑎𝑒 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 (
𝐺𝐽

𝑀𝑔 𝐵𝑖𝑜𝑚𝑎𝑠𝑠
)

𝐵𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙 𝑌𝑖𝑒𝑙𝑑 (
𝐿

𝑀𝑔 𝐵𝑖𝑜𝑚𝑎𝑠𝑠
) 

                                  (Eq. 39)

 

 
 

 

Indirect GHG Emissions 

 

The Indirect GHG Emissions associated with the conversion of corn, 

corn stover, Switchgrass, and Miscanthus to ethanol and algal biomass to 

biodiesel were estimated using custom GHG EIO-LCA Multipliers, 
literature based estimates for the cost of conversion (CC), and the TFEY as 

shown in Equation 40. The custom GHG multiplier for ethanol and 

biodiesel conversion were built using an economic impact studies of 
ethanol and of biodiesel (Urbanchuk, 2007) and the EIO-LCA custom 

model tool (Carnegie Mellon University Green Design Institute, 2010). 

Specifically, the purchases (US $/a) made by the ethanol and biodiesel 
industry from 11 sectors of the economy were used as inputs in the EIO-

LCA custom model tool to compute the associated GHG output for each 

sector given those expenditures.  
 

𝐼𝐺𝐻𝐺(
𝑀𝑔 𝐶𝑂2𝑒

(ℎ𝑎·𝑎)
)=𝐺𝐻𝐺𝐸𝐼𝑂(

𝑀𝑔 𝐶𝑂2𝑒

𝑈𝑆 $
)×𝐶𝐶(

𝑈𝑆 $

𝐺𝐽𝑜𝑢𝑡
)×𝑇𝐹𝐸𝑌(

𝐺𝐽𝑜𝑢𝑡
(ℎ𝑎·𝑎)

)
 

                                                                                             

(Eq. 40)
 

 

 
Carbon Intensity of Fuel Energy Source (CIFES) 

 
The sum of the conversion and production GHG direct and indirect 

emissions term gave the total GHG on an areal basis. The CIFES was 

calculated by using the GHG total (GHGT; areal basis) and TEFY as shown 

in Equation 41: 
 

𝐶𝐼𝐹𝐸𝑆(
𝑘𝑔 𝐶𝑂2𝑒

𝐺𝐽𝑜𝑢𝑡
)=

𝐺𝐻𝐺𝑇 (
𝑀𝑇 𝐶𝑂2
(ℎ𝑎·𝑎)

)

𝑇𝐸𝐹𝑌(
𝐺𝐽𝑜𝑢𝑡
(ℎ𝑎·𝑎)

)
×1000(𝑘𝑔/𝑀𝑔)                                    (Eq. 41) 

  

 
Indirect Energy for Conversion 

 
The Indirect Energy for Conversion (IDEnergy) of the corn, corn stover, 

Switchgrass, and Miscanthus to ethanol and algal biomass to biodiesel were 

estimated using custom Conversion Energy EIO-LCA Multipliers, 

literature based estimates for the cost of conversion, and the TFEY as 
shown in Equation 42. The custom Conversion Energy multiplier was built 

using an economic impact studies of ethanol and biodiesel (Urbanchuk, 

2007) and the EIO-LCA custom model tool (Carnegie Mellon University 
Green Design Institute, 2010). Specifically, the purchases (US $/a) made 

by the ethanol and biodiesel industry from 11 sectors of the economy were 

used as inputs in the EIO-LCA custom model tool to compute the associated 
energy expended by each sector given those expenditures. 

 

𝐼𝐷𝐸𝑛𝑒𝑟𝑔𝑦(
𝐺𝐽

(ℎ𝑎·𝑎)
)=𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝐸𝑛𝑒𝑟𝑔𝑦𝐸𝐼𝑂(

𝐺𝐽

𝑈𝑆 $
)×

𝐶𝑜𝑠𝑡 𝑜𝑓 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛(
𝑈𝑆 $

𝐺𝐽𝑜𝑢𝑡
)×𝑇𝐹𝐸𝑌(

𝐺𝐽𝑜𝑢𝑡

(ℎ𝑎·𝑎)
)                       

    (Eq. 42)

 

 

 

Maximum Fuel Energy Yield-Net Converted 

 

The Maximum Fuel Energy Yield-Net Converted (MFEYNC) for 
producing and converting algal biomass to biodiesel was estimated using 

TFEY, TEU (direct and indirect) for Production (TEUP), and TEU for 

Conversion (TEUC) as shown in Equation 43, where all terms are in units 
of GJ ha-1 a-1. 

 

𝑀𝐹𝐸𝑌𝑁𝐶 =𝑇𝐹𝐸𝑌−𝑇𝐸𝑈𝑃−𝑇𝐸𝑈𝐶
                                                    (Eq. 43) 

 

 

Maximum Fuel Energy Yield-Net Converted with Co-Product Credit 
 

The TFEY, TEUP, and TEUC with Co-Product Credit (TEUCCPC) were 

used to compute the MFEYNC
 with Co-Product Credit (MFEYNC-CPC) for 

producing and converting algal biomass as shown in Equation 44, where 

all terms are in units of GJ/ha.a. 

 

𝑀𝐹𝐸𝑌𝑁𝐶−𝐶𝑃𝐶 =𝑇𝐹𝐸𝑌−𝑇𝐸𝑈𝑃−𝑇𝐸𝑈𝐶𝐶𝑃𝐶
                                  (Eq. 44) 
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Energy Return on Investment (EROI) 

 
The TFEY and Total Energy Use for Production and Conversion (TEUPC) 

were used to compute the EROI as shown in Equation 45, where all terms are 

in units of GJ/ha.a. 
 

𝐸𝑅𝑂𝐼=
𝑇𝐹𝐸𝑌

𝑇𝐸𝑈𝑃𝐶
                                                                                   (Eq. 45) 

 

 
EROI with Co-Product Credit 

 

The TFEY, CPC and Total Energy Use for Production and Conversion 
(TEUPC) were used to compute the EROI as shown in Equation 46, where all 

terms are in units of GJ/ha.a. 

 

𝐸𝑅𝑂𝐼𝐶𝑃𝐶=
𝑇𝐹𝐸𝑌 +𝐶𝑃𝐶 

𝑇𝐸𝑈𝑃𝐶
                                                                           (Eq. 46) 

 
 

Cost for Conversion of Fuel Energy Produced (CCFEP) 

 
The TFEY and CC were used to compute CCFEP as shown in Equation 47: 

 

𝐶𝐶𝐹𝐸𝑃(
𝑈𝑆 $

(ℎ𝑎·𝑎)
)=𝑇𝐹𝐸𝑌(

𝐺𝐽𝑜𝑢𝑡

(ℎ𝑎·𝑎)
)×𝐶𝑜𝑠𝑡 𝑜𝑓 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛(

𝑈𝑆 $

𝐺𝐽
)                   (Eq. 47) 

 

 
Total Cost for Fuel Energy Produced (TCFEP) 

 

The Total Cost for Production (TCP) and the CCFEP were used to compute 
TCFEP as shown below in Equation 48 where all terms are in units of US 

$/(ha·a). 

 

𝑇𝐶𝐹𝐸𝑃=𝑇𝐶𝑃+𝐶𝐶𝐹𝐸𝑃                                                                          (Eq. 48) 

 

 
Cost for Fuel Energy Produced (CFEP) 

 
The CCFEP and the TFEY were used to compute CFEP as shown in 

Equation 49: 

 

𝐶𝐹𝐸𝑃(
𝑈𝑆 $

𝐺𝐽
)=𝐶𝐶𝐹𝐸𝑃(

𝑈𝑆 $

(ℎ𝑎·𝑎)
)/𝑇𝐹𝐸𝑌(

𝐺𝐽

(ℎ𝑎·𝑎)
)                                              (Eq. 49) 

 
 

Total Energy Cost (TEC) 

 
The cost for all energy produced including fuel and co-product credits from 

production to conversion was estimated as shown in Equation 50:  

 

𝑇𝐸𝐶(
𝑈𝑆 $

𝐺𝐽𝑜𝑢𝑡
)=𝑇𝐶𝐹𝐸𝑃(

𝑈𝑆 $

(ℎ𝑎·𝑎)
)/(𝑇𝐹𝐸𝑌(

𝐺𝐽𝑜𝑢𝑡

(ℎ𝑎·𝑎)
)+𝐶𝑃𝐶(

𝐺𝐽𝑜𝑢𝑡

(ℎ𝑎·𝑎)
))                (Eq. 50) 
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