Candida rugosa lipase nanoparticles as robust catalyst for biodiesel production in organic solvents

Document Type: Research Paper

Authors

1 Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de Leon Avenue, Suite 2, San Juan, Puerto Rico 00926-2614, United States.

2 Department of Environmental Science, University of Puerto Rico, Río Piedras campus, 17 Ave Universidad STE 1701, San Juan, Puerto Rico 00925-2537, United States.

3 Department of Chemistry, University of Puerto Rico, Río Piedras campus, 17 Ave Universidad STE 1701, San Juan, Puerto Rico 00925-2537, United States.

4 Department of Physics, University of Puerto Rico, Río Piedras campus, 17 Ave Universidad STE 1701, San Juan, Puerto Rico 00925-2537, United States.

Abstract

Inexpensive but resourceful sources of lipids, for example, used cooking oil (UCO) and brown grease (BG), which often contain large amounts of free fatty acids (FFA), are difficult to convert into biodiesel economically and in good yield. Candida rugosa lipase nanoparticles (cNP) were formed first and subsequently cross-linked nanoparticles (CLNP) were obtained by crosslinking of them. Alternatively, cNP were conjugated to magnetic nanoparticles (mNP) to achieve a cNP-mNP conjugate. All three formulations were employed in three different organic solvents (n-heptane, 1,4-dioxane, and t-butanol) to produce biodiesel using BG and UCO in the transesterification reaction with ethanol and methanol. The radii of nanoparticles (NP) were 5.5, 75, 100, 85 nm for mNP, cNP, CLNP, and cNP-mNP, respectively, as measured by scanning/transmission electron microscopy and dynamic light scattering. The catalytic efficiency (Kcat/KM) of cNP, CLNP, and cNP-mNP was increased ca. -25, -68, -176 folds in n-heptane and -35, -131, -262 folds in 1,4-dioxane compared to the lyophilized lipase in the model transesterification reaction of p-nitrophenyl palmitate (PNPP) with ethanol. In biodiesel formation, the best performance with 100% conversion of BG was achieved under optimum conditions with cNP-mNP, ethanol at a 1:3 molar ratio of lipid-to-alcohol, NP at a 1:0.1 weight ratio of lipid-to-enzyme, and water at a 1:0.04 weight ratio of enzyme-to-water at 30 oC for 35 h. The operational stability of the CLNP and cNP-mNP was sustained even after five consequent biodiesel batch conversions while 50% and 82% residual activity (storage stability) were retained after 40 d.

Graphical Abstract

<i>Candida rugosa</i> lipase nanoparticles as robust catalyst for biodiesel production in organic solvents

Highlights

  • Formation of the Candida rugosa lipase nanoparticles by nanoprecipitation method.
  • Crosslinking and conjugation of Candida rugosa lipase nanoparticles.
  • Biodiesel production by utilizing brown grease and used cooking oil.
  • Kinetics of the Candida rugosa lipase nanoparticles in n-heptane and 1,4-dioxane.
  • Biodiesel production in organic solvents (n-heptane, 1,4-dioxane, and t-butanol).

Keywords


[1] Adlercreutz, P., 2013. Immobilisation and application of lipases in organic media. Chem. Soc. Rev. 42(15), 6406-4636.

[2] Benjamin, S., Pandey, A., 1998. Candida rugosa lipases: molecular biology and versatility in biotechnology. Yeast. 14(12), 1069-1087. 

[3] Benjamin, S., Pandey, A., 2001. Isolation and characterization of three distinct forms of lipases from Candida rugosa produced in solid state fermentation. Braz. Arch. Biol. Technol. 44(2), 213-221.

[4] Canakci, M., Sanli, H., 2008. Biodiesel production from various feedstocks and their effects on the fuel properties. J. Ind. Microbiol. Biotechnol. 35(5), 431-441.

[5] Cipolatti, E.P., Silva, M.J.A., Klein, M., Feddern, V., Feltes, M.M.C., Oliveira, J.V., Ninow, J.L., de Oliveira, D., 2014. Current status and trends in enzymatic nanoimmobilization. J. Mol. Catal. B: Enzym. 99, 56-67.

[6] De Maria, P., Sanchez-Montero, J.M., Sinisterra, J.V., Alcantara, A.R., 2006. Understanding Candida rugosa lipases: an overview. Biotechnol. Adv. 24(2), 180-196.

[7] Dordick, J.S., 1992. Designing enzymes for use in organic solvents. Biotechnol. Prog. 8(4), 259-267.

[8] Dussan, K.J., Cardona, C.A., Giraldo, O.H., Gutiérrez, L.F., Pérez, V.H., 2010. Analysis of a reactive extraction process for biodiesel production using a lipase immobilized on magnetic nanostructures. Bioresour. Technol. 101(24), 9542-9549.

[9] Dyal, A., Loos, K., Noto, M., Chang, S.W., Spagnoli, C., Shafi, K.V., Ulman, A., Cowman, M., Gross, R.A., 2003. Activity of Candida rugosa lipase immobilized on γ-Fe2O3 magnetic nanoparticles. J. Am. Chem. Soc. 125(7), 1684-1685.

[10] Falony, G., Armas, J.C., Mendoza, J.C.D., Hernández, J.L.M., 2006. Production of extracellular lipase from Aspergillus niger by solid-state fermentation. Food Technol. Biotechnol. 44(2), 235-240.

[11] Fernandez-Lorente, G., Cabrera, Z., Godoy, C., Fernandez-Lafuente, R., Palomo, J.M., Guisan, J. M., 2008. Interfacially activated lipases against hydrophobic supports: effect of the support nature on the biocatalytic properties. Process Biochem. 43(10), 1061-1067.

[12] Fjerbaek, L., Christensen, K.V., Norddahl, B., 2009. A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol. Bioenergy. 102(5), 1298-1315.

[13] Griebenow, K., Klibanov, A.M., 1996. On protein denaturation in aqueous-organic mixtures but not in pure organic solvents. J. Am. Chem. Soc.  118(47), 11695-11700.

[14] Griebenow, K., Laureano, Y.D., Santos, A.M., Clemente, I.M., Rodríguez, L., Vidal, M.W., Barletta, G., 1999. Improved enzyme activity and enantioselectivity in organic solvents by methyl-β-cyclodextrin. J. Am. Chem. Soc. 121(36), 8157-8163.

[15] Grochulski, P., Li, Y., Schrag, J.D., Cygler, M., 1994. Two conformational states of Candida rugosa lipase. Protein Sci. 3(1), 82-91.

[16] Halling, P.J., 1990. Solvent selection for biocatalysis in mainly organic systems: predictions of effects on equilibrium position. Biotechnol. Bioenergy. 35(7), 691-701.

[17] Hirata, H., Higuchi, K., Yamashina, T., 1990. Lipase-catalyzed transesterification in organic solvent: effects of water and solvent, thermal stability and some applications. J. Biotechnol. 14(2), 157-167.

[18] Hung, T.C., Giridhar, R., Chiou, S.H., Wu, W.T., 2003. Binary immobilization of Candida rugosa lipase on chitosan. J. Mol. Catal. B: Enzym. 26(1-2), 69-78.

[19] Iso, M., Chen, B., Eguchi, M., Kudo, T., Shrestha, S., 2001. Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. J. Mol. Catal. B: Enzym. 16(1), 53-58.

[20] Kamat, S., Beckman, E.J., Russell, A.J., 1992. Role of diffusion in nonaqueous enzymology. 1. theory. Enzyme Microb. Technol. 14(4), 265-271.

[21] Kartal, F., Janssen, M.H., Hollmann, F., Sheldon, R.A., Kılınc, A., 2011. Improved esterification activity of Candida rugosa lipase in organic solvent by immobilization as cross-linked enzyme aggregates (CLEAs). J. Mol. Catal. B: Enzym. 71(3-4), 85-89.

[22] Kim, B.H., Lee, N., Kim, H., An, K., Park, Y.I., Choi, Y., Shin, K., Lee, Y., Kwon, S.G., Na, H.B., 2011. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J. Am. Chem. Soc. 133(32), 12624-12631.

[23] Kim, J., Grate, J.W., Wang, P., 2008. Nanobiocatalysis and its potential applications. Trends Biotechnol. 26(11), 639-646.

[24] Klibanov, A.M., 2001. Improving enzymes by using them in organic solvents. Nature. 409(6817), 241.

[25] Kojima, S., Du, D., Sato, M., Park, E.Y., 2004. Efficient production of fatty acid methyl ester from waste activated bleaching earth using diesel oil as organic solvent. J. Biosci. Bioenergy. 98(6), 420-424.

[26] Koskinen, A.M.,  Klibanov, A. M., 1996. Enzymatic reactions in organic media. Springer, New York, Chapman and Hall. 1-319.

[27] Kuo, C.H., Peng, L.T., Kan, S.C., Liu, Y.C., Shieh, C.J., 2013. Lipase-immobilized biocatalytic membranes for biodiesel production. Bioresour. Technol. 145, 229-232.

[28] Kuo, T.C., Shaw, J.F., Lee, G.C., 2015. Conversion of crude Jatropha curcas seed oil into biodiesel using liquid recombinant Candida rugosa lipase isozymes. Bioresour. Technol. 192, 54-59.

[29] Langer, K., Balthasar, S., Vogel, V., Dinauer, N., von Briesen, H.,  Schubert, D., 2003. Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int. J. Pharm. 257(1-2), 169-180.

[30] Li, X., Zhu, H., Feng, J., Zhang, J., Deng, X., Zhou, B., Zhang, H., Xue, D., Li, F., Mellors, N. J., 2013. One-pot polylol synthesis of graphene decorated with size-and density-tunable Fe3O4 nanoparticles for porcine pancreatic lipase immobilization. Carbon 60, 488-497.

[31] Linko, Y.Y., Lämsä, M., Huhtala, A., Rantanen, O., 1995. Lipase biocatalysis in the production of esters. J. Am. Oil Chem. Soc. 72(11), 1293-1299.

[32] Liou, Y.C., Marangoni, A.G.,  Yada, R.Y., 1998. Aggregation behavior of Candida rugosa lipase. Food Res. Int. 31(3), 243-248.

[33] Lotti, M., Pleiss, J., Valero, F., Ferrer, P., 2015. Effects of methanol on lipases: molecular, kinetic and process issues in the production of biodiesel. Biotechnol. J. 10(1), 22-30.

[34] Mahdavi, M., Ahmad, M.B., Haron, M.J., Namvar, F., Nadi, B., Rahman, M.Z.A.,  Amin, J., 2013. Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules. 18(7), 7533-7548.

[35] Mahmoudi, M., Sant, S., Wang, B., Laurent, S., Sen, T., 2011. Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv. Drug Delivery Rev. 63(1-2), 24-46.

[36] Mei, Y., Miller, L., Gao, W., Gross, R.A., 2003. Imaging the distribution and secondary structure of immobilized enzymes using infrared microspectroscopy. Biomacromolecules. 4(1), 70-74.

[37] Montalvo, B.L., Pacheco, Y., Sosa, B.A., Vélez, D., Sánchez, G., Griebenow, K., 2008. Formation of spherical protein nanoparticles without impacting protein integrity. Nanotechnology. 19(46), 465103.

[38] Montero, S., Blanco, A., Virto, M.D., Landeta, L.C., Agud, I., Solozabal, R., Lascaray, J., de Renobales, M., Llama, M. J., Serra, J.L., 1993. Immobilization of Candida rugosa lipase and some properties of the immobilized enzyme. Enzyme Microb. Technol. 15(3), 239-247.

[39] Parida, S., Dordick, J.S., 1993. Tailoring lipase specificity by solvent and substrate chemistries. J. Org. Chem. 58(12), 3238-3244.

[40] Park, E.Y., Sato, M., Kojima, S., 2008. Lipase-catalyzed biodiesel production from waste activated bleaching earth as raw material in a pilot plant. Bioresour. Technol. 99(8), 3130-3135.

[41] Pinsirodom, P., Parkin, K.L., 2001. Lipase assays. Current protocols in food analytical chemistry. 1, C3-1.

[42] Rebelo, L.P., Netto, C.G., Toma, H.E., Andrade, L.H., 2010. Enzymatic kinetic resolution of (RS)-1-(Phenyl) ethanols by Burkholderia cepacia lipase immobilized on magnetic nanoparticles. J. Braz. Chem. Soc. 21(8), 1537-1542.

[43] Ribeiro, B.D., de Castro, A.M., Coelho, M.A.Z., Freire, D.M.G., 2011. Production and use of lipases in bioenergy: a review from the feedstocks to biodiesel production. Enzyme Res. 2011, 1-16.

[44] Royon, D., Daz, M., Ellenrieder, G., Locatelli, S., 2007. Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresour. Technol. 98(3), 648-653.

[45] Rúa, M.L., Ballesteros, A., 1994. Rapid purification of two lipase isoenzymes from Candida rugosa. Biotechnol. Technol. 8(1), 21-26.

[46] Schenk, P.M., Thomas-Hall, S.R., Stephens, E., Marx, U.C., Mussgnug, J.H., Posten, C., Kruse, O., Hankamer, B., 2008. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res. 1(1), 20-43.

[47] Schober, S., Seidl, I., Mittelbach, M., 2006. Ester content evaluation in biodiesel from animal fats and lauric oils. Eur. J. Lipid Sci. Techol. 108(4), 309-314.

[48] Secundo, F., Carrea, G., Soregaroli, C., Varinelli, D., Morrone, R., 2001. Activity of different Candida antarctica lipase B formulations in organic solvents. Biotechnol. Bioenergy. 73(2), 157-163.

[49] Shah, S., Sharma, S., Gupta, M., 2004. Biodiesel preparation by lipase-catalyzed transesterification of Jatropha oil. Energy Fuels. 18(1), 154-159.

[50] Shao, P., Meng, X., He, J., Sun, P., 2008. Analysis of immobilized Candida rugosa lipase catalyzed preparation of biodiesel from rapeseed soapstock. Food Bioprod. Process. 86(4), 283-289.

[51] Sharma, R.K., Saxena, M., O’Neill, C.A., Ramos, H.A., Griebenow, K., 2018. Synthesis of Rhizopus arrhizus lipase nanoparticles for biodiesel production. ACS Omega. 3(12), 18203-18213.

[52] Sheldon, R.A., Schoevaart, R., Van Langen, L.M., 2005. Cross-linked enzyme aggregates (CLEAs): a novel and versatile method for enzyme immobilization (a review). Biocatal. Biotransform. 23(3-4), 141-147.

[53] Sheldon, R.A., 2010. Cross-linked enzyme aggregates as industrial biocatalysts. Org. Process Res. Dev. 15(1), 213-223.

[54] Solanki, K.,  Gupta, M.N., 2011. Simultaneous purification and immobilization of Candida rugosa lipase on superparamagnetic Fe3O4 nanoparticles for catalyzing transesterification reactions. New J. Chem. 35(11), 2551.

[55] Talebi, A.F., Tabatabaei, M., Chisti, Y., 2014. BiodieselAnalyzer: a user-friendly software for predicting the properties of prospective biodiesel. Biofuel Res. J. 1(2), 55-57.

[56] Tan, T., Lu, J., Nie, K., Deng, L., Wang, F., 2010. Biodiesel production with immobilized lipase: a review. Biotechnol. Adv. 28(5), 628-634.

[57] Tejo, B.A., Salleh, A.B.,  Pleiss, J., 2004. Structure and dynamics of Candida rugosa lipase: the role of organic solvent. J. Mol. Model. 10(5-6), 358-366.

[58] Thapa, B., Diaz-Diestra, D., Beltran-Huarac, J., Weiner, B.R., Morell, G., 2017. Enhanced MRI T2 relaxivity in contrast-probed anchor-free PEGylated iron oxide nanoparticles. Nanoscale Res. Lett. 12(1), 312.

[59] Thapa, B., Diaz-Diestra, D., Santiago-Medina, C., Kumar, N., Tu, K., Beltran-Huarac, J., Jadwisienczak, W.M., Weiner, B.R., Morell, G., 2018. T1-and T2-weighted magnetic resonance dual contrast by single core truncated cubic iron oxide nanoparticles with abrupt cellular internalization and immune evasion. ACS Appl. Bio Mater. 1(1), 79-89.  

[60] Thapa, B., Diaz-Diestra, D., Badillo-Diaz, D., Sharma, R.K., Dasari, K., Kumari, S., Holcomb, M.B., Beltran-Huarac, J., Weiner, B.R., Morell, G., 2019. Controlling the transverse proton relaxivity of magnetic graphene oxide. Sci. Rep. 9, 5633.

[61] Tsai, S.W., Dordick, J.S., 1996. Extraordinary enantiospecificity of lipase catalysis in organic media induced by purification and catalyst engineering. Biotechnol. Bioengy. 52(2), 296-300.

[62] Verma, M.L., Barrow, C.J., Puri, M., 2013. Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production. Appl. Microbiol. Biotechnol. 97(1), 23-39.

[63] Wang, X., Dou, P., Zhao, P., Zhao, C., Ding, Y., Xu, P., 2009. Immobilization of lipases onto magnetic Fe3O4 nanoparticles for application in biodiesel production. ChemSusChem. Sustainability Energy Mat. 2(10), 947-950.  

[64] Wang, H., Yao, Q., Wang, C., Fan, B., Sun, Q., Jin, C., Xiong, Y., Chen, Y., 2016. A simple, one-step hydrothermal approach to durable and robust superparamagnetic, superhydrophobic and electromagnetic wave-absorbing wood. Sci. Rep. 6, 35549.

[65] Wang, J., Meng, G., Tao, K., Feng, M., Zhao, X., Li, Z., Xu, H., Xia, D.,  Lu, J.R., 2012. Immobilization of lipases on alkyl silane modified magnetic nanoparticles: effect of alkyl chain length on enzyme activity. PloS one. 7(8), e43478.

[66] Xie, W., Ma, N., 2009. Immobilized lipase on Fe3O4 nanoparticles as biocatalyst for biodiesel production. Energy Fuels. 23, 1347-1353.

[67] Xu, J.K., Zhang, F.F., Sun, J.J., Sheng, J., Wang, F., Sun, M., 2014. Bio and nanomaterials based on Fe3O4. Molecules. 19(12), 21506-21528.

[68] Xun, E.N., Lv, X.l., Kang, W., Wang, J.X., Zhang, H., Wang, L., Wang, Z., 2012. Immobilization of Pseudomonas fluorescens lipase onto magnetic nanoparticles for resolution of 2-octanol. Appl. Biochem. Biotechnol. 168(3), 697-707.

[69] Yong, Y., Bai, Y.X., Li, Y.F., Lin, L., Cui, Y.J., Xia, C.G., 2008. Characterization of Candida rugosa lipase immobilized onto magnetic microspheres with hydrophilicity. Process Biochem. 43(11), 1179-1185.

[70] Yu, C.Y., Huang, L.Y., Kuan, I., Lee, S.L., 2013. Optimized production of biodiesel from waste cooking oil by lipase immobilized on magnetic nanoparticles. Int. J. Mol. Sci. 14, 24074-24086.

[71] Yu, H., Chen, H., Wang, X., Yang, Y., Ching, C., 2006. Cross-linked enzyme aggregates (CLEAs) with controlled particles: application to Candida rugosa lipase. J. Mol. Catal. B: Enzym. 43, 124-127.

[72] Zaks, A., Klibanov, A.M., 1988a. The effect of water on enzyme action in organic media. J. Biol. Chem. 263, 8017-8021.

[73] Zaks, A., Klibanov, A.M., 1988b. Enzymatic catalysis in nonaqueous solvents. J. Biol. Chem. 263, 3194-3201.