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Thermochemical treatment is a promising technique for biomass disposal and valorization. Recently, machine learning (ML) 

has been extensively used to predict yields, compositions, and properties of biochar, bio-oil, syngas, and aqueous phases 

produced by the thermochemical treatment of biomass. ML demonstrates great potential to aid the development of 

thermochemical processes. The present review aims to 1) introduce the ML schemes and strategies as well as descriptors of the

input and output features in thermochemical processes; 2) summarize and compare the up-to-date research in both ML-aided 

wet (hydrothermal carbonization/liquefaction/gasification) and dry (torrefaction/pyrolysis/gasification) thermochemical 

treatment of biomass (i.e., predicting the yields, compositions, and properties of oil/char/gas/aqueous phases as well as thermal 

conversion behavior or kinetics); and 3) identify the gaps and provide guidance for future studies concerning how to improve 

predictive performance, increase generalizability, aid mechanistic and application studies, and effectively share data and models 

in the community. The development of biomass thermochemical treatment processes is envisaged to be greatly accelerated by 

ML in the near future. 

                                                  

➢Machine learning (ML) schemes and descriptors of 

input and output features were examined.

➢ML can predict yields, compositions, and properties 

of oil/char/gas/aqueous phases. 

➢ML predictive performance for wet and dry 

thermochemical processes is different.

➢Improving ML predictive performance, 

generalizability, and application are future needs.

©2023 BRTeam CC BY 4.0
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1. Introduction 

 

Biomass is a kind of renewable energy with huge reserves, possessing 

environment-friendly and carbon-neutral properties. Using biomass is one of 

the effective ways to alleviate future energy needs while mitigating the 
greenhouse effect and environmental pollution crises (Leng et al., 2019b; Wang 

et al., 2021a; Chen et al., 2022c). Thermochemical processes, such as 

torrefaction, pyrolysis, gasification, and hydrothermal 
carbonization/liquefaction/gasification, are important methods to valorize 

biomass or biowastes (carbon-neutral materials), such as forestry waste (wood, 

woody biomass, etc.), agricultural wastes (straw, husks, grasses, etc.), sewage 
sludge, animal manure, food waste, and algae (Peterson et al., 2008; Wang et 

al., 2017; Leng et al., 2021b; Perera et al., 2021; Xu et al., 2022). During the 

thermochemical treatment of biomass, valuable oil and gas products can be 
generated, which can be used for the production of biofuels and biochemicals 

to replace fossil resources (Tuck et al., 2012; Ragauskas et al., 2014; Leng et 

al., 2023). In  addition, versatile  carbonaceous  materials  are  also  generated, 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

which can be used to replace fossil resources through the production of char 

fuel (Liu et al., 2015; Leng et al., 2021a, 2020b; Li et al., 2023) while char 

carbon (black carbon) could also be used in soli for sequestrating carbon 

and mitigating climate change (Leng et al., 2019b and c). Many variables 

affect the thermochemical treatment performance, and investigations on the 
thermochemical reaction behavior and mechanisms, as well as the 

optimization of the as-produced gas/oil/char products by conventional 

experimental methods, are time-consuming and labor-intensive, which can 
be overcome by incorporating machine learning (ML) technology.  

The term “artificial intelligence (AI)” was introduced by the American 

scientist John McCarthy at a conference at Dartmouth College in 1956. 
However, AI was not very popular until the end of the 20th century and the 

beginning of the 21st century, when computer science and AI algorithms 

were fully developed (Xu et al., 2021b). Currently, AI, particularly ML, has 
been developed and widely used in various areas, including the recognition 

of speech and visual objects, detection of objects, and prediction of the 

yields, compositions, and properties of  products, as well as the reaction  
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AI                 Artificial intelligence ML                Machine learning

ANFIS        Artificial neuro-fuzzy inference system MLP-NN    Multilayer perceptron neural network

ANN           Artificial neural network MLR           Multilinear regression

CEC             Cation exchange capacity PDP             Partial dependence plots

CFD              Computational fluid dynamics PSO            Particle swarm optimization

COD Chemical oxygen demand R2                 Coefficient of determination

DAF              Dry-ash-free RF               Random forest

DT              Decision tree RMSE          Root mean square error

GBR           Gradient boosting regression SCWG          Supercritical water gasification

GUI             Graphical user interface SHAP           Shapley additive explanations analysis

HHV             Higher heating value SSA              Specific surface area

HTC              Hydrothermal carbonization SVM           Support vector machine

HTL     Hydrothermal liquefaction TOC            Total organic carbon

LCA            Life cycle assessment TN               Total nitrogen
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behavior of chemical reactions, e.g., thermochemical reactions. ML is believed 

to be as popular as, if not more popular than, thermodynamic equilibrium, 

kinetics, and computational fluid dynamics (CFD) to model highly complex 

processes efficiently (Ascher et al., 2022b). For example, ML reduced the 

computational expense of detailed kinetic models by four orders of magnitude 
and predicted the outputs of the detailed kinetic models with very high accuracy 

for new data (Hough et al., 2017). However, ML has only recently been widely 

applied to aid the thermochemical treatment of biomass. 
The number of studies available in the existing literature, journal 

distribution, and funding agencies focused on the ML-aided thermochemical 

treatment of biomass based on the dataset of the Web of Science are shown in 
Figure 1 and Table 1. The number of published articles increased over time 

from 2013 to 2022. Bioresource Technology, with 28 published studies, makes 

up 14.43% of all related publications, making it the most popular journal in the 
field of ML-aided thermochemical treatment of biomass. The National Natural 

Science Foundation of China, the National Key Research and Development 

Program of China, and the National Research Foundation of Korea are the top 
funding agencies for scientific research projects in this field (Table 1). Before 

2018, only a few studies were published on the thermochemical treatment of 

biomass using ML (Fig. 1). However, in the last three years (2020–2022), 

extensive research has been conducted to predict the yields, compositions, and 

properties of char, oil, gas, and aqueous phases from the thermochemical 

treatment of biomass. Some researchers have published reviews exclusive to 
individual thermochemical technologies (Table 2). ML and statistical 

approaches for biomass torrefaction have been reviewed (Manatura et al., 

2023).  In   another   review   published   earlier, the   applications  of  AI-based 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

  

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Fig. 1. The number of published documents on ML-aided thermochemical treatment of 

biomass from 2013 to 2022. 
 

 

modeling for bioenergy systems, including thermochemical treatment 
processes, were  reviewed,  covering  the articles  published  between  2005 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

Table 1. 

Top 10 journals with the largest number of publications and top 10 funding agencies of publications on ML-aided biomass thermochemical treatment. 

 

  

 
 

  
  

       

    
 

  

       

        

 
 

  
 

  

       

     

 

  

 
 

     

       

 
 

     

 

Table 2. 

Comparison of the present review and published reviews on ML-aided thermochemical treatment of biomass. 
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Rank

Top 10 Journals Top 10 Funding Agencies

Journal Name
Number of 

Publications
Contribution (%) Institution

Number of 

Publications

Contribution 

(%)

1 Bioresource Technology 28 14.43 National Natural Science Foundation of China 35 18.04

2 Fuel 20 10.31
National Key Research and Development Program of 

China
10 5.16

3 Energy 12 6.19 National Research Foundation of Korea 7 3.61

4 Renewable Energy 10 5.16 Chiang Mai University 5 2.58

5
Energy Conversion and 

Management
9 4.63

Ministry of Science, ICT and Future Planning (Republic of 

Korea)
5 2.58

6 Chemical Engineering Journal 7 3.61 Fundamental Research Funds for the Central Universities 4 2.06

7 Applied Energy 6 3.09

Higher Institution Centre of Excellence (HICoE), Institute 

of Tropical Aquaculture and Fisheries (AKUATROP) 

(Ministry of Higher Education Malaysia)

4 2.06

8
International Journal of Hydrogen 

Energy
6 3.09 Ministry of Science and ICT (Republic of Korea) 4 2.06

9 Journal of Cleaner Production 5 2.60 National Research Council of Thailand (NRCT) 4 2.06

10
Biomass Conversion and 

Biorefinery
4 2.06 National Science Foundation (NSF) 4 2.06

Dry Thermochemical Treatment Wet thermochemical treatment

Reference

Torrefaction Slow/Fast Pyrolysis Gasification
Hydrothermal Carbonization 

(HTC)

Hydrothermal 

Liquefaction (HTL)

Supercritical Water 

Gasification (SCWG)

√ - - - - - Manatura et al. (2023)

- √ √ - - - Liao and Yao (2021)

- - - √ √ √ Li et al. (2022a)

- - √ - - √ Umenweke et al. (2022)

- - - √ √ √ Zhang et al. (2023)

√ √ √ √ √ √ This Review
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and 2019, but only a limited number of cases related to thermochemical 

treatment processes were included, mainly cases of biomass pyrolysis and 

gasification (Liao and Yao, 2021). Several other reviews have been recently 

published concerning either ML-aided hydrothermal treatment (Li et al., 2022a; 

Umenweke et al., 2022; Zhang et al., 2023) or gasification/pyrolysis of biomass 
(Ascher et al., 2022a). However, to the best of our knowledge, no review has 

been published that covers and compares the ML-aided wet and dry 

thermochemical treatments of biomass. In addition, the input and output 
features of ML models and the predictive performance and interpretation of the 

studied ML models have not been systematically reviewed. 

The present review aims to summarize and compare the up-to-date research 
on both ML-aided wet and dry thermochemical treatments of biomass and 

provide guidance for future studies. In the second section of the review, 

biomass and wet/dry thermochemical processes are introduced, with particular 
emphasis on the descriptors of the variables used in previous ML studies. The 

third section summarizes the ML schemes and popular algorithms used in this 

area. In the fourth section, the application of ML for predicting the yields, 
compositions, and properties (structural characteristics were also included as 

properties) of products from wet and dry thermochemical treatments of biomass 

are compared and discussed. Finally, challenges and strategies to bridge them 

are provided before the conclusions are presented.  

 

2. Thermochemical technologies for biomass treatment 

 

2.1. Biomass characterization 

 
Biomass is mainly composed of organic matter; the yield of biomass volatile 

matter is generally more than 50%, and the major elements in biomass, 

presented in order of weight percentage from high to low, are C, O, H, and N 
(Vassilev et al., 2010; Leng et al., 2021c). The variation in the ash yield of 

biomass is significant, ranging from near 0 to 50% or even higher, and the 

composition of ash is even more complex, constituting dozens of inorganic 
components, if not hundreds (Vassilev et al., 2012 and 2013). The remainder, 

moisture ignored, is fixed carbon, which is less abundant than volatile matter 

and ash (Vassilev et al., 2010; Leng et al., 2021c).  
Biomass types are commonly classified according to their biological 

compositions. Lignin, cellulose, and hemicellulose are the major components 

of most traditional lignocellulosic biomasses, namely forestry and agricultural 
biomasses, including wood and woody biomass, husks, straw, and grasses, and 

the contents of these three components vary depending on the specific biomass 

type (Vassilev et al., 2010). For lignocellulosic biomass, other biological 
components are generally not characterized, and extractives are determined by 

subsequent leaching with various solvents (Vassilev et al., 2012). For biomass 

resources originating from microorganisms and animals, as well as fruit wastes, 
lipids, proteins, and carbohydrates are the dominant components (Ge et al., 

2021). In algal biomass (microalgae and macroalgae), sewage sludge, and food 

waste, non-fibrous carbohydrates also exist (Vassilev et al., 2010 and 2012).  
From a biochemical perspective, lignin is a polymer of phenolic units (p-

hydroxyphenyl, guaiacyl, and syringyl), cellulose is a polymer of glucose, 

hemicellulose is made of various sugars (including glucose, xylose, and 
mannose), and proteins are polymers of 20 α-amino acids (Yang et al., 2022b). 

By contrast, lipids are composed of triglycerides, whose building block, i.e., 
fatty acids, can vary significantly depending on the lipid sources (Sawangkeaw 

and Ngamprasertsith, 2013; Leng et al., 2020a; Leng et al., 2023). Generally, 

lipids with relatively short carbon chains and highly saturated fatty acids are 

fat, more commonly found in biomass of animal origin, whereas lipids with 

long carbon chains and low-saturation levels are oil, more commonly seen in 

the biomass of plant and microbial origin (Sawangkeaw and Ngamprasertsith, 
2013; Leng et al., 2020a). During thermochemical treatment, lignin tends to 

yield biochar, and lipids yield bio-oil, while the other biochemical components 

contribute differently to char, oil, gas, and aqueous phases, depending on the 
processing conditions (Leng et al., 2021b). It should be noted that both 

elemental and biological compositions can be expressed either on a dry basis 

or a dry-ash-free (DAF) basis. The numerical and category descriptors for 
biomass are listed in Table 3. 

The descriptors for biomass are related to each other, and some biomass 

descriptors can be predicted by other biomass descriptors using ML. For 
example, the elemental composition of biomass can be predicted by proximate 

analysis (Ghugare et al., 2017; Olatunji et al., 2019) or infrared spectroscopy 

(Tao et al., 2020), and the cellulose, hemicellulose, and lignin content of 

biomass can be predicted by ultimate analysis (Xing et al., 2019; Kartal and 

Özveren, 2021). Although biomass, as a material, can be characterized by 

many other structure and property descriptors, such as mechanical 

properties, these descriptors were seldom used as variables for ML. The 

main reason is that only a few studies have reported such descriptors. 
 

2.2. Dry thermochemical treatment 

 
Dry thermochemical treatment processes mainly refer to torrefaction, 

slow/fast pyrolysis, and gasification generally used to process biomass with 

low moisture content, such as lignocellulosic biomass. These three 
processes are differentiated by the process parameters (mainly the 

temperature and heating rate) and their major products. Torrefaction is a 

process that operates at lower temperatures and heating rates of < 300 °C 
and < 20 °C/min, respectively (Dai et al., 2019), and is generally used to 

pretreat biomass for combustion or facilitate the following processes to 

yield a solid product (da Silva et al., 2018). Slow pyrolysis also occurs at 
low heating rates, but the temperatures are generally higher than those of 

torrefaction, i.e., 300–700 °C, with biochar as the dominant product (Liu et 

al., 2015). Owing to the low heating rates and mild reaction conditions, the 

residence time in torrefaction and slow pyrolysis ranges from several hours 

to days. Similarly, fast pyrolysis is generally processed at 300–700 °C but 

at much higher heating rates, i.e., ranging from 100 °C/min to more than 
1000 °C/s, with bio-oil as the major product (Wang et al., 2017). 

Gasification is a process that involves high heating rates and high working 

temperatures, ranging from 800 to more than 1000 °C, with syngas being 
the dominant product (Molino et al., 2016). Owing to the high heating rates 

and strong reaction conditions, the residence time in fast pyrolysis and 

gasification is generally within several seconds. 
Apart from the temperature, heating rate, and residence times mentioned 

above, other process parameters can be used to describe these processes and 

may have considerable effects on biomass thermal treatment performance. 
For example, the purge gas for pyrolysis is normally inert, and an oxygen-

deficient atmosphere is used in commercial facilities. In torrefaction, an 

oxidative atmosphere such as air is also commonly used to enhance the 
energy density of torrefaction char (da Silva et al., 2018). While reactive 

atmospheres, such as air, water, and O2, are required during gasification to 

enhance the efficient breaking of chemical bonds. When microwave 
pyrolysis is used, the microwave power replaces the temperature and acts 

as the dominant descriptor of this process (Mari Selvam and 

Balasubramanian, 2022). Other important descriptors include particle size, 
purge gas flow rate, reactor type and characteristics (e.g., bed materials, 

heating source), and catalyst. The descriptors for the dry thermochemical 

treatment processes are shown in Table 3. 
 

2.3. Wet thermochemical treatment 

 
Wet thermochemical treatment processes are generally used to treat 

biomass with high moisture content, such as algae, sludge, manure, and 

food waste, so that the biomass moisture can be used as a reaction solvent, 
thus removing the need for energy-intensive pre-drying. The wet 

thermochemical treatment processes include i) hydrothermal carbonization 

(HTC), also called wet torrefaction, which works at low temperatures (180–

260 °C) and low pressures (2–5 MPa), and the main product is hydrochar 

(also called biochar) (Peng et al., 2017; Zhai et al., 2017); ii) hydrothermal 

liquefaction (HTL), which is conducted at temperatures of 250–400 °C and 

pressures of 5–20 MPa, with bio-oil being the dominant product (Huang et 

al., 2013; Huang and Yuan, 2015); and iii) supercritical water gasification 
(SCWG), or hydrothermal gasification, which processes biomass at 

temperatures of 380–650 °C and pressures of 20–40 MPa to produce syngas 

rich in H2, CO, and CH4 (He et al., 2014; Su et al., 2015). 
In addition to temperature and pressure during hydrothermal treatment, 

other parameters, such as residence time, solid content (solid loading), 

moisture content (water content), heating rate, reaction solvent, extraction 
procedure and solvent, and catalyst (shown in Table 3), are important 

descriptors for these processes and may have considerable effects on the 

hydrothermal treatment. For example, HTC requires a long heating time 
(several hours to a day) to reach the target temperature, owing to the use of 

conventional reactors with heating rates lower than 10 °C/min, whereas 

only several minutes are required for the  reaction time of HTL and SCWG,  
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although the same heating time is required. However, the heating rate of HTL 
and SCWG can be up to hundreds of centimeters per minute in fast-heating 

reactors, which can be achieved by immersing the reactors in a pre-heated sand 

bath (Akiya and Savage, 2002; Peterson et al., 2008). 
In addition, for both wet and dry thermochemical processes, parameters can 

be integrated and presented as new parameters, e.g., the reaction severity index, 

which is generally the integration of temperature and residence time by 
functions (Leng et al., 2021c). Moreover, other thermochemical treatment 

processes, such as hydrolysis and “thermal-dissolution-based carbon 
enrichment”, have also been proposed that share similar process descriptors as 

those mentioned above (Hu et al., 2022). 

 
2.4. Product characterization 

 
According to previous reviews, the differences in the compositions and 

properties of oil/char/gas/aqueous phase products between wet and dry 
thermochemical treatments are small (Kambo and Dutta, 2015; Leng et al., 

2018c and 2021b), and many descriptors for these products from wet and dry 

processes are the same. As shown in Table 3, there are three branches of 
descriptors for the products from the thermochemical treatment of biomass: 

yields, compositions, and properties. While the yields of bio-oil, biochar, and 

gas phases are mainly calculated based on the weight ratio of these products to 
the weight of the dry (more commonly used) or DAF-based biomass, the yield 

of the aqueous phase is generally calculated as the carbon recovery rate in the 

aqueous phase because weighing organics in the aqueous phase is difficult 
(Leng et al., 2018d). 

 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 
 

The properties and compositions of the four phases vary significantly. 

As an oil for engine use, bio-oil fuel properties such as calorific value 

(mainly higher heating value, HHV), lower heating value (LHV), 
carbon/solid residue, viscosity, density, flash point, pour point, and acid 

number are required and have been reported frequently (Kan et al., 2016; 

Leng et al., 2018c). Other properties, such as pH, molecular weight, 
lubricity, and boiling range, have also been used to describe bio-oil 

(Kanaujia et al., 2014; Kan et al., 2016). These properties depend on the 

composition. Elemental compositions (C, H, O, N, and S), atomic ratios 
(O/C, H/C, and (O+N)/C), chemical compounds (relative or absolute 

contents of various chemicals), and water content are commonly reported. 

The water content of bio-oil has mainly been reported by references dealing 

with biomass pyrolysis, and the value is approximately 10–30%, 

constituting a large part of the bio-oil (Leng et al., 2018c). However, water 

content has only occasionally been reported for bio-oil from HTL because 
HTL-bio-oil is typically dewatered during the solvent extraction and 

separation procedure, and the value is generally much lower if reported 

(Leng et al., 2018c). N and S in bio-oil can be detrimental because they 

cause pollution upon combustion, but it can be beneficial if N/S-rich 

chemicals or materials are targeted (Leng et al., 2020c and 2020e). 
 

Biochar can also be used as a fuel for boilers; thus, calorific values such 

as HHV and LHV are also generally reported, and many equations are 

available for their calculation (Chen et al., 2022c). However, using biochar 
as  a  carbon  material,  replacing  activated  carbon  and  other  materials, 

is more promising than using it as fuel. Material properties such as specific 

surface   area  (SSA),  porosity,  aromaticity,  electrical  conductivity,  and 

Table 3. 

Descriptors for biomass, thermochemical treatment processes, and products. 
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Item Numerical Variables Category Variables

Biomass

• Elemental composition a

• Proximate analysis

• Biological composition

• Biomass type

• Ash composition

Dry thermochemical 

treatment process

• Temperature

• Heating rate

• Residence time

• Particle size

• Purge gas flow rate, etc.

• Purge gas type

• Reactor type and reactor parameter descriptors

• Heating source

• Reaction mode (batch/continuous)

• Catalyst, etc.

Wet thermochemical 

treatment process

• Temperature

• Pressure

• Residence time

• Solid content

• Heating rate, etc.

• Reaction solvent

• Product extraction procedure

• Product extraction solvent

• Reaction mode (batch/continuous)

• Catalyst, etc.

Yield Compositions Properties

Product

(oil phase) • Yield

• Elemental composition a

• Chemical composition

• Water content

• Metal content, etc.

• Various liquid fuel properties (calorific value, carbon/solid residue, 

viscosity, density, flash point, pour point, acid number, etc.)

• Exergy value, pH, etc.

Product

(char phase) • Yield

• Elemental composition a

• Proximate analysis

• Functional group

• Total phosphorus

• Crystalline phase (inorganic)

• Metal content, etc.

• Various solid fuel properties (calorific value, density, etc.) 

• Various material properties (surface area, total pore volume, micro-

/meso-pore volume, average pore size, cation/anion exchange capacity, 

aromaticity, pH, etc.)

• Exergy value

Product

(gas phase) • Yield • Gas composition (H2, CH4, CO, CO2, C2Hn, etc.)
• Various gas fuel properties (calorific value, tar content, etc.)

• Exergy value

Product (aqueous phase) • Yield

• Total organic carbon/nitrogen/ phosphorus

• Chemical composition

• Metal content, etc.

• Various wastewater properties (chemical oxygen demand, pH, etc.)

a Elemental composition refers to the contents of C, H, O, N, and S; ash is generally included as a part of the elemental composition when used as input during machine modeling because O is calculated 

using ash.
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cation/anion exchange capacity determine the potential of biochar in various 

applications (Table 4) (Kan et al., 2016; Leng et al., 2021a). For example, SSA 

and porosity are the most important properties determining biochar’s 

adsorption capacities for organic pollutants from the aqueous phase (Sigmund 

et al., 2020; Zhang et al., 2020) and for capturing CO2 or storing H2 (Maulana 
Kusdhany and Lyth, 2021; Yuan et al., 2021). Aromaticity is a proxy for 

biochar stability that determines the carbon sequestration capability of biochar 

in soil (Leng et al., 2019b and c). Cation exchange capacity (CEC) is the most 
decisive biochar property for the removal of heavy metals from the aqueous 

phase (Zhu et al., 2019b) (Table 4). The chemical compositions of biochar, 

such as elemental (C, H, O, N, S, O/C, H/C, and (O+N)/C) and proximate (ash, 
volatile matter, fixed carbon, and moisture) compositions, functional groups, 

and crystalline phases, can also be used to determine the application 

performance of biochar. For example, the ratios of O/C and H/C, as well as the 
ratio of fixed carbon/volatile matter, can be used to replace aromaticity as 

biochar stability proxies (Leng et al., 2019b; Chen et al., 2021). Biochar 

functional groups, such as N/O/S-containing functional groups, are very 
important for biochar application in pollutant removal, energy storage, 

catalysis, etc. (Leng et al., 2022a and b, and 2021c). Table 5 lists the indicators 

for the application performance of thermochemical products in different areas 

and the closely related compositions and properties of the char/oil/gas/aqueous 

phases, which should be investigated in the future. 

Gas generated by the thermochemical treatment of biomass is generally 
considered gas fuel. The chemical components, LHV, and tar content of the gas 

are the most important factors in its application (Kan et al., 2016). The 

enrichment of gas with H2 and CH4 has received the most interest because these 
components are the most effective and clean fuel components, and they can be 

used as fuel or applied to produce various chemicals (Molino et al., 2016). 

Gases from HTC, HTL, torrefaction, and slow pyrolysis are not frequently 
collected and analyzed because of the low contents of H2 and CH4 but the high 

content of CO2 (Leng et al., 2020f). 

The aqueous phase, however, is a byproduct of the thermochemical 
treatment of biomass, with hydrothermal treatment processes producing a large 

amount, i.e., 1–20 times higher than the dry biomass weight (Leng et al., 2018a, 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

2020d, and 2021b). Pyrolysis only produces an aqueous phase weight of 

10–30% of the mass of dry biomass, and most frequently, it is mixed with 

bio-oil, which is why the water content in bio-oil from pyrolysis is high. 

The treatment and valorization of the aqueous phase, especially from 

hydrothermal treatment, is becoming a challenge for pathways toward 
commercial viability (Watson et al., 2020). Common wastewater indicators 

such as pH, chemical oxygen demand (COD), total organic carbon (TOC), 

and total nitrogen (TN) have been reported in the literature, and they help 
indicate the wastewater properties and facilitate the matching of suitable 

technologies to manage the wastewater. Total phosphorus (TP) is mainly 

reported in the aqueous phase from the thermochemical treatment of P-rich 
biomass, such as algae, sludge, manure, and food waste (Leng et al., 2019a; 

Chen et al., 2022b).  

Chemical compounds of organics in the aqueous phase have also been 
characterized, and their compositions are similar to those of bio-oil; 

however, the contents of polar fractions are higher and nonpolar fractions 

are lower than those of bio-oil (Leng et al., 2021b). It is worth mentioning 
that biomass inorganics, such as K and Na, are distributed predominantly 

in the aqueous phase. In addition, only small fractions of phosphate and 

heavy metals are distributed in the aqueous phase (Leng et al., 2020d and 

2021b), large fractions are in biochar (Leng et al., 2014 and 2018b), and 

trace amounts are in bio-oil (Leng et al., 2015; Yuan et al., 2015). The 

yields, compositions, and properties of oil/char/gas/aqueous phases have 
been reported in recent ML studies using descriptors for biomass and 

thermochemical processes introduced in Sections 2.1–2.3 (Fig. 2). 

 
3. Machine learning technologies 

 

3.1. Machine learning schemes 
 

A typical ML scheme is shown in Figure 3. ML always starts with data 

collection from references, using tools such as Plot Digitizer or AI tools or 
data from experiments or open sources, which can be more easily collected. 

The distribution of each  descriptor should  be  analyzed  initially  to ensure 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

Table 4. 
Machine-learning-aided predicting application performance of biochar. 

   

 

 

   

 
 

 
    

      

 
 

 
    

     

  

  
 

    

 

  
    

    
 

   
 

 

       

 
 

     

 
      

 

 

 

 

 

  

 

d NA: not. 
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Application Area Target (Output)
Biochar Property (Input, Ranked by Feature 

Importance) A

Predictive Performance, Test Data

Reference

Algorithms b R2 RMSE c

Heavy metal removal 

from the aqueous phase
Heavy metal adsorption capacity

CEC > pH > C > (O+N)/C > ash > H/C > SSA > 

particle size
RF 0.97 0.057 Zhu et al. (2019b)

NA d FCM-BPNN 0.99 0.038 Ke et al. (2021a and b)

Heavy metal 

immobilization in soil
Heavy metal immobilization rate

N > C > O > pH > O/C > H > ash > (O+N)/C > 

SSA > H/C
RF 0.91 10.54 Palansooriya et al. (2022)

pH > CEC > (O+N)/C > C/H > THM > SSA > ash ANN 0.84 NAd Sun et al. (2022)

CO2 adsorption

CO2 adsorption capacity
SSA > total pore volume > N > mesopore volume 

> O > C > H
GBDT 0.84 0.66 Yuan et al. (2021)

CO2 adsorption capacity (0 °C, 

0.6–1 bar)

Ultra-micropore volume > SSA > mesopore 

volume > micropore volume > H > O > C >N 
RF 0.96 0.266 Zhu et al. (2020)

H2 adsorption H2 adsorption capacity
SSA > O > total pore volume > H > ultra-/micro-

pore ratio > C > micropore volume > N
RF 0.91 0.542

Maulana Kusdhany and 

Lyth (2021)

Pharmaceuticals and 

personal care products 

(PPCPs) removal from 

the aqueous phase

PPCPs adsorption capacity SSA > (O+N)/C > C > C–O > C=O > non-polar C RF 0.91 0.166 Zhu et al. (2022a)

Proton-exchange 

membrane fuel cell 

polarization curve

Current density and specific 

power
SSA > N > mesopore ratio > S > micropore ratio RF NA NA Ding et al. (2020)

Biochar electrode-

specific capacitance
Current density SSA > C/O > C/N DT 0.98 15.01 Yang et al. (2023)

a Only inputs of biochar properties were included; other inputs were not listed. CEC: cation exchange capacity; pH: pH value; SSA: specific surface area; ash: ash yield of biochar; THM: total heavy 

metal of biochar; C, H, O, N, S, H/C or C/H, O/C or C/O, C/N, and (O+N)/C are the elemental compositions or atomic ratios of biochar; non-polar C (NPC, including C−C/C = C and π–π* transition), 

C−O (e.g., phenolic, alcoholic, and etheric), and C = O (e.g., carbonyl, quinone, carboxyl, or ester) of biochar, as determined from the deconvoluted peaks in high-resolution C1s X-ray photoelectron 

spectroscopy. 
b RF: random forest; FCM–BPNN: fuzzy C-means clustering algorithm (FCM) integrated with back-propagation neural network (BPNN); ANN: artificial neural network; GBDT: gradient boosting 

decision tree; DT: decision tree.
c Root mean square error.
d NA: not available.
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that the collected data are typical, cover the required ranges, and exhibit a 

favorable normal distribution of the descriptor values. The ML model is built 
based on the data collected; thus, the applicability and generalization capability 

of the model is limited to the distribution ranges of the descriptors. When the 
dataset is ready, data processing is required because different descriptors have 

varied value scales, and normalization of all descriptors to be within -1 and 1 

is generally conducted. Dimensionality reduction is sometimes required when 

the number of inputs is much higher than the number of outputs or when input 

descriptors are highly correlated, and principal component, discriminant, and 

independent component analyses are commonly used for such purposes (Li et 
al., 2021a). 

After the dataset is prepared and processed, it can be used for ML modeling 

(Fig. 3). The first step of modeling is selecting suitable algorithms (see Section 
3.2) for prediction tasks. Then, the model is trained, and the corresponding 

hyperparameters are tuned with selected input data, i.e., generally, 70–90% of 

the data collected. During hyperparameter tuning, cross-validation, which 
includes hold-out, leave-one-out (Bagheri et al., 2019), rolling-windows 

analysis (Elmaz and Yücel, 2020), and k-fold methods (Mutlu and Yucel, 

2018), allowing more data to be trained and tested, is required to avoid 
overfitting, thus  ensuring  accurate  prediction  of  the  final  optimum  ML  

model  (Fig. 3). For example,  in  k-fold  cross-validation,  the  training  dataset  

is  randomly  split   into   k   folds   without   overlapping;   then,  the  ML  

model  is  trained 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

using the k-1 fold data and tested with the remaining fold; the above 

procedures are repeated k times to allow all training data to be used for 
training and validating, which is beneficial for testing with the test dataset 

(Fig. 4a). However, in some studies, cross-validation was not used, for 
example, ML with test but without cross-validation (Chen et al., 2018; 

Ozbas et al., 2019) (Fig. 4c) and ML with validation and test but without 

cross-validation (Qasem et al., 2023) (Fig. 4d). The average values of the 

coefficient of determination (R2) and root mean square error (RMSE) from 

cross-validation are used to assess the predictive performance, and 

hyperparameters with the highest fitness (R2) and/or lowest error (RMSE) 
as the optimum hyperparameters. Several other statistical criteria can be 

used to determine ML models' performance, accuracy, and reliability 

(Umenweke et al., 2022). With the optimum hyperparameters, the data used 
during hyperparameter tuning (i.e., 70–90% of the data collected) will be 

input as the training data to retrain the ML model, and the remainder (10–

30%) will be used as test data to test the model. However, in some studies, 
the model was not further tested after cross-validation, and a model test was 

implemented within the cross-validation process (Fig. 4b) (Elmaz et al., 

2020; Yapıcı et al., 2022), indicating that the models were not tested with 
data from out-of-dataset cases. The R2 and RMSE of such models would be 

calculated again to  evaluate  whether the  model  is  acceptable;  if  not, the  

 

Table 5. 

Indicators for application performance of thermochemical products in different areas and the closely related compositions and properties of the products. 
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Product Application Area Application Performance (and the Closely Related Compositions and Properties of Products)a

Char

• Carbon sequestration in soil • Char C stability (aromaticity, H/C, O/C, etc.)

• Greenhouse gas mitigation in soil • Methane and nitrous oxide emissions (priming effect capability, N/C, pH, etc.)

• Blast furnace coke for steelmaking
• Coke reactivity index (aromaticity, H/C, O/C, etc.)

• Coke strength after reaction (particle size, etc.)

• Soil amendment

• Crop productivity (nutrients contents, toxins, etc.)

• Water holding capacity (porosity, hydrophobicity)

• Soil fertility (nutrients, pH, etc.)

• Adsorption of organic pollutants in soil, water, or gas • Adsorption capacity (SSA, porosity, etc.)

• Adsorption of inorganics in soil, water, or gas • Adsorption capacity (CEC, functional groups, etc.)

• Catalytic conversion • Yield of chemicals such as biodiesel (S-functional groups, etc.)

• Additive in anaerobic digestion • Biogas yield or methane productivity (electric conductivity, porosity, nutrients, C/N, toxins, etc.)

• Additive in organic solid waste composting • Degradation degree or microorganism diversity (porosity, nutrients, C/N, toxins, etc.)

• Solid fuel • Slagging tendency (ash compositions, metal contents, etc.)

Oil

• Biofuel additives
• Cetane number (chemical compositions, etc.)

• Cold flow property (carbon structure, etc.)

• Bio-asphalt binder

• Mechanical properties such as rutting resistance, fatigue performance, dynamic stiffness, and tensile 

strength (chemical compositions, etc.)

• Rheological property (viscosity, etc.)

• Jet fuel or kerosene components • Smoke point (chemical compositions, etc.)

• Adhesive additives • Rheological property and others (viscosity, molecular weight distribution, boiling point, etc.)

Gas
• Fermentation to various chemicals • Yields of chemicals such as ethanol (toxins, inhibitors, etc.)

• Fischer-Tropsch process • Yields of hydrocarbons (H2/CO, etc.)

Aqueous

• Anaerobic digestion
• Biogas yield or methane productivity (BOD, BOD/COD, etc.)

• Pollutant removal rate (COD, TP, TN, etc.)

• Fermentation to various chemicals
• Yields of chemicals such as H2 (toxins, inhibitors, etc.)

• Pollutant removal rate (COD, TP, TN, etc.)

• Algae cultivation
• Algae productivity (nutrients, toxins, etc.)

• Pollutant removal rate (COD, TP, TN, etc.)

a Compositions or properties of the thermochemical products; H/C, O/C, and C/N are the elemental atomic ratios; SSA: specific surface area; CEC: cation exchange capacity; pH: pH value; COD: 

chemical oxygen demand; BOD: biological oxygen demand; TP: total phosphorus; TN: total nitrogen
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hyperparameters should be optimized again; otherwise, new hyperparameters 

should be introduced (Fig. 3). 
 

For the optimum ML model, the model interpretation will be studied so that 

the working mechanisms of the “black box” model can be understood to some 

extent (Fig. 3). Feature importance analysis, Shapley additive explanations 

(SHAP) analysis, and partial dependence plots (PDP) are generally used to 

study the correlations between inputs and outputs. The reasonability of the 
model may not be favorable, even if it has an acceptable predictive 

performance. However, the data never lie, and the problem may be that the data 

collected are biased. The dataset needs to be checked carefully, and the deletion 
of odd data may solve the interpretation problems, or as much new data as 

possible should be added to allow for the reconstruction of models with both 

satisfactory predictive performance and reasonability. For the final optimum 
models, online or offline platforms can be developed to allow the models to be 

used by others (Fig. 3). For example, an online graphical user interface (GUI) 
website or offline software can be developed. With the optimum model, 

optimization can be conducted to obtain optimal thermochemical operating 

conditions, as well as biomass characteristics or mixing recipes, that will 
achieve the targets (generally high yield, high energy recovery, and favorable 

properties) , which  should   be   the   major   research   direction  in  the  future. 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

3.2. Machine learning algorithms 

 

Many frameworks and libraries are available for conducting ML 
modeling, e.g., scikit-learn, TensorFlow, PyTorch, CRAN, Keras, Weka, 

H2O, mlpack, and those from Amazon, IBM, and Google, among which 

the free Python-based library scikit-learn seems to be the most popular. The 
core of these libraries is similar to that of ML algorithms, and the major 

differences are the different working languages (Python, C++, R, Java, etc.) 

and operating companies or organizations. ML can be classified into three 
groups: supervised learning, which makes the machine learn explicitly that 

data with clearly defined output are required; unsupervised learning, in 

which the machine learns the data without any defined output; and 
reinforcement learning, in which the machine learns how to act within a 

certain environment to maximize the rewards because each learning task 
returns a reward (Mahmood and Wang, 2021). Supervised learning, mainly 

used to resolve regression and classification problems, is generally used to 

predict the yields, compositions, and properties of products obtained from 

biomass thermochemical treatment. 
 

Many regression and classification algorithms are available, and typical 

algorithms are described in Figure 5. The accuracy and generalizability of  
 

 

Fig. 2. Machine-learning-aided thermochemical treatment of biomass. 
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 Fig. 3. Typical schemes and strategies for conducting machine learning (ML) studies.

 
 

 

the as-built ML model are dependent on the algorithms, and each algorithm has 
its own merits and weaknesses. Regression algorithms can be used to build the 

relationship between dependent and independent variables, and linear 

regression is the simplest, with an artificial neural network (ANN, Fig. 5c) 
being the most complex. An ANN is a biologically inspired algorithm that 

imitates the human brain's functionality and consists of an input layer for 

receiving input variables, one or more hidden layers for identifying nonlinearity 
and correlating inputs and outputs, and an output layer for representing output 

variables. ANNs have been widely used in this area owing to their ability to 

model highly nonlinear processes (Liao et al., 2019; Xia et al., 2021; Khan et 
al., 2022). However, ANN models are rather complex, and screening network 

structures, training algorithms, and activation functions are challenging. Some 

studies have compared ANNs with different modeling skills. For example, 
comparisons between standard and ordinary activation functions indicate that 

the former outperforms the latter in predicting hydrogen production (Ayodele 

et al., 2021). In addition, the ANN has limited interpretability, and few 
interpretations are included in published references, posing challenges to 

understanding its working mechanism. 

Tree-based models (Fig. 5d), such as decision tree (DT) (Quinlan, 1986) and 
random forest (RF) (Pavlov, 2001), have been increasingly used in this area 

because of their improved interpretability over ANN and comparable predictive 

performance. For example, RF is an ensemble model with many DTs that uses 
bagging or bootstrap aggregation to achieve accurate prediction and improved 

generalization results compared to single-DT models (Fig. 5d) (Pavlov, 2001). 

Tree-based models are classification algorithms that can be used to identify 

object categories, and they are favorable for processing non-numerical 

variables, such as category variables. For example, DT outperformed ANN 

in predicting hydrogen production (Haq et al., 2022). RF showed better 

performance than the multilayer perceptron neural network (MLP-NN) in 

predicting the yields of oil, char, and gas, as well as the compositions of gas 
and char (Shahbeik et al., 2022). However, there are few studies related to 

the comparisons between ANN and tree-based models, and the lower 

predictive performance of ANN may be due to limited tuning strategies. 
For example, suitable value-assigning methods for non-classification 

algorithms, such as the one-hot encoding method (Ascher et al., 2022a), 

may offset this shortage of regression algorithms, such as ANN, and 
improve the predictive performance. 

Other regression and classification algorithms, such as support vector 

machine (SVM) (Cortes and Vapnik, 1995) (Fig. 5e) and gradient boosting 
regression (GBR) (Fig. 5f), have also been increasingly applied to predict 

yields, compositions, and properties of oil, char, gas, and aqueous phases. 

In SVM, the training algorithm identifies the separating hyperplane to 
classify two classes and allows the maximization of the distance between 

the nearest data points and the hyperplane, which is constructed by support 

vectors (data points from either class closest to the hyperplane) (Fig. 5e). 

By contrast, the GBR algorithm is trained using a boosting strategy, which 

establishes the first tree to predict the errors, i.e., variation between the 

actual and initial values, followed by the calculation of new prediction 
values under the previous prediction values and predicting new errors from 

the new tree until there is no obvious decrease in residues (Fig. 5f). The 

predictive performance of these models and ANN or tree-based models 
varies in different studies. For example, the SVM model had a more 

satisfactory prediction performance than ANN for predicting the HHV of 

bio-oil (Chen et al., 2018); GBR outperformed RF in predicting bio-oil 
yield and elemental compositions (Zhang et al., 2021); the RF model 

showed better prediction performance than SVM and DT, and multilinear 

regression (MLR) had the worst performance in predicting bio-oil yield  
(Ullah et al., 2021). Although the predictive performance depends not only 

on algorithms but also on dataset characteristics, many researchers have 

proposed that tree-based models such as RF, SVM, and GBR may be 
preferable to ANN for small-number dataset problems. 

 
4. Machine-learning-aided thermochemical treatment of biomass 

 
4.1. Prediction of the yields of products 

 

The yields of the four phases of wet and three phases (excluding the 

aqueous phase) of dry thermochemical processes have been predicted by 

researchers, with most cases concerning the yields of char and oil, and the 
predictive performance is shown in Figure 6a (see Supplementary 

Information). Most studies used elemental compositions and 

thermochemical operation conditions as inputs. Proximate analysis was 
included in most studies dealing with dry thermochemical processes, while 

atomic ratios and biochemical compositions were also often considered (see 

Supplementary Information). However, only a few studies considered 
solvents (reaction solvents and extraction solvents for HTL) (Li et al., 

2021c), catalysts (Castro Garcia et al., 2022), and metal compositions of 

biomass (Gu et al., 2021). Even when these variables are included as inputs, 
biased prediction and interpretation may be encountered if cases including 

these variables are too few or have a poor distribution (biased dataset) (Li 

et al., 2021c). In this case, the ML models can be built case-by-case for each 
particular solvent or catalyst (Zhou et al., 2022b), but models built in this 

way have low generalizability. 

Strictly speaking, the predictive performance between the wet and dry 

thermochemical processes should not be compared directly because of the 

differences in datasets, algorithms, etc.; however, the statistical summaries 

of the predictive performance of all cases from so many references indicate 

that the ML predictive performance of yields from the dry thermochemical 

processes is superior to that of the wet ones (Fig. 6a). The R2 values, mainly 

around 0.85–0.94, for the dry process models are slightly higher than those 

for the wet ones (R2 mainly 0.85–0.90) (Fig. 5a), while RMSE values for 

the former (lower than five) are better than those for the latter. Considering 

that the acceptable errors of biomass thermochemical processes are within 

5% (experimental uncertainty), the models obtained for predicting yields of  
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products from dry thermochemical processes may be preferable, although an 

RMSE of 3–8 for the wet processes is also acceptable (Fig. 6a). 

 
4.2. Prediction of the compositions of products 

 

Unlike the prediction of the yields of products, the prediction of elemental 

and proximate compositions of the oil or char, as  well as  the compositions  of 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 

 

 

 
 

 

 
 

 
 

the gas phase, in wet thermochemical process models is better than in the 
dry ones, with R2 values of approximately 0.90 and RMSE ranging from 

near 0.5 to 2 for the former, and R2 values of approximately 0.85 and RMSE 

ranging from near 0.2 to 4 for the latter (Fig. 6b). Only one study considered 
a catalyst as an input for the prediction of compositions (Li et al., 2021a) 

among the cases shown in Figure 6b, with others including 

thermochemical operation conditions and biomass compositions (elemental  

Fig. 4. Different machine learning (ML) schemes reported in the literature: (a) ML with cross-validation and additional test (Zhu et al., 2019a; Ullah et al., 2021; Ascher et al., 2022a; Leng et al., 2022c 

and d); (b) ML with cross-validation, but without additional test (Yapıcı et al., 2022); (c) ML with test, but without cross-validation (Chen et al., 2018; Ozbas et al., 2019); and (d) ML with validation 

and test, but without cross-validation (Qasem et al., 2023). 
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compositions/atomic ratio/biochemical composition, see Supplementary 

Information). There is also a case that used only thermochemical parameters 

as inputs for predicting syngas compositions in SCWG of food wastes with 40 
data points by ANN (Shenbagaraj et al., 2021), which seems unreliable with 

low generalizability. In addition to the basic compositions mentioned above, 

the  chemical  compositions  of  bio-oil,  such  as  N-heterocycles ( Leng  et  al., 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 

 

 

 
 

 

 
 

 

 
2022c), TP in char (Djandja et al., 2022), and TN, TP, and TOC in the 

aqueous phase (Leng et al., 2022d) have been predicted with acceptable 

predictive performance (Table 6). The yield of glucose from wet 
torrefaction of microalgae and sorghum distillery residue using H2SO4 as a 

catalyst was also predicted (Chen et al., 2022e). To enhance the predictive 

performance  of  N-heterocycles  in  bio-oil , the  yield  of   bio-oil  and  the 

Fig. 5. Typical machine learning algorithms. 

Please cite this article as: Li H., Chen J., Zhang W., Zhan H., He C., Yang Z., Peng H., Leng L. Machine-learning-aided thermochemical treatment of biomass: 
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Fig. 6. (a) Predictive performance for machine learning predicting the yields with data from (Abdulsalam et al., 2020; Alabdrabalnabi, 2021; Ascher et al., 2022a; Castro Garcia et al., 2022; Cheng et 

al., 2022, 2020a, 2020b; Gu et al., 2021; Kartal and Özveren, 2022a; Katongtung et al., 2022; Khan et al., 2022; Leng et al., 2021d and 2022c; Li et al., 2018b, 2020, 2021c, 2021d, and 2022b; Mu et 

al., 2022; Onsree and Tippayawong, 2021; Pathy et al., 2020; Sezer et al., 2021; Shafizadeh et al., 2022; Shahbeik et al., 2022; Tang et al., 2020 and 2021; Ullah et al., 2021; Yang et al., 2022a; Zhang 

et al., 2021 and 2022; Zhu et al., 2019a); (b) compositions (elemental compositions, proximate analysis, and gas compositions only) with data from (Ascher et al., 2022a; Cheng et al., 2020b; Djandja 

et al., 2021; Haq et al., 2022; Leng et al., 2022c; Li et al., 2018b, 2021a, 2021d, and 2022b; Mu et al., 2022; Mutlu and Yucel, 2018; Shafizadeh et al., 2022; Shahbeik et al., 2022; Shenbagaraj et al., 

2021; Tang et al., 2020 and 2021; Wang et al., 2021b; Yang et al., 2022a; Zhang et al., 2021 and 2022; Zhao et al., 2021; Zhu et al., 2019a); and (c) properties (higher/lower heating values only) with 

data from (Abdulsalam et al., 2020; Ascher et al., 2022a; Chen et al., 2022c; Cheng et al., 2020b; Katongtung et al., 2022; Leng et al., 2021d; Li et al., 2018b, 2020, and 2021d; Mu et al., 2022; Mutlu 

and Yucel, 2018; Shafizadeh et al., 2022; Shahbeik et al., 2022; Zhang et al., 2022). 

Table 6. 

Machine-learning-aided prediction of the compositions (excluding elemental compositions, proximate analysis, and gas compositions, which can be found in Supplementary Information) of 

thermochemical treatment products. 
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Biomass Inputs a Data Number Outputs b

Predictive Performance, Test Data

Reference

Algorithms c R2 RMSE d

Wet thermochemical treatment (hydrothermal treatment)

Biomass

EC, AR, OC 117

N-heterocycle_oil RF

0.67 10.16

Leng et al. (2022c)
EC, AR, BC, OC 91 0.59 9.62

EC, AR, BC, OC, Yield_oil, N_oil 91 0.75 7.99

EC, AR, OC, Yield_oil, N_oil 117 0.82 7.60

Sewage sludge

PA, EC, TP, OC

109 TP_char RF

0.93 3.88

Djandja et al. (2022)
PA, EC, OC 0.80 6.50

PA, TP, OC 0.92 4.44

EC, TP, OC 0.92 4.11

Biomass EC, BC, OC

224 TN_aqueous
GBDT 0.96 1.25

Leng et al. (2022d)

RF 0.95 1.45

174 TOC_aqueous
GBDT 0.91 9.06

RF 0.86 14.87

136 TP_aqueous
GBDT 0.90 0.11

RF 0.86 0.13

Microalgae and sorghum 

distillery residue
PA, EC, OC, H2SO4 49 Glucose_aqueous

MARS 0.93 NAe

Chen et al. (2022e)
ANN 0.99 NA

a EC: elemental compositions of biomass; AR: atomic ratios of biomass; BC: biological compositions of biomass; PA: proximate analysis of biomass; OC: operating conditions of thermochemical 

process; Yield_oil: yield of oil; N_oil: N content of oil; TP: total phosphorus of biomass.
b Labeled according to “Composition_product”; N-heterocycles: relative content of N-heterocycles; TP: total phosphorus; TN: total nitrogen; TOC: total organic carbon; Glucose: relative content of 

glucose
c RF: random forest; GBDT: gradient boosting decision tree; MARS: multivariate adaptive regression splines; ANN: artificial neural network.
d Root mean square error
e NA: not available.
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content of N in bio-oil were included because they are highly related to the N-

heterocycles (Leng et al., 2022c) (Table 6). This means that one composition 

can be used to predict the other compositions of the thermochemical products. 

For example, the elemental compositions of bio-oil have been predicted by ML 

using functional group compositions, as characterized by Fourier-transform 
infrared spectroscopy (Chen et al., 2022a). There are many other chemical 

components of the oil and aqueous phases, e.g., hydrocarbons, phenols, acids, 

ketones, alcohols, amines, nitriles, and furans (Leng et al., 2018b, 2020c, and 
2020e; Hoang Pham et al., 2021; Mohamed et al., 2022; Zhou et al., 2022a) and 

many functional groups of char, such as N/O/S-containing functional groups 

(Leng et al., 2020b and 2022a; Xu et al., 2021a), which can also be predicted 
by ML but have received limited interest thus far. 

 

4.3. Prediction of the properties of products 
 

The prediction of the HHV or LHV of the oil, char, or gas is the most popular 

among researchers, and the predictive performance of the dry and wet 
thermochemical processes is similar, with an R2 and  RMSE  of  approximately 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

0.90 and 1.5, respectively (Fig. 6c), which is comparable to, if not better 

than, the performance of ML predicting the HHV of various municipal solid 

wastes including biomass, as shown in a previous review (Bagheri et al., 

2019). It should be noted that the caloric value scopes of gas are much 

smaller than those of oil and char; therefore, the RMSE for the prediction 
of the caloric values of gas is generally lower (Mutlu and Yucel, 2018; 

Ascher et al., 2022a). Other properties predicted include energy recovery 

and energy density (Li et al., 2020) which are highly related to caloric 
values and yields of products, pH of oil (Chong et al., 2022) and aqueous 

phases (Leng et al., 2022d), aromaticity (Cao et al., 2021), SSA of char 

(Liao et al., 2019; Leng et al., 2022b; Palansooriya et al., 2022), and 
viscosity of oil (Zhang et al., 2022), which have been modeled with 

acceptable predictive performance (Table 7). However, there are still many 

other properties, such as density, flash point, pour point, acid number of 
bio-oil, porosity (total pore volume, micro-/meso-pore volume, and average 

pore size), and cation/anion exchange capacity of biochar, that are 

important for the application of these products (Ippolito et al., 2020) and 
have not yet been reported; thus, they are worthy of further investigation. 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

Table 7. 

Machine-learning-aided prediction of the properties (excluding caloric value, which can be seen in supplementary material) of thermochemical treatment products. 
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Biomass Inputs a Data Number Outputs b

Predictive Performance, Test Data

Reference

Algorithms c R2 RMSE d

Wet thermochemical treatment (hydrothermal treatment)

Biomass PA, EC, OC 248
ER_char

SVR
0.92 6.22

Li et al. (2020)
ED_char 0.89 0.09

Biomass PA, EC, AR, OC 248 ER_char DNN 0.88 7.60 Li et al. (2021d)

Biomass EC, BC, OC 257 pH_aqueous
GBDT 0.93 0.36

Leng et al. (2022d)
RF 0.87 0.49

Dry thermochemical treatment

Biomass

EC, AR, BC, OC

101 Viscosity_oil RF

0.72 0.014

Zhang et al. (2022)
EC, OC 0.76 0.012

BC, OC 0.73 0.009

PA, OC 0.72 0.013

Biomass PA, EC, OC 128 pH_oil RSML NAe NA Chong et al. (2022)

Biomass EC, AR 98 Aromaticity_char
MW 0.91 0.05

Cao et al. (2021)
GP 0.95 0.04

Biomass

EC, OC 253

SSA_char

RF 0.83 33.84

Leng et al. (2022b)

GBR 0.90 26.03

PA, OC 183
RF 0.88 38.22

GBR 0.84 45.42

BC, OC 75
RF 0.76 68.78

GBR 0.86 53.17

EC, EA, OC 183
RF 0.86 41.62

GBR 0.93 29.89

EC, EA, BC, OC 68
RF 0.85 51.85

GBR 0.91 39.65

Biomass EC_char, AR_char, pH_char, OC 131 SSA_char RF 0.98 16.09 Palansooriya et al. (2022)

Biomass

PA, OC, AC

155 SSA_char ANN

0.94 NA

Liao et al. (2019)EC, OC, AC 0.93 NA

PA, EC, OC, AC 0.92 NA

Biomass PA, EC, OC 165
ER_char

SVR
0.79 9.40

Li et al. (2020)
ED_char 0.88 0.09

Biomass PA, EC, OC, HHV 329 Char_exergy value ANN 0.797 NA Kartal and Özveren (2022b)

Biomass EC, OC NA Gas_exergy value ANN 0.999 NA Sezer and Özveren (2021)

a PA: proximate analysis of biomass; EC: elemental compositions of biomass; OC: operating conditions of thermochemical process; AR: atomic ratios of biomass; BC: biological compositions of 

biomass; EC_char: elemental composition of char; AR_char: atomic ratios of char; pH_char: pH of char; HHV: higher heating value.
b Labeled according to “Composition_product”; ER: energy recovery; ED: energy density; SSA: specific surface area.
c SVR: support vector regression; DNN: deep neural network; GBDT: gradient boosting decision tree; RF: random forest; RSML: rough set machine learning; MW: Mazumdar–Wang; GP: genetic 

programming; GBR: gradient boosting regression; ANN: artificial neural network.
d Root mean square error.
e NA: not available.
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4.4. Other predictions 

 
(i) Simultaneous prediction of yields, compositions, and properties 

 

Most current studies have performed single-task predictions, with a few 
reporting on multi-task predictions for simultaneous prediction of the yields of 

two or more product phases (Alabdrabalnabi, 2021; Leng et al., 2021d; Castro 

Garcia et al., 2022) as well as on the yield of one product phase and its 
compositions and/or properties (Li et al., 2021a and 2021c; Leng et al., 2022c). 

However, no study has been conducted on the yields of multiple product phases 

and their compositions and/or properties. Although many targets were 
predicted in some studies, they were achieved using the single-target prediction 

mode (Ascher et al., 2022a; Shafizadeh et al., 2022; Shahbeik et al., 2022). In 

these multitask predictions, a predictive performance comparable to single-
target predictions was achieved. According to the biorefinery concept, all 

product phases from the thermochemical treatment of biomass should be 

utilized or disposed of to valorize the biomass resource fully (Fan et al., 2020; 
Watson et al., 2020). In addition, although it is possible to use multiple single-

target models for the predictions of the required targets, it would be difficult to 

mediate the targets among many models when applying ML models. Therefore, 

multi-task predictions for simultaneous prediction and mediation of the yields 

of multiple product phases and their compositions and properties within one 

model are favorable and encouraged. However, the availability of data limits 
its implementation. 

 

(ii) Prediction of the thermochemical behavior and kinetics 
 

Other studies have reported the prediction of thermochemical conversion 

behavior or kinetics, for example, the degree of dehydration and 
decarboxylation of char during HTC (Mu et al., 2022), remaining mass of 

biomass during pyrolysis (Zhang et al., 2019), thermal degradation rate (Lee et 

al., 2023), torrefaction severity index (Chen et al., 2022d), activation energy 
(Ea) of biomass pyrolysis (Kartal and Özveren, 2022c; Wang et al., 2022), 

combustion index during biomass combustion (Sezer et al., 2022), and exergy 

of char or gas from biomass pyrolysis (Sezer et al., 2021; Sezer and Özveren 
2021; Kartal and Özveren, 2022b) (Table 8), which can be useful for 

understanding the thermal degradation behavior and reaction kinetics of 

biomass or thermochemical process performance, and more studies should be 
conducted in this area. 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

4.5. Interpretation of the ML models 

 
ML is very popular because it is not just a “black box” for predictions; 

it can also be interpreted to help understand the reaction mechanisms and 
engineer the thermochemical processes. First, the factors affecting the 

target can be ranked according to their importance level against the target 

through feature importance analysis (Fig. 3). Additionally, PDP and SHAP 
method analyses can be used to indicate the correlations between variables 

and targets. In PDP, the effect of any one input or the mutual influences of 

any two input variables on the predicted target can be plotted to show the 

linear, monotonous, or more complex connections between the input and 

output features. SHAP analysis can also be used to analyze feature 

importance levels as well as influence trends. In addition, SHAP assigns a 

value for each data point of the input feature to indicate its importance to 

the target, and the accumulation of SHAP values of all data points results 

in a full interpretation of the studied feature. These three interpretation 

methods have been widely used in the reviewed studies. 
 

Table 9 lists the top features for predicting the yields, compositions, and 

properties of the thermochemical products reported in the reviewed articles. 

The yield of bio-oil from HTL is dominated by temperature and lipids 
(contents of C and H are highly related to lipids (Leng et al., 2022c)) (Table 

9). Temperature is also the most important factor for bio-oil yield, as well 

as char yield from pyrolysis, but the other important features can vary in 
different studies. C and H are important to HHV, as they are the major 

elements that can be combusted to release heat. N can be very significant 

to the yields, compositions, and properties of bio-oil from HTL and 
pyrolysis because it participates in reactions to yield oil components, e.g., 

through the Maillard reaction (Leng et al., 2020c and 2020e). It seems that 

N has a more significant effect on the yield of char during HTC than on that 
of oil during HTL. The more prominent role of N on oil and char in wet 

thermochemical processes than in dry processes is because biomass with a 

higher N content is more commonly used in wet processes. The prediction 

of biochar SSA indicates that the parameters during activation are much 

more significant than the pyrolysis parameters (Liao et al., 2019), which is 

why biochar requires activation before it can be used to replace activated 

carbon from fossil resources. There are many other interesting and useful 

pieces of information in the ranking lists shown in Table 9, but these will 

not be detailed due to limited space. 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

Table 8. 

Machine-learning-aided prediction of thermochemical conversion behavior or kinetics. 
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Biomass Inputs a Data number Outputs b
Predictive Performance, Test Data

Reference

Algorithms c R2 RMSE d

Wet thermochemical treatment (hydrothermal treatment)

Biomass PA, EC, OC 296

DHD_char
NN

0.88

NA e Mu et al. (2022)
DCD_char 0.84

DHD_char
PSO-NN

0.85

DCD_char 0.91

Dry thermochemical treatment

Biomass Biomass type, EC, AR, Ea model 281 Ea RF 0.99 8.47 Wang et al. (2022)

Biomass, coal, plastics, blends, etc.
EC, OC, particle size, thermal 

degradation data
NA Ea ANN 0.964 NA

Kartal and Özveren 

(2022c)

Biomass Thermal degradation data 6721 Combustion index ANN 0.85-0.99 0.90-13.4 Sezer et al. (2022)

Biomass Biomass type, OC 1626 Severity index
ANN 0.985

NA Chen et al. (2022d)
MARS 0.978

Cattle manure OC 86200 Remaining mass
GBR 0.998 0.82

Zhang et al. (2019)
RF 0.999 0.43

a PA: proximate analysis of biomass; EC: elemental compositions of biomass; OC: operating conditions of the thermochemical process; AR: atomic ratios of biomass; Ea model: activation energy 

calculation models.
b DHD_char: dehydration degree of char; DCD_char: decarboxylation degree of char; Ea: activation energy.
c NN: neural network; PSO: particle swarm optimization; RF: random forest; ANN: artificial neural network; MARS: multivariate adaptive regression splines.
d Root mean square error.
e NA: not available.
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4.6. Application of the ML models 

 

The ML models obtained are mainly used to aid the thermochemical 
treatment of biomass. First, they can be used to predict the yields, compositions, 

and properties without performing experiments, which is the major focus of 

current studies.  Additionally,  ML models can be used to provide raw data for 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 

 

 

 
 

 

 
 

 

 
subsequent applications. For example, input data in life cycle assessment 

(LCA) and economic analysis studies can be obtained from ML predictions 

of the yields, compositions, and properties of char/oil/gas/aqueous phases, 
LCA (Cheng et al., 2020a and b), which can facilitate a more 

comprehensive LCA (Cheng et al., 2020a, 2020b). Second, ML can be 

applied to solve optimization problems, e.g., finding the optimal processing 

Table 9. 

Machine-learning-aided prediction of thermochemical conversion behavior or kinetics. 

Product Wet Thermochemical Treatment a,b Dry Thermochemical Treatment a,b 

Oil 

• Yield: Lipid > T > RT (Li et al., 2021c); T > Lipid > RT (Zhang et al., 2021); C > H > T 

(Shafizadeh et al., 2022); T > carbohydrate > protein (Katongtung et al., 2022); O/C > 

H/C > ash (Cheng et al., 2020b) 

• Yield: FC > V > ash (Tang et al., 2020); T > cellulose > hemicellulose (Leng et al., 

2021d); Log PS > Log HR > HR (Ge et al., 2021); T > H > PS (Zhang et al., 2022); ash > 

FC > T (Shahbeik et al., 2022) 

• HHV: H > T > N (Shafizadeh et al., 2022); T > lipid > protein (Katongtung et al., 2022) 

• ER: Lipid > T > RT (Li et al., 2021c) 

• HHV: C > H > T (Leng et al., 2021d); cellulose > hemicellulose > PS (Zhang et al., 2022)  

• Viscosity: N > PS > C (Zhang et al., 2022) 

• C: O > C > ash (Shafizadeh et al., 2022); O/C > ash > T (Cheng et al., 2020b)  

• H: H > O > C (Shafizadeh et al., 2022) 

• O: T > RT > O/C (Zhang et al., 2021); N > T > O (Shafizadeh et al., 2022) 

• N: N > T > RT (Li et al., 2021c); T > protein > RT (Zhang et al., 2021); N > C > ash 

(Shafizadeh et al., 2022) 

• S: S > RT > T (Shafizadeh et al., 2022) 

• N-heterocycle: N/C > protein > lipid (Leng et al., 2022c) 

• H: H > N > PS (Tang et al., 2020) 

• H/C: PS > lignin > hemicellulose (Zhang et al., 2022) 

• O/C: O > C > T (Zhang et al., 2022) 

Char 

• Yield: N > T > C (Li et al., 2020); T > N > SC (Li et al., 2021d); N > T > C (Shafizadeh 

et al., 2022); C > T > O (Mu et al., 2022); T > O/C > H/C (Cheng et al., 2020b) 

• Yield: T > ash > hemicellulose (Zhu et al., 2019a); T > C > HR (Li et al., 2020); T > C > 

H/C (ash) (Pathy et al., 2020); T > RT > VM (Onsree and Tippayawong, 2021); T > lignin 

> PS (Leng et al., 2021d); T > RT > HR (Khan et al., 2022); T > ash > N (Shahbeik et al., 

2022) 

• ER: N > C > SC (Li et al., 2020); N > T > SC (Li et al., 2021d) 

• ED: T > O > FC (Li et al., 2020);  

• HHV: C > T > H (Li et al., 2020); C > H > ash (Li et al., 2021d); T > C > O (Mu et al., 

2022); T > H/C > ash (Cheng et al., 2020b) 

• SSA: H/C_char > pH_char > T (Palansooriya et al., 2022); T_AC > steam > RT_AC 

(Liao et al., 2019) 

• ER: T > H > O (Li et al., 2020) 

• ED: H > O > ash (Li et al., 2020) 

• HHV: C > ash > T (Li et al., 2020); FC > ash > C (Chen et al., 2022c); T > O/C > ash 

(Cheng et al., 2020a) 

• C: C > ash > H (Li et al., 2021d); T > H/C > ash (Cheng et al., 2020b) 

• TP: total phosphorus > O > VM (Djandja et al., 2022) 

• N/C: N > C >H (Mu et al., 2022) 

• Ash: O > ash > FC (Mu et al., 2022) 

• C: T > HR > C (Zhu et al., 2019a); T > VM > ash (Kartal and Özveren, 2022a) 

• H: T > C > O (Kartal and Özveren, 2022a) 

• O: C > FC > ash (Kartal and Özveren, 2022a) 

• N: N/C > T > ash (Cheng et al., 2020a) 

• H/C: T > HR > FC (Shahbeik et al., 2022) 

• O/C: N > O > C (Shahbeik et al., 2022) 

• H/N: T > N > HR (Shahbeik et al., 2022) 

Gas 

• Yield: T > pressure > O (Shafizadeh et al., 2022); H/C > T > SC (Cheng et al., 2020b) 
• Yield: T > gas feeding rate > cellulose (Leng et al., 2021d); T > potassium > FC (Gu et 

al., 2021); T > H > C (Shahbeik et al., 2022) 

• H2: T > SC > C (non-catalytic); SC > T > catalyst dose (catalytic) (Li et al., 2021a); SC 

> T > H (Zhao et al., 2021); T > SC > P (Haq et al., 2022; Li et al., 2021b)  

H2: T > HR > S (Shahbeik et al., 2022) 

CH4: T > S > HR (Shahbeik et al., 2022) 

CO2: T > N > H (Shahbeik et al., 2022) 

CO: T > S > C (Shahbeik et al., 2022) 

Aqueous 

• Yield: T > P > S (Shafizadeh et al., 2022); SC > O/C > ash (Cheng et al., 2020b) 

NA c 
• pH: T > N > O (Leng et al., 2022d) 

• TN: protein > N > SC (Leng et al., 2022d) 

• TP: SC > T > lipid (Leng et al., 2022d) 

• TOC: RT > lipid > T (Leng et al., 2022d) 

Reaction 

behavior 

• DHD: T > ash > C (Mu et al., 2022) 

• DCD: T > O > N (Mu et al., 2022) 
• Ea: C > H/C > S (Wang et al., 2022) 

 

a Bold front text represents the yields, compositions, and properties of oil/char/gas/aqueous phases, and the abbreviations can be found in Tables 6, 7, and 8.  
b Normal text is the elemental composition (C, H, O, N, S), atomic ratio (H/C, O/C, N/C), biological composition (cellulose, lignin, hemicellulose, protein, lipid, carbohydrate), and proximate 

analysis (ash, fixed carbon (FC), volatile matter (VM)) of biomass or the operating condition, such as temperature (T), retention time (RT), heating rate (HR), particle size (PS), and solid content 

(SC), of thermochemical processes unless specified otherwise. H/C_char: H/C of char; pH_char: pH of char; T_AC: temperature of activation process; RT_AC: retention time of activation process. 
c NA: not available. 
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parameters for a given biomass (with known compositions, which are used as 

inputs) to produce target products, which is considered forward optimization. 

In this forward optimization, iterations of processing parameters with set step 

sizes yield corresponding targets, from which functions can be used to find 

preferable solutions. In addition, optimization of the biomass mixing ratio can 
be achieved by evaluating the results obtained from different biomass mixtures. 

ML models can also reverse design not only processing parameters but also 

biomass compositions (or biomass mixing recipes), which is considered reverse 
optimization. Through these methods, ML models can be applied to aid 

experimental studies to effectively determine the optimal solutions of 

thermochemical treatment processes and verify the validity of the models. For 
example, forward optimization of bio-oil production from HTL of specified 

algae using the iteration method and reverse optimization using the particle 

swarm optimization method with model compounds to obtain preferable bio-
oil were conducted with experimental verification, and the results were 

satisfactory (Fig. 7) (Li et al., 2021c; Zhang et al., 2021).  

However, the optimization and experimental verification were only 
conducted in limited studies, with several studies reporting the optimization 

without verification (Leng et al., 2022c; Li et al., 2022a), and most other studies 

solely reporting the predictive performance (and model interpretation). Further 

studies in this area are encouraged to put these models into practice. It should 

be noted, however, that verification may not necessarily have to be 

accomplished through experiments; it can also be achieved by other methods, 
such as process modeling in Aspen Plus and other computational modelings (Li 

et al., 2021b and 2022a; Ullah et al., 2022). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Limitations and implications  

 
5.1. Limitations of current studies 

 
ML model, trained with experimental data, can predict the output accurately, 

and the application of ML to aid the thermochemical treatment of biomass has 
been receiving growing attention in recent years. As discussed in the previous 

parts of this work, many authors have published papers about the application 

of ML for predicting the yields, compositions, and properties of products from 
wet and dry thermochemical treatments of biomass. However, there are some 

limitations associated with these studies: 
 

(i) Data: Data unavailability is common, and data details, including input 

and output datasets, are missing in many studies. The  accuracy  of  data  is also  

crucial for the ML model's performance. The accuracy of the data was 

doubtful in some studies, such as inconsistency in calculation formulas 

(some on a dry basis while others on a DAF basis), feature engineering, 

scientific processing of textual data, etc. Furthermore, few articles have 

focused on the variables derived from thermochemical treatment-related 
processes during the construction of ML models based on biomass 

thermochemical conversion, such as the variables in the pretreatment of 

biomass, bio-oil separation, catalytic conversion, etc. 
 

(ii) Modeling process. Different researchers used varied ML schemes 

during the construction of the ML model (Fig. 3) to obtain the optimized 

models trained and tested with the highest R2 and/or lowest RMSE. 
However, schemes used in some studies are problematic. For example, 

models trained without cross-validation may have the problem of 
overfitting. Moreover, more indicators (e.g., generalizability), in addition 

to R2 and RMSE, could be introduced to evaluate the model for better 

predictive performance. There are many hyperparameters for ML models, 
but only one or two of them were tuned in most studies, with other 

hyperparameters being unknown (whether they were tuned or the default). 
 

(iii) Model application. Few studies focused on ML model optimization 

for enhanced thermochemical treatment. On the other hand, some studies 

only reported the predictive performance but with no interpretation of the 

ML model, particularly research based on ANN. In addition, the 
exploration of thermochemical conversion mechanisms based on ML 

model interpretation is rare. 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 

 

5.2. Practical implications of this review 

 
This review summarized and compared the up-to-date research in both 

machine-learning-aided wet and dry thermochemical treatment of biomass. 

In addition, the ML schemes, as well as strategies and descriptors of the 

input and output features in thermochemical processes, were also 

introduced. This study would make a significant practical contribution to 

the research and application work of the thermochemical treatment of 

biomass.
 

First, researchers can find the state-of-the-art, major, and strongly 

influenced journals and funding agencies of the ML-aided thermochemical 

treatment of biomass from this review. The summary and comparison of 

characterizations of biomass, technologies, and products would help 
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Fig. 7. Machine learning prediction and optimization of bio-oil production  from  hydrothermal liquefaction  of  algae  with  experiment  verification (Zhang et al., 2021). Copyright©  Elsevier  2021. 
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interested researchers to have a deeper understanding of the field of biomass 

thermochemical conversion. 

Second, ML schemes and algorithms, which would be very useful for new 

researchers interested in carrying out studies on ML-aided thermochemical 

conversion of biomass, were introduced in this review. Moreover, the 
discussion about the application of ML for predicting the yields, compositions, 

and properties of products from wet and dry thermochemical treatments of 

biomass can provide new inspiration and guidance for researchers. Moreover, 
it would be meaningful and helpful for the rapid development of the research 

area. 

Third, the limitations of the present review on the ML-aided thermochemical 
treatment of biomass have also been overviewed, and the major challenges and 

perspectives were put forward, which could shed light on bridging the major 

gaps between the studies and real-world needs. 
 

6. Major challenges and perspectives 

 

6.1. Improving the predictive performance of models 

 

Predictive performance is the top priority of ML studies because it is the 

basis of interpretation, optimization, and application (monitoring, controlling, 

etc.). Data availability, inconsistency, and accuracy are vital for predictive 

performance. Including more cases to enlarge the dataset size (data number of 
several hundred or more is preferable) and introducing new input descriptors, 

such as subunit compositions of lignin, cellulose/hemicellulose, and protein (as 

detailed in Section 2.1); image (Ögren et al., 2018) and color of products (Li et 
al., 2018a); category descriptors for biomass or thermochemical processes 

(Ascher et al., 2022a); biomass ash compositions (Yan et al., 2020); and 

molecular simulation results from model biomass (Freitas et al., 2022) are 
effective approaches to increase the data dimension. Interpolation of missing 

data in a dataset is meaningful for ensuring data availability; interpolation by 

algorithms directly (Sun et al., 2022) or by building another ML model 
(Palansooriya et al., 2022) are both effective methods. Additionally, redundant 

input variables identified during ML modeling or feature analysis can be 

removed from the dataset for better prediction performance. Data consistency 
requires the data to be generated under the same or highly comparable 

conditions. For example, the consistency of the calculation equations for the 

input and output variables is the first thing to note. Researchers are advised to 
carefully check the calculation of the elemental compositions of biomass and 

char, as well as the yields of all products if they are calculated on a dry, DAF, 

or other bases. However, thermochemical reactors and their configurations in 
different studies may have large differences, and category descriptors for 

reactors should be listed as variables to overcome such inconsistencies. 

Currently, data are collected indiscriminately from references for most studies, 
and the accuracy of the data is not considered. Future studies may explore 

effective methods to exploit only accurate data for ML modeling. For example, 

data from modeling, e.g., data from Aspen Plus process modeling (Sezer and 
Özveren 2021), should be validated before use in ML modeling. 

Model screening, feature selection, and model hyperparameter tuning are 

key to predictive performance. Current studies mainly screen ML based on 
evaluation metrics such as R2 and RMSE because most researchers in this area 

are not from computer science, and many are not truly familiar with the 
working mechanisms of ML algorithms. Collaboration with peers in computer 

science and a screening model depending on the applicable characteristics of 

each ML technique corresponding to a given problem are encouraged. Suitable 

features and hyperparameters should be selected based on the domain expertise 

of the collaborators in thermochemical treatment and computer science. 

Additionally, optimization algorithms can be used before modeling to screen 
feature pairs (Ullah et al., 2021; Khan et al., 2022) or during modeling to obtain 

the optimal hyperparameters (Haq et al., 2022; Mu et al., 2022; Shafizadeh et 

al., 2022), which is user-friendly for non-expert ML users. Genetic algorithms 
and particle swarm optimization (PSO) are more commonly used in these 

optimizations than other algorithms, such as the Rao algorithm, Sine Cosine 

Algorithm, and grey wolf optimization (Khan et al., 2022). When tuning the 
hyperparameters, cross-validation should be used, and the number of folds of 

the cross-validation may have a considerable effect on the RMSE; for example, 

the test RMSE was reduced from 8.43 to 8.07 when the fold number increased 
from 10 to 100 (Cheng et al., 2022). However, in the reviewed articles, some 

studies did not use a cross-validation process, which would result in overfitting 

because the optimum hyperparameters were obtained most probably by chance, 

although running trial and error modeling several times may be beneficial 

for increasing accuracy (Djandja et al., 2021). 

For multi-target ML, optimizing the weight percent of each target 

(generally treated equally in most studies) can also balance the ML to obtain 

preferable predictive performance for all studied targets. Finally, advanced 
algorithms and modeling techniques such as deep learning (Lecun et al., 

2015) can be used to improve predictive performance, especially for cases 

with a large amount of data. 
 

6.2. Increasing model generalizability 

 
The ML model cannot be simply evaluated by R2 and RMSE; other 

indicators, such as the model's generalizability, are also important, and 

trade-offs between these two should be considered. A model with good 
predictive performance (high R2 and low RMSE) does not necessarily 

indicate high generalizability. A model built based on a specific biomass 

type or thermochemical parameters, such as a specific thermochemical 
reactor, is likely to work only within this specific condition; it may not have 

the generalizability to predict under other conditions. For example, even if 

the data numbers are higher than 1000 with a predictive model R2 higher 

than 0.95, the models built based on one or two biomasses in a particular 

gasifier (Mutlu and Yucel, 2018; Elmaz et al., 2020; Elmaz and Yücel, 

2020) cannot be used for accurately predicting other gasification processes. 
To obtain good generalizability, the coverage of the descriptors, amount of 

data in the dataset, and data distribution should be assessed carefully, with 

data distribution being the most important; bad data distribution, e.g., data 
of limited or biased coverage, would lead to poor generalizability. Creating 

highly generalizable models suitable across a wide range of feedstocks as 

well as thermochemical parameters and ranges, should be promoted in the 
future. Integrating dry and wet thermochemical treatment datasets to predict 

the yields, compositions, and properties of the char/oil/gas/aqueous phases 

without differentiating products from dry or wet processes may be a 
promising direction for testing. In addition, future ML models should be 

built with the extrapolative ability to explore the “unseen” space, such as 

the ML-aided discovery of new materials and chemicals (Butler et al., 
2018), which is challenging but of high priority. 

 

6.3. Increasing model interpretability and aiding thermochemical 
conversion mechanistic studies 

 

Model interpretation results can not only be used to understand the 
fundamentals behind ML model-based decision-making but also be applied 

to guide thermochemical treatment mechanistic studies. Through feature 

ranking and PDP, the effects of biomass compositions and thermochemical 
parameters on a target can be understood in a rational manner. Mechanistic 

studies can be conducted for screened cases that are indicative of the 

connections between biomass compositions/thermochemical parameters 
and the yields, compositions, and properties of oil, char, gas, and aqueous 

phases. For some features, such as model biomass chemicals, catalysts, 

solvents, or additives that are composed of specific chemicals or elements, 
their molecular modeling data can be used directly as input features to 

understand how the structures, compositions, or properties of these features 
affect the yields, compositions, and properties of the oil, char, gas, and 

aqueous phases or the biomass thermochemical conversion behavior. In 

addition, more advanced and promising interpretation algorithms can be 

developed to help understand the connections between inputs and outputs. 

However, model complexity and interpretability should be balanced 

because increasing interpretability can result in higher structural 
complexity of ML. 

 

6.4. Enhancing the real-world application of ML models 
 

The ultimate target of ML studies is the real-world application of ML 

models. Current studies mainly concentrate on predicting the yields, 
compositions, and properties of thermochemical products; future studies 

should focus more on ML optimization. For example, thermochemical 

products should be engineered by integrating forward and reverse 

optimizations with the application performance of thermochemical 

products in different areas. During engineering, the ML model targets (e.g., 

yields, compositions, and properties of the oil/char/gas/aqueous products) 
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should be screened based on the effects of the compositions and properties of 

the oil/char/gas/aqueous products on application performance. Therefore, the 

properties/structures of oil/char/gas/aqueous application performance 

relationships should be understood first, preferably by ML (e.g., those shown 

in Table 4). The main descriptors of oil/char/gas/aqueous products determining 
the application performance will be used as targets in thermochemical process 

ML models, with biomass compositions and thermochemical parameters as 

inputs. Therefore, the ML models in Table 4 can be integrated with the models 
presented in Section 4 to guide the production of smart products (see Fig. 8). 

For example, the main descriptors determining CO2 adsorption capacity, 

namely SSA, total pore volume, contents of N and O, and mesopore volume 
(Yuan et al., 2021), can be optimized within the as-built thermochemical 

treatment-for-biochar production prediction ML models to obtain optimal 

biochar production parameters, produce smart biochar, and achieve the highest 
CO2 adsorption capacity. The engineering of oil/char/gas/aqueous products in 

other areas, such as those in Table 5, can also be conducted in this manner. 

However, no studies have yet been conducted in this area. 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
In comparison to the prediction of the exact yields, compositions, and 

properties, the classification of the oil/char/gas/aqueous products according to 

different applications, such as the classification of the slagging degree of char 

(Bi et al., 2023) and carbon stability level of char (Leng et al., 2019b; Chen et 

al., 2021), can be useful for the application of these products. ML can also be 

used to optimize computational parameters in other computational models, 
such as CFD and kinetic models, to indirectly aid thermochemical treatment. 

In addition to solving prediction and optimization problems, the ML model can 

be used for classification and control. Examples include identifying and 
classifying images of oil/char/gas/aqueous products from biomass 

thermochemical treatment processes or images from computational modeling 

for advanced predictions and monitoring (Zhu et al., 2022). However, few 
studies have been conducted in this direction. 

There are other considerations when applying the ML model to the real 

world (Meena et al., 2021). For example, computational cost and efficiency 

(computation time) are vital if the model is used for online monitoring and 

control. Only a few studies have recorded the computation times of developed 

models. One study reported that the MLP-NN model was approximately 

three times faster than the artificial neuro-fuzzy inference system (ANFIS) 

model (Li et al., 2022b). Another concern is whether ML models are 

reliable and efficient enough (uncertainty quantifiable and acceptable) to 

guide and replace human-expert decision-making. 

 
6.5. Promoting data and model sharing in the community 

 

Sharing data and as-built models in published papers should be 

encouraged. Large-scale and high-quality databases may be built by 

researchers in this community, thus facilitating high-quality ML studies. 

Additionally, model sharing allows the models to be evaluated, used, and 

even rebuilt by others to promote the development of this area more 

effectively. Simple offline apps and online GUIs have been developed by 

some researchers (Li et al., 2021a; Ullah et al., 2021; Leng et al., 2022c and 

2022d) and can be adopted by others.
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
7. Conclusions 

 
General ML schemes and strategies were summarized in this review. 

Descriptors for the input and output features in the ML models for dry and 

wet thermochemical processes are similar, and predictive performance is 

preferable. The predictive performance for the yields of 

oil/char/gas/aqueous phases in modeling dry thermochemical processes is 

better than that of wet processes, while an inverse trend was observed for 

predicting the product compositions. The interpretation of the ML model 
indicates the key features affecting the yields, compositions, and properties 

of oil/char/gas/aqueous products, which can be useful in guiding future 

experimental studies on biomass thermochemical treatment. Improving 
predictive performance, increasing model generalizability, increasing 

model interpretability, aiding mechanistic studies, enhancing the real-world 

application of ML models in various areas, and sharing data and as-built 
models in the community are the frontiers of future investigations to bring 

ML to the next stage. In the near future, the  development  and  research  of 

 

Fig. 8. Integrated models for producing smart oil/char/gas/aqueous products.
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biomass thermochemical treatment processes are envisaged to be accelerated 

by ML-aided prediction of yields, compositions, and properties of 

oil/char/gas/aqueous products, thermochemical conversion behavior and 

kinetics, as well as the characterization and application performance of 

different biomass products in various areas, in addition to ML-aided 
optimization, monitoring, and control of the thermochemical processes. 
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Table S1. 

Machine learning aided prediction of the yield of thermochemical treatment products. 
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Biomass
Inputs a Data 

number 
Outputs b

Predictive performance, test data

Reference

Algorithms c R2 RMSEd

Wet thermochemical treatment (hydrothermal treatment)

Biomass
EC, AR, OC 108

Oil RF
0.85 5.83

Leng et al. (2022b)
EC, AR, BC, OC 91 0.92 3.31

Biomass

EC, OC, solvent 448

Oil

DRT 0.82 8.07

Li et al. (2021b)

RF 0.89 6.17

GBR 0.90 6.14

EC, BC, OC, solvent 382

DRT 0.84 7.04

RF 0.87 6.41

GBR 0.87 6.39

Algae

EC, OC 310

Oil

GBR 0.86 5.52

Zhang et al. (2021)

RF 0.85 6.16

AR, OC 310
GBR 0.88 5.07

RF 0.85 5.08

BC, OC 310
GBR 0.90 4.75

RF 0.86 6.06

EC, AR, BC, OC 310
GBR 0.90 4.69

RF 0.87 5.72

Biomass

BC, OC

325 Oil XGB

0.81 6.56

Katongtung et al. (2022)EC, AR, OC 0.82 6.28

EC, AR, BC, OC 0.90 4.77

Biomass EC, OC Oil GPR 0.95 NA e Shafizadeh et al. (2022)

Biomass BC, OC 525 Oil
RF 0.78 8.07

Cheng et al. (2022)
XGB 0.77 8.26

Biomass EC, solvent, OC, catalyst 488 Oil RF 0.90 6.03 Castro Garcia et al. (2022)

Biomass EC, OC 650 Oil

GPR 0.95

NA Shafizadeh et al. (2022)

NNR 0.84

GAM 0.98

SVR 0.88

Biomass PA, EC, OC 248 Char SVR 0.88 7.83 Li et al. (2020)

Biomass PA, EC, BC, OC 649 Char RF 0.95 4.06 Li et al. (2018)

Biomass PA, EC, AR, OC 248 Char DNN 0.90 7.05 Li et al. (2021c)

Biomass EC, solvent, OC, catalyst 488 Char RF 0.94 3.84 Castro Garcia et al. (2022)

Biomass EC, OC 340 Char

GPR 0.94

NA Shafizadeh et al. (2022)

NNR 0.80

GAM 0.85

SVR 0.89

Biomass PA, EC, OC 296 Char
NN 0.86

NA Mu et al. (2022)

PSO-NN 0.86
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Table S1. 

Continued. 
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Biomass Inputs a Data 

number 
Outputs b

Predictive performance, test data

Reference

Algorithms c R2 RMSEd

Biomass EC, OC

216 Gas  

GPR 0.86

NA Shafizadeh et al. (2022)

NNR 0.90

GAM 0.98

SVR 0.93

197 Aqueous

GPR 0.87

NN 0.80

GAM 0.98

SVR 0.76

Dry thermochemical treatment

Biomass

BC, OC

245 Char RF

0.85 3.50

Zhu et al. (2019)EC, OC 0.80 3.96

EC, BC, OC 0.85 3.40

Biomass PA, OC 115 Char ANN 0.98 0.06 Abdulsalam et al. (2020)

Biomass PA, EC, OC 165 Char SVR 0.88 5.86 Li et al. (2020)

Algae 
PA, EC, AR, OC

91 Char XGB
0.74

NA Pathy et al. (2020)
EC, OC 0.73

Biomass PA, EC, OC 800 Char
KRR 0.86 0.08

Onsree and Tippayawong (2021)
GTB 0.87 0.07

Biomass

PA, EC, BC, OC

122 Char
RF

0.94 2.72

Leng et al. (2021)

EC, BC, OC 0.94 2.75

PA, EC, OC 0.93 2.92

PA, BC, OC 0.94 2.57

PA, OC 0.94 2.80

BC, OC 0.95 2.56

EC, OC 0.90 3.59

Biomass PA, EC, metal contents, OC Char ANN 0.98 1.61 Gu et al. (2021)

Biomass-plastic mixture PA, EC, OC 94 Char
DNN 0.93 2.96

Alabdrabalnabi (2021)
XGB 0.91 3.18

Biomass PA, EC, OC, gasifier 312 Char ANN 0.71 0.30 Ascher et al. (2022)

Biomass PA, EC, BC, OC 226 Char
MLP-NN 0.96 3.4

Li et al. (2022)
ANFIS 0.88 4.9

Biomass PA, BC, OC 402
Char

ANN-GWO 0.85 2.82

Khan et al. (2022)

ANN-RA 1 0.92 1.89

ANN-RA 2 0.93 1.74

ANN-SCA 0.84 2.86

ANN-GA 0.92 1.87

ANN-PSO 0.92 1.82

ANN-GWO 0.87 2.52

ANN-RA 1 0.70 3.55
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Table S1. 

Continued. 
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Biomass Inputs a Data 

number 
Outputs b

Predictive performance, test data

Reference

Algorithms c R2 RMSEd

ANN-RA 2 0.88 2.23

ANN-SCA 0.78 3.43

ANN-GA 0.88 2.25

ANN-PSO 0.88 2.18

Biomass PA, EC, OC, gasifier 312 Oil ANN 0.92 0.07 Ascher et al. (2022)

Biomass
PA, OC

264 Oil RF
0.92 2.13

Tang et al. (2020)
EC, OC 0.87 3.05

Biomass

PA, EC, BC, OC

122 Oil RF

0.94 3.40

Leng et al. (2021)

EC, BC, OC 0.92 3.89

PA, EC, OC 0.94 3.29

PA, BC, OC 0.94 3.43

PA, OC 0.94 3.69

BC, OC 0.95 3.28

EC, OC 0.92 4.03

Biomass PA, EC, metal contents, OC NA Oil ANN 0.80 2.28 Gu et al. (2021)

Biomass-plastic mixture PA, EC, OC 96 Oil
DNN 0.88 4.44

Alabdrabalnabi (2021)
XGB 0.91 3.56

Biomass

PA, OC

263 Oil

RF 0.98 1.06

Ullah et al. (2021)

SVR 0.96 1.62

DRT 0.96 1.69

EC, OC

RF 0.99 0.56

SVM 0.96 1.53

DRT 0.91 2.18

Biomass

EC, AR, BC, OC

282 Oil RF

0.89 2.89

Zhang et al. (2022)

EC, OC 0.93 2.33

BC, OC 0.88 3.11

PA, OC 0.84 3.98

Biomass

PA, OC

292 Oil RF

0.93

NA Yang et al. (2022)EC, OC 0.83

BC, OC 0.85

Biomass PA, EC, metal contents, OC NA Gas ANN 0.92 2.75 Gu et al. (2021)

Biomass PA, EC, OC 194 Gas
RF 0.85 3.80

Tang et al. (2021)

SVM 0.81 4.37

Biomass

PA, EC, BC, OC

122 Gas RF

0.91 3.42

Leng et al. (2021)

EC, BC, OC 0.91 3.46

PA, EC, OC 0.92 3.21

PA, BC, OC 0.92 3.27

PA, OC 0.91 3.52

BC, OC 0.93 3.10
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Table S1. 

Continued. 

   

 
  

 

 
   

        

        

 

 

 

  

 

 

  

  

 

Table S2. 

Machine learning aided prediction of the elemental compositions, proximate analysis, and gas compositions of thermochemical treatment products. 

 
     

 
 

    

 

 
  

  
  

 
    

 

  

 
   

 

   

 
   

   

  

 
   

   

 
   

   

  

 
   

   

 
   

   

  

 
   

   

 
   

   

  

 

 

 

 

 

 

 

  

  

  

  

   

 

S4

Biomass Inputs a Data 

number
Outputs b

Predictive performance, test data

Reference

Algorithms c R2 RMSEd

EC, OC 0.90 3.70

Biomass PA, EC, OC, gasifier 312 Gas ANN 0.96 0.08 Ascher et al. (2022)

a EC: elemental compositions of biomass; AR: atomic ratios of biomass; BC: biological compositions of biomass; PA: proximate analysis of biomass; OC: operating conditions of the 

thermochemical process.
b Yields of oil, char, gas, or aqueous phases.
c RF: random forest; NN: neural network; DRT: decision regression tree; GBR: gradient boosting regression; GBDT: gradient boosting decision tree; GAM: generalized additive model; 

GPR: gaussian process regression; GTB: gradient tree boosting; XGB: extreme gradient boosting; KRR: kernel ridge regression; SVR: support vector regression; SVM: support vector 

machine; MLP: multi-layer perceptron; GA: genetic algorithm; GWO: grey wolf optimization; RA: Rao algorithms; PSO: particle swarm optimization; SCA: sine cosine algorithm; 

ANFIS: artificial neuro-fuzzy inference system; DNN: deep neural network; ANN: artificial neural network; MARS: multivariate adaptive regression splines.
d Root mean square error.
e NA: not available or data available were calculated based on a unified dataset.
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Biomass Inputs a Data number Outputs b

Predictive performance, test data
Reference

Algorithms c R2 RMSE d

Wet thermochemical treatment (hydrothermal treatment)

Biomass
EC, AR, OC 86

N_oil RF
0.94 0.48

Leng et al. (2022b)
EC, AR, BC, OC 69 0.95 0.47

Algae

EC, OC 310

N_oil
GBR 0.89 1.71

Zhang et al. (2021)

RF 0.87 1.85

O_oil
GBR 0.88 0.77

RF 0.87 0.78

AR, OC 310

N_oil
GBR 0.87 1.88

RF 0.86 1.97

O_oil
GBR 0.87 0.80

RF 0.86 0.82

BC, OC 310

N_oil
GBR 0.89 1.71

RF 0.87 1.85

O_oil
GBR 0.88 0.77

RF 0.87 0.78

EC, AR, BC, OC 310

N_oil
GBR 0.90 1.68

RF 0.87 1.91

O_oil
GBR 0.90 0.68

RF 0.88 0.74

Biomass EC, OC

268

C_oil

GPR

0.91

NA e

Shafizadeh et al. (2022)

H_oil 0.98

O_oil 0.92

N_oil 0.99

263 S_oil 0.99
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Table S2. 

Continued. 
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Biomass Inputs a Data number Outputs b
Predictive performance, test data

Reference

Algorithms c R2 RMSE d

268

C_oil

NNR

0.68

NA e Shafizadeh et al. (2022)

H_oil 0.84

O_oil 0.79

N_oil 0.95

263 S_oil 0.93

268

C_oil

GAM

0.89

H_oil 0.90

O_oil 0.99

N_oil 0.76

263 S_oil 0.98

268

C_oil

SVR

0.63

H_oil 0.83

O_oil 0.70

N_oil 0.87

263 S_oil 0.91

Biomass PA, EC, BC, OC 622 C_char RF 0.95 2.40 Li et al. (2018)

Biomass PA, EC, AR, OC 248

C_char

DNN

0.95 2.91

Li et al. (2021c)

H/C_char 0.89 0.08

O/C_char 0.91 0.06

N/C_char 0.89 0.01

Biomass PA, EC, OC 296

ash_char

NN 0.97

NA Mu et al. (2022)
PSO-NN 0.98

N/C_char
NN 0.96

PSO-NN 0.96

Sewage sludge PA, EC, OC 138 N_char ANN 0.97 - Djandja et al. (2021)

Biomass

EC, OC 295

CO_gas

NN

0.95 0.31

Li et al. (2021a)

CO2_gas 0.97 1.06

CH4_gas 0.94 0.45

H2_gas 0.97 1.27

EC, OC, alkali catalyst 117

CO_gas 0.86 0.40

CO2_gas 0.82 2.22

CH4_gas 0.80 0.74

H2_gas 0.91 2.08

EC, OC, transition-metal 

catalyst
73

CO_gas 0.87 0.51

CO2_gas 0.98 0.96

CH4_gas 0.92 1.58

H2_gas 0.93 1.60
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Table S2. 
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Biomass Inputs a Data number Outputs b
Predictive performance, test data

Reference

Algorithms c R2 RMSE d

EC, OC, with or 

without catalyst
233

CO_gas 0.80 0.26

CO2_gas 0.91 2.38

CH4_gas 0.86 1.22

H2_gas 0.95 2.77

Biomass EC, OC 95
H2_gas

GPR 0.95 2.93

Zhao et al. (2021)
ANN 0.92 1.85

SVM 0.98 0.87

RF 0.98 1.02

Food wastes OC 40

CO_gas

NN

0.99 -

Shenbagaraj et al. (2021)
CO2_gas 0.98 -

CH4_gas 0.99 -

H2_gas 0.99 -

Biomass PA, EC, OC 125
H2_gas

GPR 0.96 0.20

Haq et al. (2022)
DT 0.92 1.23

SVM 0.69 2.97

ANN 0.86 1.99

Dry thermochemical treatment

Biomass

BC, OC

245 C_char RF

0.76 6.94

Zhu et al. (2019)EC, OC 0.83 6.22

EC, BC, OC 0.84 5.81

Biomass PA, EC, BC, OC 226

FC_char

MLP-NN

0.90 5.1

Li et al. (2022)

ash_char 0.94 2.0

VM_char 0.90 6.1

C_char 0.92 3.1

H_char 0.86 0.5

O_char 0.89 3.3

N_char 0.89 0.4

FC_char

ANFIS

0.79 7.4

ash_char 0.92 2.6

VM_char 0.81 7.7

C_char 0.85 4.1

H_char 0.84 0.6

O_char 0.86 3.6

N_char 0.87 0.5

Biomass

EC, OC 236

N_char

RF 0.82 0.93

Leng et al. (2022a)

GBR 0.92 0.64

PA, OC 170
RF 0.84 0.80

GBR 0.86 0.75

BC, OC 75

RF 0.88 0.44

GBR 0.61 0.80
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Table S2. 

Continued. 

     
 

 
    

 
  

     

      

 
  

     

      

 

 

 

 

 

 

 

 

 

    

  

 
 

   
  

 
   

 

 

 

 

 

 

 

 

  

 
   

   

   

 

 

 

 

 

 

 

 

  

 
   

   

   

   

 
   

 

   

 
   

   

 
   

   

 
   

   

   

 
   

 

   

 
   

   

 
   

   

 
   

   

   

 

 

 

  

 

   

   

   

   

   

a Abbreviations see Table S1. b Contents of C, H, O, N, and S in oil/char; compositions of H2, CO, CO2, CH4, C2Hn, N2 in gas; or yields of ash, volatile matter (VM), fixed carbon (FC) of 

char. c LS: least-squares. For other abbreviations for machine learning algorithms, see Table S1.  d Root mean square error. e NA: not available or data available were calculated based on a 

unified dataset. 
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Biomass Inputs a Data number Outputs b
Predictive performance, test data

Reference

Algorithms c R2 RMSE d

EC, EA, OC 161
RF 0.90 0.63

GBR 0.92 0.56

EC, EA, BC, OC 67
RF 0.77 0.64

GBR 0.65 0.79

Biomass

PA, OC

171 O_oil RF

0.80

NA Yang et al. (2022)EC, OC 0.90

BC, OC 0.82

Biomass
PA, OC

264 H_Oil RF
0.79 0.54

Tang et al. (2020)
EC, OC 0.84 0.56

Biomass

EC, AR, BC, OC

214 H/C_oil RF

0.75 0.63

Zhang et al. (2022)
EC, OC 0.74 1.12

BC, OC 0.78 0.67

PA, OC 0.68 1.24

Biomass

EC, AR, BC, OC

232 O/C_oil RF

0.78 0.14

Zhang et al. (2022)
EC, OC 0.92 0.17

BC, OC 0.89 0.13

PA, OC 0.87 0.18

One biomass EC, OC 5237

CO_gas
RF 0.71 5.14

Mutlu and Yucel (2018)

LS-SVM 0.90 1.52

CO2_gas
RF 0.81 2.80

LS-SVM 0.93 0.64

CH4_gas
RF 0.88 1.80

LS-SVM 0.94 0.34

H2_gas
RF 0.81 5.04

LS-SVM 0.96 0.59

Biomass PA, EC, OC 120

CO_gas
RF 0.87 4.30

Tang et al. (2021)

SVM 0.55 8.02

CO2_gas
RF 0.87 5.71

SVM 0.76 7.51

CH4_gas
RF 0.86 4.24

SVM 0.89 3.71

H2_gas
RF 0.86 3.39

SVM 0.89 3.36

Biomass PA, EC, OC, gasifier 312

N2_gas

ANN

0.98 0.10

Ascher et al. (2022)

H2_gas 0.95 0.11

CO_gas 0.93 0.11

CO2_gas 0.90 0.11

CH4_gas 0.80 0.18

C2Hn_gas 0.52 0.19
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Table S3. 

Machine learning aided prediction of the caloric value of thermochemical treatment products. 

  

 
  

 
 

    

 

   
 

 

   

 

   

   

   

 

 

 

 

 

 

 

 

  

    

   

        

        

        

    
   

 
   

 

 

  

 

 

 

 

  

 
    

    

    

 

 

 

 

 

 

 

 

  

 

   

   

   

   

   

   

        

        

   
 

 

   

    

   

        

    
   

 
   

a VM/FC: ratio of volatile matter and fixed carbon. For other abbreviations, see Table S1. 
b Higher heating value (HHV) or Lower heating value (LHV) of oil/char/gas phases. 
c LS: least-squares. For other abbreviations for machine learning algorithms, see Table S1. 
d Root mean square error. 
e Not available or data available were calculated based on a unified dataset. 
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Biomass Inputs a Data 

number
Outputs b

Predictive performance, test data
Reference

Algorithms c R2 RMSE d

Wet thermochemical treatment (hydrothermal treatment)

Biomass EC, OC 292
HHV_oil

GPR 0.97

Shafizadeh et al. (2022)

NNR 0.80

GAM 0.92

SVR 0.79

Biomass

BC, OC

325 HHV_oil XGB

0.84

Katongtung et al. (2022)EC, AR, OC 0.84

EC, AR, BC, OC 0.86

Biomass PA, EC, OC 248 HHV_char SVR 0.96 Li et al. (2020)

Biomass PA, EC, BC, OC 475 HHV_char RF 0.97 Li et al. (2018)

Biomass PA, EC, AR, OC 248 HHV_char DNN 0.95 Li et al. (2021c)

Biomass PA, EC, OC 296 HHV_char
NN 0.90

Mu et al. (2022)
PSO-NN 0.90

Dry thermochemical treatment

Biomass

EC, AR, BC, OC 198

HHV_oil RF

0.68 1.68

Zhang et al. (2022)
EC, OC 282 0.74 2.20

BC, OC 282 0.81 1.78

PA, OC 282 0.51 2.37

Biomass

PA, EC, BC, OC

92 HHV_oil RF

0.89 1.74

Leng et al. (2021)

EC, BC, OC 0.84 2.09

PA, EC, OC 0.89 1.69

PA, BC, OC 0.85 2.03

PA, OC 0.90 1.60

BC, OC 0.87 1.88

EC, OC 0.93 1.38

Biomass PA, OC 115 HHV_char ANN 0.997 0.03 Abdulsalam et al. (2020)

Biomass PA, EC, OC 165 HHV_char SVR 0.95 1.37 Li et al. (2020)

Biomass PA, EC, AR, VM/FC, OC 149
HHV_char

GBR 0.93 1.74

Chen et al. (2022)RF 0.95 1.45

SVM 0.92 1.85

Biomass PA, EC, OC 312 LHV_gas ANN 0.96 0.10 Ascher et al. (2022)

Biomass EC, OC 5237 HHV_gas
RF 0.88 2.32

Mutlu and Yucel (2018)
LS-SVM 0.96 0.38

S8

1.53

3.06

1.39

1.47

1.60

1.59
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