A review of conversion processes for bioethanol production with a focus on syngas fermentation

Document Type: Review Paper


Department of Biosystems and Agricultural Engineering, 214 Ag Hall, Oklahoma State University, Stillwater, OK 74078, USA.


Bioethanol production from corn is a well-established technology. However, emphasis on exploring non-food based feedstocks is intensified due to dispute over utilization of food based feedstocks to generate bioethanol. Chemical and biological conversion technologies for non-food based biomass feedstocks to biofuels have been developed. First generation bioethanol was produced from sugar based feedstocks such as corn and sugar cane. Availability of alternative feedstocks such as lignocellulosic and algal biomass and technology advancement led to the development of complex biological conversion processes, such as separate hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation (SSF), simultaneous saccharification and co-fermentation (SSCF), consolidated bioprocessing (CBP), and syngas fermentation. SHF, SSF, SSCF, and CBP are direct fermentation processes in which biomass feedstocks are pretreated, hydrolyzed and then fermented into ethanol. Conversely, ethanol from syngas fermentation is an indirect fermentation that utilizes gaseous substrates (mixture of CO, CO2 and H2) made from industrial flue gases or gasification of biomass, coal or municipal solid waste. This review article provides an overview of the various biological processes for ethanol production from sugar, lignocellulosic, and algal biomass. This paper also provides a detailed insight on process development, bioreactor design, and advances and future directions in syngas fermentation.

Graphical Abstract

A review of conversion processes for bioethanol production with a focus on syngas fermentation


Abrini, J., Naveau, H., Nyns, E.J., 1994. Clostridium autoethanogenum, sp. Nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch. Microbiol. 161(4), 345-351.

Abubackar, H.N., Veiga, M.C., Kennes, C., 2015. Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid. Bioresour. Technol. 186, 122-127.

Ahmed, A., 2006. Effects of biomass-generated syngas on cell-growth, product distribution and enzyme activities of Clostridium carboxidivorans P7T, Ph.D. Dissertation, Oklahoma State University, pp. 229.

Ahmed, A., Cateni, B.G., Huhnke, R.L., Lewis, R.S., 2006. Effects of biomass-generated producer gas constituents on cell growth, product distribution and hydrogenase activity of Clostridium carboxidivorans P7t. Biomass Bioenergy.30(7), 665-672.

Ahmed, A., Lewis, R.S., 2007. Fermentation of biomass-generated synthesis gas: Effects of nitric oxide. Biotechnol. Bioeng. 97(5), 1080-1086.

Allen, T.D., Caldwell, M.E., Lawson, P.A., Huhnke, R.L., Tanner, R.S., 2010. Alkalibaculum bacchi gen. Nov., sp. Nov., a co-oxidizing, ethanol-producing acetogen isolated from livestock-impacted soil. Int. J. Syst. Evol. Microbiol. 60(10), 2483-2489.

Alvira, P., Tomás-Pejó, E., Ballesteros, M., Negro, M.J., 2010. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 101(13), 4851-4861.

Babu, B., Atiyeh, H., Wilkins, M., Huhnke, R., 2010. Effect of the reducing agent dithiothreitol on ethanol and acetic acid production by Clostridium strain p11 using simulated biomass-based syngas. Biol. Eng. 3(1), 19-35.

Bai, F., Anderson, W., Moo-Young, M., 2008. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol. Adv. 26(1), 89-105.

Barik, S., Prieto, S., Harrison, S., Clausen, E., Gaddy, J., 1988. Biological production of alcohols from coal through indirect liquefaction. Appl. Biochem. Biotechnol. 18(1), 363-378.

Bothast, R., Schlicher, M., 2005. Biotechnological processes for conversion of corn into ethanol. Appl. Microbiol. Biotechnol. 67(1), 19-25.

Bredwell, M.D., Worden, R.M., 1998. Mass-transfer properties of microbubbles. 1. Experimental studies. Biotechnol. Progr. 14(1), 31-38.

Bredwell, M.D., Srivastava, P., Worden, R.M., 1999. Reactor design issues for synthesis-gas fermentations. Biotechnol. Progr. 15(5), 834-844.

Brennan, L., Owende, P. 2010. Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustainable Energy Rev. 14(2), 557-577.

Cardona Alzate, C.A., Sánchez Toro, O.J., 2006. Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass. Energy. 31(13), 2447-2459.

Carriquiry, M.A., Du, X., Timilsina, G.R., 2011. Second generation biofuels: Economics and policies. Energy Policy. 39(7), 4222-4234.

Chisti, Y., 2007. Biodiesel from microalgae. Biotechnol. Adv. 25(3), 294-306.

Coskata., 2011. Semi-commercial facility demonstrates two years of successful operation, Coskata, Inc.'s. Madison, PA. Available at  http://www.coskata.com/company/media.asp?story=504B571C-0916-474E-BFFA-ACB326EFDB68 (accessed on  10 August 2015).

Cotter, J.L., Chinn, M.S., Grunden, A.M., 2009. Ethanol and acetate production by Clostridium ljungdahlii and Clostridium autoethanogenum using resting cells. Bioproc. Biosyst. Eng. 32(3), 369-380.

Cowger, J.P., Klasson, K.T., Ackerson, M.D., Clausen, E., Caddy, J.L., 1992. Mass-transfer and kinetic aspects in continuous bioreactors using Rhodospirillum rubrum. Appl. Biochem. Biotechnol. 34 (1), 613-624.

Cruz, V., Hernández, S., Martín, M., Grossmann, I.E., 2014. Integrated synthesis of biodiesel, bioethanol, isobutene, and glycerol ethers from algae. Ind. Eng. Chem. Res. 53(37), 14397-14407.

Daniel, S.L., Hsu, T., Dean, S., Drake, H., 1990. Characterization of the h2-and co-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and acetogenium kivui. J. Bacteriol. 172(8), 4464-4471.

Datar, R.P., Shenkman, R.M., Cateni, B.G., Huhnke, R.L., Lewis, R.S., 2004. Fermentation of biomass-generated producer gas to ethanol. Biotechnol. Bioeng. 86(5), 587-594.

Demirbas, A., Fatih Demirbas, M., 2011. Importance of algae oil as a source of biodiesel. Energy Convers. Manage. 52(1), 163-170.

Devi, M.P., Mohan, S.V., Mohanakrishna, G., Sarma, P., 2010. Regulatory influence of cosupplementation on fermentative hydrogen production process. Int. J. Hydrogen Energy. 35(19), 10701-10709.

Dien, B.S., Cotta, M.A., Jeffries, T.W. 2003. Bacteria engineered for fuel ethanol production: Current status. Appl. Microbiol. Biotechnol. 63(3), 258-266.

Drake, H.L., Daniel, S.L. 2004. Physiology of the thermophilic acetogen Moorella thermoacetica. Res. Microbiol. 155(10), 869-883.

Drake, H.L., Gößner, A.S., Daniel, S.L. 2008. Old acetogens, new light. Ann. N.Y. Acad. Sci. 1125(1), 100-128.

Dutta, A., Talmadge, M., Hensley, J., Worley, M., Dudgeon, D.,  Barton, D., Groenendijk, P., Ferrari, D., Stears, B., Searcy. E.M., Wright. C.T., Hess. J.R., 2011. Process design and economics for conversion of lignocellulosic biomass to ethanol: thermochemical pathway by indirect gasification and mixed alcohol synthesis. NREL/TP-5100-51400. Golden, CO: National Renewable Energy Laboratory, 2011. Available at  http://www.nrel.gov/docs/fy11osti/51400.pdf. (accessed on 10 August 2015).

EIA., 2015a. Annual energy outlook, Energy Information Administration. Washington, D.C. Available at http://www.eia.gov/forecasts/aeo/MT_liquidfuels.cfm (accessed on 10 August 2015).

EIA., 2015b. Net petroleum imports data- 2014, U.S Energy Information Administration. Washington, D.C. Available at http://www.eia.gov/tools/faqs/faq.cfm?id=32&t=6 (accessed on 10 August 2015).

Fasahati, P., Woo, H.C., Liu, J.J., 2015. Industrial-scale bioethanol production from brown algae: Effects of pretreatment processes on plant economics. Appl. Energy. 139, 175-187.

Fischer, C.R., Klein-Marcuschamer, D., Stephanopoulos, G., 2008. Selection and optimization of microbial hosts for biofuels production. Metab. Eng. 10(6), 295-304.

Fontaine, F., Peterson, W., McCoy, E., Johnson, M.J., Ritter, G.J., 1942. A new type of glucose fermentation by Clostridium thermoaceticum. J. Bacteriol. 43(6), 701-715.

Foust, T., Aden, A., Dutta, A., Phillips, S., 2009. An economic and environmental comparison of a biochemical and a thermochemical lignocellulosic ethanol conversion processes. Cellulose. 16(4), 547-565.

Fraisse, L., Simon, H., 1988. Observations on the reduction of non-activated carboxylates by Clostridium formicoaceticum with carbon monoxide or formate and the influence of various viologens. Arch. Microbiol. 150(4), 381-386.

Frankman, A.W., 2009. Redox, pressure and mass transfer effects on syngas fermentation. in: Department of Chemical Engineering, MS Thesis, Brigham Young University, pp. 106.

Gaddy, J.L., Clausen, E.C., 1992. Clostridiumm ljungdahlii, an anaerobic ethanol and acetate producing microorganism, US, 5173429.

Gao, J., Atiyeh, H.K., Phillips, J.R., Wilkins, M.R., Huhnke, R.L., 2013. Development of low cost medium for ethanol production from syngas by Clostridium ragsdalei. Bioresour. Technol. 147, 508-515.

German, L., Schoneveld, G.C., Pacheco, P., 2011. The social and environmental impacts of biofuel feedstock cultivation: Evidence from multi-site research in the forest frontier. Ecol. Soc. 16(3), 24.

Girbal, L., Croux, C., Vasconcelos, I., Soucaille, P., 1995. Regulation of metabolic shifts in Clostridium acetobutylicum atcc 824. FEMS Microbiol. Rev. 17(3), 287-297.

Gottschal, J., Morris, J., 1981. The induction of acetone and butanol production in cultures of Clostridium acetobutylicum by elevated concentrations of acetate and butyrate. FEMS Microbiol. Lett. 12(4), 385-389.

Gottwald, M., Gottschalk, G., 1985. The internal ph of Clostridium acetobutylicum and its effect on the shift from acid to solvent formation. Arch. Microbiol. 143(1), 42-46.

Grethlein, A.J., Worden, R.M., Jain, M.K., Datta, R., 1991. Evidence for production of n-butanol from carbon monoxide by Butyribacterium methylotrophicum. J. Ferment. Bioeng. 72(1), 58-60.

Gutierrez, N.A., 1989. Role of motility and chemotaxis in solvent production by Clostridium acetobutylicum in: Biotechnology, Ph.D. Dissertation, Massey University, pp. 482.

Hahn-Hägerdal, B., Galbe, M., Gorwa-Grauslund, M.F., Lidén, G., Zacchi, G., 2006. Bio-ethanol – the fuel of tomorrow from the residues of today. Trends Biotechnol. 24(12), 549-556.

Hahn-Hägerdal, B., Karhumaa, K., Fonseca, C., Spencer-Martins, I., Gorwa-Grauslund, M., 2007. Towards industrial pentose-fermenting yeast strains. Appl. Microbiol. Biotechnol. 74(5), 937-953.

Hamelinck, C.N., Hooijdonk, G.v., Faaij, A.P., 2005. Ethanol from lignocellulosic biomass: Techno-economic performance in short-, middle-and long-term. Biomass Bioenergy. 28(4), 384-410.

Hartmanis, M.N., Klason, T., Gatenbeck, S., 1984. Uptake and activation of acetate and butyrate in Clostridium acetobutylicum. Appl. Microbiol. Biotechnol. 20(1), 66-71.

Harun, R., Danquah, M.K., Forde, G.M., 2010. Microalgal biomass as a fermentation feedstock for bioethanol production. J. Chem. Technol. Biotechnol. 85(2), 199-203.

Harun, R., Yip, J.W., Thiruvenkadam, S., Ghani, W.A., Cherrington, T.,

Danquah, M.K., 2014. Algal biomass conversion to bioethanol–a step‐by‐step assessment. Biotech. J. 9(1), 73-86.

Henstra, A.M., Sipma, J., Rinzema, A., Stams, A.J.M., 2007. Microbiology of synthesis gas fermentation for biofuel production. Curr. Opin. Biotechnol. 18(3), 200-206.

Hickey, R., Basu, R., Datta, R., Tsai, S.P., 2011. Method of conversion of syngas using microorganism on hydrophilic membrane, US,7923227.

Hu, P., 2011. Thermodynamic, sulfide, redox potential and ph effects on syngas fermentation. in: Chemical Engineering, Ph.D. Dissertation, Bringham Young University, pp. 206.

Hu, P., Bowen, S.H., Lewis, R.S., 2011. A thermodynamic analysis of electron production during syngas fermentation. Bioresour. Technol. 102(17), 8071-8076.

Huhnke, R., Lewis, R.S., Tanner, R.S., 2010. Isolation and characterization of novel clostridial species, US, 7704723.

Hurst, K.M., 2005. Effect of carbon monoxide and yeast extract on growth, hydrogenase activity and product formation of Clostridium carboxidivoransP7t. in: Chemical Engineering, Master of Science, Oklahoma State University, pp. 160.

Hurst, K.M., Lewis, R.S., 2010. Carbon monoxide partial pressure effects on the metabolic process of syngas fermentation. Biochem. Eng. J. 48(2), 159-165.

IFIS., 2009. Dictionary of food science and technology. 2 ed, (Ed.) I.F.I. Service, Wiley-Blackwell. Singapore, pp. 488.

INEOS., 2013. Ineos bio produces cellulosic ethanol at commercial scale, INEOS Bio. Vero Beach, FL. Available at http://www.ineos.com/en/businesses/INEOS-Bio/News/INEOS-Bio-Produces-Cellulosic-Ethanol/?business=INEOS+Bio (accessed on 10 August 2015).

Ito, K., Hori, K., 1989. Seaweed: Chemical composition and potential food uses. Food Rev. Int. 5(1), 101-144.

John, R.P., Anisha, G.S., Nampoothiri, K.M., Pandey, A., 2011. Micro and macroalgal biomass: A renewable source for bioethanol. Bioresour. Technol. 102(1), 186-193.

Jones, S.T., 2007. Gas-liquid mass transfer in an external airlift loop reactor for syngas fermentation. in: Chemical Engineering, Ph.D. Dissertation, Iowa State University, pp. 378.

Jung, K.A., Lim, S.-R., Kim, Y., Park, J.M., 2013. Potentials of macroalgae as feedstocks for biorefinery. Bioresour. Technol. 135, 182-190.

Kim, Y.-K., Park, S.E., Lee, H., Yun, J.Y., 2014. Enhancement of bioethanol production in syngas fermentation with Clostridium ljungdahlii using nanoparticles. Bioresour. Technol. 159, 446-450.

Kimmel, D.E., Klasson, K.T., Clausen, E.C., Gaddy, J.L., 1991. Performance of trickle-bed bioreactors for converting synthesis gas to methane. Appl. Biochem. Biotechnol. 28 (1), 457-469.

Kitani, O., Hall, C.W., 1989. Biomass handbook. Gordon and Breach Science Publishers, New York, pp.963.

Klasson, K., Elmore, B., Vega, J., Ackerson, M., Clausen, E., Gaddy, J., 1990a. Biological production of liquid and gaseous fuels from synthesis gas. Appl. Biochem. Biotechnol. 24(1), 857-873.

Klasson, K., Cowger, J., Ko, C., Vega, J., Clausen, E., Gaddy, J., 1990b. Methane production from synthesis gas using a mixed culture of R. Rubrum, M. Barkeri, and M. Formicicum. Appl. Biochem. Biotechnol. 24(1), 317-328.

Klasson, K., Ackerson, M., Clausen, E., Gaddy, J., 1991. Bioreactor design for synthesis gas fermentations. Fuel. 70(5), 605-614.

Klasson, K., Gupta, A., Clausen, E., Gaddy, J., 1993a. Evaluation of mass-transfer and kinetic parameters for Rhodospirillum rubrum in a continuous stirred tank reactor. Appl. Biochem. Biotechnol. 39(1), 549-557.

Klasson, K.T., Ackerson, M.D., Clausen, E.C., Gaddy, J.L., 1992. Bioconversion of synthesis gas into liquid or gaseous fuels. Enzyme Microb. Technol. 14(8), 602-608.

Klasson, T.K., Ackerson, M.D., Clausen, E.C., Gaddy, J.L., 1993b. Biological conversion of coal and coal-derived synthesis gas. Fuel. 72(12), 1673-1678.

Kundiyana, D.K., Huhnke, R.L., Maddipati, P., Atiyeh, H.K., Wilkins, M.R., 2010. Feasibility of incorporating cotton seed extract in Clostridium strain p11 fermentation medium during synthesis gas fermentation. Bioresour. Technol. 101(24), 9673-9680.

Kundiyana, D.K., Huhnke, R.L., Wilkins, M.R., 2011a. Effect of nutrient limitation and two-stage continuous fermentor design on productivities during “Clostridium ragsdalei” syngas fermentation. Bioresour. Technol. 102(10), 6058-6064.

Kundiyana, D.K., Wilkins, M.R., Maddipati, P., Huhnke, R.L., 2011b. Effect of temperature, ph and buffer presence on ethanol production from synthesis gas by “Clostridium ragsdalei”. Bioresour. Technol. 102(10), 5794-5799.

Lane, J., 2014. On the mend: Why ineos bio isn't producing ethanol in florida, Biofuels Digest. Available at http://www.biofuelsdigest.com/bdigest/2014/09/05/on-the-mend-why-ineos-bio-isnt-reporting-much-ethanol-production/ (accessed on 10 August 2015).

Lane, J., 2015. Abengoa bioenergy: Biofuels digest's 2015 5-minute guide, Biofuels Digest. Available at http://www.biofuelsdigest.com/bdigest/ 2015/01/19/abengoa-bioenergy-biofuels-digests-2015-5-minute-guide/ (accessed on 10 August 2015).

LanzaTech., 2015. Chemicals. Available at http://www.lanzatech.com/innovation/markets/chemicals/ (accessed on 10 August 2015).

Lewis, R.S., Tanner, R.S., Huhnke, R.L., 2007. Indirect or direct fermentation of biomass to fuel alcohol, US, 11441392.

Lewis, R.S., Frankman, A., Tanner, R.S., Ahmed, A., Huhnke, R.L., 2008. Ethanol via biomass-generated syngas. Int. Sugar J. 110(1311), 150-155.

Liew, F.M., Köpke, M., Simpson, S.D., 2013. Gas fermentation for commercial biofuels production, (Eds.) Fang, P.Z., IntechOpen. Rijeka, Croatia, pp. 125-173.

Lin, Y., Tanaka, S., 2006. Ethanol fermentation from biomass resources: Current state and prospects. Appl. Microbiol. Biotechnol. 69(6), 627-642.

Liou, J.S.C., Balkwill, D.L., Drake, G.R., Tanner, R.S., 2005. Clostridium carboxidivorans sp. Nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain sl1 as Clostridium drakei sp. Nov. Int. J. Syst. Evol. Microbiol. 55(5), 2085-2091.

Liu, K., Atiyeh, H.K., Tanner, R.S., Wilkins, M.R., Huhnke, R.L., 2012. Fermentative production of ethanol from syngas using novel moderately alkaliphilic strains of Alkalibaculum bacchi. Bioresour. Technol. 104, 336-341.

Liu, K., Atiyeh, H.K., Stevenson, B.S., Tanner, R.S., Wilkins, M.R., Huhnke, R.L., 2014a. Continuous syngas fermentation for the production of ethanol, n-propanol and n-butanol. Bioresour. Technol. 151, 69-77.

Liu, K., Atiyeh, H.K., Stevenson, B.S., Tanner, R.S., Wilkins, M.R., Huhnke, R.L., 2014b. Mixed culture syngas fermentation and conversion of carboxylic acids into alcohols. Bioresour. Technol. 152, 337-346.

Liu, K., Atiyeh, H.K., Pardo-Planas, O., Ezeji, T.C., Ujor, V., Overton, J.C., Berning, K., Wilkins, M.R., Tanner, R.S., 2015a. Butanol production from hydrothermolysis-pretreated switchgrass: Quantification of inhibitors and detoxification of hydrolyzate. Bioresour. Ttechnol. 189, 292-301.

Liu, K., Atiyeh, H.K., Pardo-Planas, O., Ramachandriya, K.D., Wilkins, M.R., Ezeji, T.C., Ujor, V., Tanner, R.S., 2015b. Process development for biological production of butanol from eastern redcedar. Bioresour. Technol. 176, 88-97.

Ljungdhal, L., 1986. The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu. Rev. Microbiol. 40(1), 415-450.

Lynd, L.R., Weimer, P.J., Van Zyl, W.H., Pretorius, I.S., 2002. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol Biol. R. 66(3), 506-577.

Lynd, L.R., Zyl, W.H.v., McBride, J.E., Laser, M., 2005. Consolidated bioprocessing of cellulosic biomass: An update. Curr. Opin. Biotechnol. 16(5), 577-583.

Lynd, L.R., Laser, M.S., Bransby, D., Dale, B.E., Davison, B., Hamilton, R., Himmel, M., Keller, M., McMillan, J.D., Sheehan, J., 2008. How biotech can transform biofuels. Nat. Biotechnol. 26(2), 169-172.

Maddipati, P., Atiyeh, H.K., Bellmer, D.D., Huhnke, R.L., 2011. Ethanol production from syngas by Clostridium strain p11 using corn steep liquor as a nutrient replacement to yeast extract. Bioresour. Technol. 102(11), 6494-6501.

Madigan, M., Martinko, J., Parker, J. 2003. Brock biology of microorganisms. Prentice Hall, New Jersey, pp. 1019.

Margeot, A., Hahn-Hagerdal, B., Edlund, M., Slade, R., Monot, F., 2009. New improvements for lignocellulosic ethanol. Curr. Opin. Biotechnol. 20(3), 372-380.

Mata, T.M., Martins, A.A., Caetano, N.S., 2010. Microalgae for biodiesel production and other applications: A review. Renew. Sustainable Energy Rev. 14(1), 217-232.

Menetrez, M.Y., 2014. Meeting the us renewable fuel standard: A comparison of biofuel pathways. Biofuel Res. J. 1(4), 110-122.

Mohammadi, M., Najafpour, G.D., Younesi, H., Lahijani, P., Uzir, M.H., Mohamed, A.R., 2011. Bioconversion of synthesis gas to second generation biofuels: A review. Renew. Sustainable Energy Rev. 15(9), 4255-4273.

Mohammadi, M., Younesi, H., Najafpour, G., Mohamed, A.R., 2012. Sustainable ethanol fermentation from synthesis gas by Clostridium ljungdahlii in a continuous stirred tank bioreactor. J. Chem.  Technol.  Biotechnol. 87(6), 837-843.

Mood, S.H., Golfeshan, A.H., Tabatabaei, M., Jouzani, G.S., Najafi, G.H., Gholami, M., Ardjmand, M., 2013. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew. Sustainable Energy Rev. 27, 77-93.

Munasinghe, P.C., Khanal, S.K., 2010a. Biomass-derived syngas fermentation into biofuels: Opportunities and challenges. Bioresour. Technol. 101(13), 5013-5022.

Munasinghe, P.C., Khanal, S.K., 2010b. Syngas fermentation to biofuel: Evaluation of carbon monoxide mass transfer coefficient (kLa) in different reactor configurations. Biotechnol. Progr. 26(6), 1616-1621.

Munasinghe, P.C., Khanal, S.K. 2014. Evaluation of hydrogen and carbon monoxide mass transfer and a correlation between the myoglobin-protein bioassay and gas chromatography method for carbon monoxide determination. RSC Adv. 4(71), 37575-37581.

Mussatto, S.I., Dragone, G., Guimarães, P.M., Silva, J.P.A., Carneiro, L.M., Roberto, I.C., Vicente, A., Domingues, L., Teixeira, J.A., 2010. Technological trends, global market, and challenges of bio-ethanol production. Biotechnol. Adv. 28(6), 817-830.

Naik, S., Goud, V.V., Rout, P.K., Dalai, A.K., 2010. Production of first and second generation biofuels: A comprehensive review. Renew. Sustainable Energy Rev. 14(2), 578-597.

Najafpour, G., Younesi, H., 2006. Ethanol and acetate synthesis from waste gas using batch culture of Clostridium ljungdahlii. Enzyme Microb. Technol. 38(1–2), 223-228.

Nayak, B.K., Roy, S., Das, D., 2014. Biohydrogen production from algal biomass (anabaena sp. Pcc 7120) cultivated in airlift photobioreactor. Int. J. Hydrogen Energ. 39(14), 7553-7560.

Nigam, P., Singh, D., 1995. Enzyme and microbial systems involved in starch processing. Enzyme Microb. Technol. 17(9), 770-778.

Öhgren, K., Bengtsson, O., Gorwa-Grauslund, M.F., Galbe, M., Hahn-Hägerdal, B., Zacchi, G., 2006. Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae tmb3400. J. Biotechnol. 126(4), 488-498.

Orgill, J.J., Atiyeh, H.K., Devarapalli, M., Phillips, J.R., Lewis, R.S., Huhnke, R.L., 2013. A comparison of mass transfer coefficients between trickle-bed, hollow fiber membrane and stirred tank reactors. Bioresour. Technol. 133, 340-346.

Pandey, A., 2010. Handbook of plant-based biofuels. CRC Press, Boca Raton, FL, pp. 312.

Panneerselvam, A., Wilkins, M., DeLorme, M., Atiyeh, H., Huhnke, R., 2009. Effects of various reducing agents on syngas fermentation by Clostridium ragsdalei. Biol. Eng. 2(3), 135-144.

Park, H.R., Jung, K.A., Lim, S.-R., Park, J.M., 2014. Quantitative sustainability assessment of seaweed biomass as bioethanol feedstock. Bioenergy Res. 7(3), 974-985.

Perales, A.V., Valle, C.R., Ollero, P., Gómez-Barea, A., 2011. Technoeconomic assessment of ethanol production via thermochemical conversion of biomass by entrained flow gasification. Energy. 36(7), 4097-4108.

Percival Zhang, Y.H., Himmel, M.E., Mielenz, J.R., 2006. Outlook for cellulase improvement: Screening and selection strategies. Biotechnol. Adv. 24(5), 452-481.

Perez, J.M., Richter, H., Loftus, S.E., Angenent, L.T., 2013. Biocatalytic reduction of short-chain carboxylic acids into their corresponding alcohols with syngas fermentation. Biotechnol. Bioeng. 110(4), 1066-1077.

Pessani, N.K., Atiyeh, H.K., Wilkins, M.R., Bellmer, D.D., Banat, I.M., 2011. Simultaneous saccharification and fermentation of kanlow switchgrass by thermotolerant Kluyveromyces marxianus imb3: The effect of enzyme loading, temperature and higher solid loadings. Bioresour. Technol. 102(22), 10618-10624.

Phillips, J., Atiyeh, H., Huhnke, R., 2014. Method for design of production medium for fermentation of synthesis gas to ethanol by acetogenic bacteria. Biolog. Eng.  Trans. 7(3), 113-128.

Phillips, J.R., Klasson, T.K., Clausen, E.C., Gaddy, J.L., 1993. Biological production of ethanol from coal synthesis gas. Appl. Biochem. Biotechnol. 39-40(1), 559-571.

Phillips, J.R., Clausen, E.C., Gaddy, J.L., 1994. Synthesis gas as substrate for the biological production of fuels and chemicals. Appl. Biochem. Biotechnol. 45(1), 145-157.

Phillips, J.R., Atiyeh, H.K., Tanner, R.S., Torres, J.R., Saxena, J., Wilkins, M.R., Huhnke, R.L., 2015. Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation: Medium development and culture techniques. Bioresour. Technol.190, 114-121.

POET-DSM., 2014. First commercial-scale cellulosic ethanol plant in the U.S. Opens for business, POET-DSM Advanced Biofuels, LLC. Emmetsburg, Iowa. Sept. 3rd, 2014.Available at http://www.dsm.com/corporate/media/informationcenter-news/2014/09/29-14-first-commercial-scale-cellulosic-ethanol-plant-in-the-united-states-open-for-business.html (accessed on 10 August 2015).

Posten, C., Schaub, G., 2009. Microalgae and terrestrial biomass as source for fuels—a process view. J. Biotechnol. 142(1), 64-69.

Ragsdale, S.W., 1997. The eastern and western branches of the wood/ljungdahl pathway: How the east and west were won. Biofactors. 6(1), 3-11.

Rajagopalan, S., P. Datar, R., Lewis, R.S., 2002. Formation of ethanol from carbon monoxide via a new microbial catalyst. Biomass Bioenergy. 23(6), 487-493.

Ramachandriya, K.D., Wilkins, M.R., Delorme, M.J., Zhu, X., Kundiyana, D.K., Atiyeh, H.K., Huhnke, R.L., 2011. Reduction of acetone to isopropanol using producer gas fermenting microbes. Biotechnol. Bioeng. 108(10), 2330-2338.

Rao, G., Mutharasan, R., 1986. Alcohol production by Clostridium acetobutylicum induced by methyl viologen. Biotechnol. Lett. 8(12), 893-896.

Rao, G., Ward, P., Mutharasan, R., 1987. Manipulation of end-product distribution in strict anaerobes. Ann. N.Y. Acad. Sci. 506(1), 76-83.

Rathmann, R., Szklo, A., Schaeffer, R., 2010. Land use competition for production of food and liquid biofuels: An analysis of the arguments in the current debate. Renew. Energy. 35(1), 14-22.

Rausch, K., Belyea, R., 2006. The future of coproducts from corn processing. Appl. Biochem. Biotechnol. 128(1), 47-86.

Richter, H., Martin, M.E., Angenent, L.T., 2013. A two-stage continuous fermentation system for conversion of syngas into ethanol. Energies. 6(8), 3987-4000.

Riggs, S.S., Heindel, T.J., 2006. Measuring carbon monoxide gas—liquid mass transfer in a stirred tank reactor for syngas fermentation. Biotechnol. Progr. 22(3), 903-906.

Rodríguez, L.F., Li, C., Khanna, M., Spaulding, A.D., Lin, T., Eckhoff, S.R., 2010. An engineering and economic evaluation of quick germ–quick fiber process for dry-grind ethanol facilities: Analysis. Bioresour. Technol. 101(14), 5282-5289.

Sakai, S., Nakashimada, Y., Yoshimoto, H., Watanabe, S., Okada, H., Nishio, N., 2004. Ethanol production from H2 and CO2 by a newly isolated thermophilic bacterium, Moorella sp. Huc22-1. Biotechnol. Lett. 26(20), 1607-1612.

Savage, M.D., Wu, Z., Daniel, S.L., Lundie, J., Leon, L., Drake, H.L., 1987. Carbon monoxide-dependent chemolithotrophic growth of Clostridium thermoautotrophicum. Appl. Environ. Microbiol. 53, 1902-1906.

Saxena, J., 2008. Development of an optimized and cost-effective medium for ethanol production by Clostridium strain P11, in: Department of Botany and Microbiology, Ph.D. Dissertation, University of Oklahoma. Ann Arbor, pp. 131.

Saxena, J., Tanner, R.S., 2011. Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen, Clostridium ragsdalei. J. Ind. Microbiol. Biotechnol. 38(4), 513-521.

Searchinger, T., Heimlich, R., Houghton, R.A., Dong, F., Elobeid, A., Fabiosa, J., Tokgoz, S., Hayes, D., Yu, T.H., 2008. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science. 319(5867), 1238-1240.

Shen, Y., Brown, R., Wen, Z., 2014a. Syngas fermentation of Clostridium carboxidivoran P7 in a hollow fiber membrane biofilm reactor: Evaluating the mass transfer coefficient and ethanol production performance. Biochem. Eng. J. 85, 21-29.

Shen, Y., Brown, R., Wen, Z., 2014b. Enhancing mass transfer and ethanol production in syngas fermentation of Clostridium carboxidivorans P7 through a monolithic biofilm reactor. Appl. Energy. 136, 68-76.

Sherwood, T.K., Pigford, R.L., Wilke, C.R., 1975. Mass transfer. McGraw-Hill Inc., New York, pp. 512.

Sim, J.H., Kamaruddin, A.H., 2008. Optimization of acetic acid production from synthesis gas by chemolithotrophic bacterium– Clostridium aceticum using statistical approach. Bioresour. Technol. 99(8), 2724-2735.

Sims, R., Taylor, M., Saddler, J., Mabee, W., 2008. From 1st-to 2nd-generation biofuel technologies: An overview of current industry and RD&D activities, International Energy Agency. Paris, France, pp. 120. Available at http://environmentportal.in/files/2nd_Biofuel_Gen.pdf (accessed on 10 August 2015).

Skidmore, B.E., 2010. Syngas fermentation: Quantification of assay technoques, reaction kinetics and pressure dependencies of the Clostridium p11 hydrogenase, in: Department of Chemical Engineering, M.S. Thesis, Bringham Young University, pp. 136.

Slepova, T.V., Sokolova, T.G., Lysenko, A.M., Tourova, T.P., Kolganova, T.V., Kamzolkina, O.V., Karpov, G.A., Bonch-Osmolovskaya, E.A., 2006. Carboxydocella sporoproducens sp. Nov., a novel anaerobic CO-utilizing/H2-producing thermophilic bacterium from a kamchatka hot spring. Int. J. Syst. Evol. Microbiol. 56(4), 797-800.

Stöcker, M., 2008. Biofuels and biomass-to-liquid fuels in the biorefinery: Catalytic conversion of lignocellulosic biomass using porous materials. Angew. Chem. Int. Ed. 47(48), 9200-9211.

Sun, Y., Cheng, J., 2002. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour. Technol. 83(1), 1-11.

Szczodrak, J., Fiedurek, J., 1996. Technology for conversion of lignocellulosic biomass to ethanol. Biomass Bioenergy. 10(5), 367-375.

Tanner, R.S., Miller, L.M., Yang, D., 1993. Clostridium ljungdahlii sp. Nov., an acetogenic species in clostridial rrna homology group i. Int. J Syst. Bacteriol. 43(2), 232-236.

Tanner, R.S., 2008. Production of ethanol from synthesis gas, in: Wall, J., Harwood, C., Demain A. (Eds.),Bioenergy. ASM Press, pp. 147-151.

Terrill, J., Wilkins, M., DeLorme, M., Atiyeh, H., Lewis, R., 2012. Effect of energetic gas composition on hydrogenase activity and ethanol production in syngas fermentation by Clostridium ragsdalei. Biol. Eng. Trans. 8, 87-96.

Tilman, D., Hill, J., Lehman, C., 2006. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science. 314(5805), 1598-1600.

Twidell, J., Weir, T., 2003. Renewable energy resources. Taylor and Francis Group, New York, pp. 601.

Ukpong, M.N., Atiyeh, H.K., De Lorme, M.J., Liu, K., Zhu, X., Tanner, R.S., Wilkins, M.R., Stevenson, B.S., 2012. Physiological response of Clostridium carboxidivorans during conversion of synthesis gas to solvents in a gas-fed bioreactor. Biotechnol. Bioeng. 109(11), 2720-2728.

Ungerman, A.J., Heindel, T.J., 2007. Carbon monoxide mass transfer for syngas fermentation in a stirred tank reactor with dual impeller configurations. Biotechnol. Progr. 23(3), 613-620.

USGC, 2012. Ddgs user handbook, US Grains Council. Washington, DC, pp. 406. Available at http://www.ethanolrfa.org/page/-/rfa-association-site/studies/2012_DDGS_Handbook.pdf?nocdn=1 (accessed on 10 August 2015).

Vega, J.L., Prieto, S., Elmore, B.B., Clausen, E.C., Gaddy, J.L., 1989. The biological production of ethanol from synthesis gas. Appl. Biochem. Biotechnol. 20(1), 781-797.

Vega, J.L., Clausen, E.C., Gaddy, J.L., 1990. Design of bioreactors for coal synthesis gas fermentations. Resour. Conserv. Recycl. 3(2), 149-160.

White, H., Lebertz, H., Thanos, I., Simon, H., 1987. Clostridium thermoaceticum forms methanol from carbon monoxide in the presence of viologen dyes. FEMS Microbiol. Lett. 43(2), 173-176.

Wilkins, M.R., Atiyeh, H.K., 2011. Microbial production of ethanol from carbon monoxide. Curr. Opin. Biotechnol. 22(3), 326-330.

Wilkins, M.R., Atiyeh, H., 2012. Fermentation, in: Dunford, N.T. (Eds.), Food and industrial bioproducts and bioprocessing.  John Wiley & Sons, Inc. Ames, Iowa, pp. 185.

Wood, H.G., Ragsdale, S.W., Pezacka, E., 1986. The acetyl-coa pathway of autotrophic growth. FEMS Microbiol. Lett. 39(4), 345-362.

Woolcock, P.J., Brown, R.C., 2013. A review of cleaning technologies for biomass-derived syngas. Biomass Bioenergy. 52, 54-84.

Worden, R.M., Grethlein, A.J., Jain, M.K., Datta, R., 1991. Production of butanol and ethanol from synthesis gas via fermentation. Fuel. 70(5), 615-619.

Wright, J., Wyman, C., Grohmann, K., 1988. Simultaneous saccharification and fermentation of lignocellulose. Appl. Biochem. Biotechnol. 18(1), 75-90.

Xu, D., Tree, D.R., Lewis, R.S., 2011. The effects of syngas impurities on syngas fermentation to liquid fuels. Biomass Bioenergy. 35(7), 2690-2696.

Xu, D., Lewis, R.S., 2012. Syngas fermentation to biofuels: Effects of ammonia impurity in raw syngas on hydrogenase activity. Biomass Bioenergy. 45, 303-310.

Yasin, M., Park, S., Jeong, Y., Lee, E.Y., Lee, J., Chang, I.S., 2014. Effect of internal pressure and gas/liquid interface area on the CO mass transfer coefficient using hollow fibre membranes as a high mass transfer gas diffusing system for microbial syngas fermentation. Bioresour. Technol. 169, 637-643.

Younesi, H., Najafpour, G., Mohamed, A.R. 2005. Ethanol and acetate production from synthesis gas via fermentation processes using anaerobic bacterium, Clostridium ljungdahlii. Biochem. Eng. J. 27(2), 110-119.

Zabriskie, D.W., Mill, T.O., 1988. Traders guide to fermentation media formulation. Traders Protein, pp. 60.

Zahn, J.A., Saxena, J., 2012. Ethanologenic clostridium species, Clostridium coskatii. US, 8143037.

Zeikus, J., 1980. Chemical and fuel production by anaerobic bacteria. Annu. Rev.Microbiol. 34(1), 423-464.

Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., Picataggio, S., 1995. Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science. 267(5195), 240-243.