Distillery decarbonisation and anaerobic digestion: balancing benefits and drawbacks using a compromise programming approach

Document Type : Research Paper

Authors

1 MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland.

2 Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland.

3 Irish Distillers Limited, Midleton Distillery, Midleton, Co. Cork, Ireland.

Abstract

The anaerobic digestion (AD) of distillery by-products presents benefits such as greenhouse gas (GHG) emission savings and electricity savings, as well as drawbacks such as reduced animal feed and protein production and the potential import of animal feeds. This work balances these benefits and drawbacks using compromise programming (CP). The best combination of by-products (from 9,261 scenarios) to use in AD was selected based on criteria chosen by management of a large distillery. The use of all by-products maximises benefits and drawbacks; the contrary also applies. When benefits and drawbacks are equally important, CP recommends using 50% of available draff, 50% of available thick stillage, and 55% of available thin stillage. The best combination when accounting for criteria weights chosen by distillery management is the use of 100% of available draff and 100% of available thick stillage. This could replace 48% of natural gas consumption at the distillery, reduce Scope 1 emissions by 45%, achieve a Scope 3 emissions savings of 22% of current Scope 1 emissions, and reduce electricity consumption in the feeds recovery plant of the distillery by 63%. Protein loss of 9,618 t could require the import of 19.59 kilo-tonne wet weight of material (ktwwt) of distillers grains and 9.15 ktwwt of soybean meal. If different criteria or criteria weights were used, a different result would be recommended. The methodology developed herein can aid in decarbonising the food and beverage industry by allowing decision-makers to balance the benefits and drawbacks of AD while accounting for subjective preferences.

Graphical Abstract

Distillery decarbonisation and anaerobic digestion: balancing benefits and drawbacks using a compromise programming approach

Highlights

  • Maximising the benefits of biogas also maximises the potential drawbacks.
  • Compromise programming (CP) assessed 9,621 scenarios of biogas production.
  • Preferences of distillery management were accounted for in the CP analysis.
  • CP suggests an optimal biogas system uses 100% of thick stillage and 100% of draff.
  • Scope 1 emissions are reduced by 45% when using the optimal biogas system.

Keywords


  1. Allen, E., Wall, D.M., Herrmann, C., Xia, A., Murphy, J.D., 2015. What is the gross energy yield of third generation gaseous biofuel sourced from seaweed?. Energy. 81, 352-360.
  2. Berglund, M., Börjesson, P., 2006. Assessment of energy performance in the life-cycle of biogas production. Biomass Bioenergy. 30(3), 254-266.
  3. Blonk, H., Paassen, M., van, 2018. GFLI methodology and project guidelines. Gouda.
  4. Campos-Guzmán, V., García-Cáscales, M.S., Espinosa, N., Urbina, A., 2019. Life cycle analysis with multi-criteria decision making: a review of approaches for the sustainability evaluation of renewable energy technologies. Renew. Sust. Energy Rev. 104, 343-366.
  5. Canales, F.A., Jurasz, J., Beluco, A., Kies, A., 2020. Assessing temporal complementarity between three variable energy sources through correlation and compromise programming. Energy. 192, 116637.
  6. Capodaglio, A.G., Callegari, A., Lopez, M.V., 2016. European framework for the diffusion of biogas uses: emerging technologies, acceptance, incentive strategies, and institutional-regulatory support. Sustainability. 8(4), 298.
  7. Dahlin, J., Herbes, C., Nelles, M., 2015. Biogas digestate marketing: qualitative insights into the supply side. Resour. Conserv. Recycl. 104, 152-161.
  8. de Sousa Xavier, A.M., Freitas, M. D. B. C., de Sousa Fragoso, R.M., 2015. Management of mediterranean forests-a compromise programming approach considering different stakeholders and different objectives. For. Policy Econ. 57, 38-46.
  9. Diakaki, C., Grigoroudis, E., Kolokotsa, D., 2008. Towards a multi-objective optimization approach for improving energy efficiency in buildings. Energy Build. 40(9), 1747-1754.
  10. Dieterich, B., Finnan, J., Hochstrasser, T., Müller, C., 2014. The greenhouse gas balance of a dairy farm as influenced by the uptake of biogas production. Bioenergy Res. 7(1), 95-109.
  11. Dong, H., Mangino, J., Mc Allister, T.A., Hatfield, J.L., Johnson, D.E., Lassey, K.R., de Lima, M.A., Romanovskaya, A., Bartram, D., Gibb, D., Martin, J.H., 2006. IPCC guidelines for national greenhouse gas inventories volume - IV agriculture, forestry and other land use, in: IPCC Guidelines for National Greenhouse Gas Inventories Volume - IV Agriculture, Forestry and Other Land Use. pp. 10.01-10.87.
  12. Dorini, G., Kapelan, Z., Azapagic, A., 2011. Managing uncertainty in multiple-criteria decision making related to sustainability assessment. Clean Technol. Environ. Policy. 13(1), 133-139.
  13. Drosg, B., Fuchs, W., Meixner, K., Waltenberger, R., Kirchmayr, R., Braun, R., Bochmann, G., 2013. Anaerobic digestion of stillage fractions-estimation of the potential for energy recovery in bioethanol plants. Water Sci. Technol. 67(3), 494–505.
  14. Drosg, B., Wirthensohn, T., Konrad, G., Hornbachner, D., Resch, C., Wäger, F., Loderer, C., Waltenberger, R., Kirchmayr, R., Braun, R., 2008. Comparing centralised and decentralised anaerobic digestion of stillage from a large-scale bioethanol plant to animal feed production. Water Sci. Technol. 58(7), 1483-1489.
  15. Duckstein, L., Opricovic, S., 1980. Multiobjective optimization in river basin development. Water Resour. Res. 16(1), 14-20.
  16. Duffy, P., Black, K., Hyde, B., Ryan, A., Ponzi, J., Alam, S., 2020. Ireland ’s national inventory report 2020. Johnstown Castle, Wexford.
  17. Ellen MacArthur Foundation, 2013. Towards the circular economy: economic and business rationale for an accelerated transition.
  18. EPA, 2019. Country Specific Net Calorific Values and CO2 Emission Factors for use in the Annual Installation Emissions Report- 2019.
  19. Fagerström, A., Al Seadi, T., Rasi, S., Briseid, T., 2018. The role of anaerobic digestion and biogas in the circular economy. IEA Bioenergy Task 37.
  20. Foley, P.A., Crosson, P., Lovett, D.K., Boland, T.M., O’Mara, F.P., Kenny, D.A., 2011. Whole-farm systems modelling of greenhouse gas emissions from pastoral suckler beef cow production systems. Agric. Ecosyst. Environ. 142(3-4), 222-230.
  21. Hergoualc’h, K., Akiyama, H., Bernoux, M., Chirinda, N., Del Prado, A., Kasimir, Å., MacDonald, D., Ogle, S.M., Regina, K., Weerden, T.J.V.D., 2019. N2O Emissions from Managed Soils, and CO2 Emissions from Lime and Urea Application. IPCC. 4, 1-48.
  22. IEA, 2020. Outlook for biogas and biomethane. Prospects for organic growth. World Energy Outlook Special Report.
  23. IEA, 2018. World energy outlook 2018. Paris.
  24. Kang, X., Lin, R., O’Shea, R., Deng, C., Li, L., Sun, Y., Murphy, J.D., 2020. A perspective on decarbonizing whiskey using renewable gaseous biofuel in a circular bioeconomy process. J. Clean. Prod. 255, 120211.
  25. Korres, N.E., Singh, A., Nizami, A.S., Murphy, J.D., 2010. Is grass biomethane a sustainable transport biofuel?. Biofuels, Bioprod. Biorefin. 4(3), 310-325.
  26. Kumar, A., Sah, B., Singh, A.R., Deng, Y., He, X., Kumar, P., Bansal, R.C., 2017. A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renew. Sust. Energy Rev. 69, 596-609.
  27. Leinonen, I., MacLeod, M., Bell, J., 2018. Effects of alternative uses of distillery by-products on the greenhouse gas emissions of Scottish malt whisky production: a system expansion approach. Sustainability. 10(5), 1473.
  28. Lijó, L., González-García, S., Bacenetti, J., Fiala, M., Feijoo, G., Moreira, M.T., 2014. Assuring the sustainable production of biogas from anaerobic mono-digestion. J. Clean. Prod. 72, 23-34.
  29. Lindkvist, E., Karlsson, M., Ivner, J., 2019. System analysis of biogas production-part II application in food industry systems. Energies. 12(3), 412.
  30. Logan, M., Visvanathan, C., 2019. Management strategies for anaerobic digestate of organic fraction of municipal solid waste: current status and future prospects. Waste Manage. Res. 37(1_suppl), 27-39.
  31. Lorenz, H., Fischer, P., Schumacher, B., Adler, P., 2013. Current EU-27 technical potential of organic waste streams for biogas and energy production. Waste Manage. 33(11), 2434-2448.
  32. Mardani, A., Zavadskas, E.K., Khalifah, Z., Zakuan, N., Jusoh, A., Nor, K.M., Khoshnoudi, M., 2017. A review of multi-criteria decision-making applications to solve energy management problems: two decades from 1995 to 2015. Renew. Sust. Energy Rev. 71, 216-256.
  33. McAuliffe, G.A., Takahashi, T., Mogensen, L., Hermansen, J.E., Sage, C.L., Chapman, D.V., Lee, M.R.F., 2017. Environmental trade-offs of pig production systems under varied operational efficiencies. J. Clean. Prod. 165, 1163-1173.
  34. Murphy, J.D., Thamsiriroj, T., 2013. 5-Fundamental science and engineering of the anaerobic digestion process for biogas production, in: The Biogas Handbook. Woodhead Publishing. Elsevier, pp. 104-130.
  35. Nemecek, T., Kagi, T., 2007. Life cycle inventories of agricultural production systems. Final report ecoinvent v2. 0 No, 15. 1-360.
  36. Nevzorova, T., Kutcherov, V., 2019. Barriers to the wider implementation of biogas as a source of energy: a state-of-the-art review. Energy Strategy. Rev. 26, 100414.
  37. Nguyen, T.L.T., Hermansen, J.E., Mogensen, L.I.S.B.E.T.H., 2011. Environmental assessment of Danish pork. Report No. 103 Aarhus University.
  38. O’Shea, R., Lin, R., Wall, D.M., Browne, J.D., Murphy, J.D., 2020. Using biogas to reduce natural gas consumption and greenhouse gas emissions at a large distillery. Appl. Energy. 279, 115812.
  39. Panwar, M., Suryanarayanan, S., Hovsapian, R., 2017. A multi-criteria decision analysis-based approach for dispatch of electric microgrids. Int. J. Electr. Power Energy Syst. 88, 99-107.
  40. Pipyn, P., Verstraete, W., Ombregt, J.P. 1979. A pilot scale anaerobic upflow reactor treating distillery wastewaters. Biotechnol. Lett. 1(12), 495-500.
  41. Plana, P.V., Noche, B., 2016. A review of the current digestate distribution models: storage and transport. Waste Manage. Environ. VIII 1, 345-357.
  42. Pöschl, M., Ward, S., Owende, P., 2010. Evaluation of energy efficiency of various biogas production and utilization pathways. Appl. Energy. 87(11), 3305-3321.
  43. Sandgani, M.R., Sirouspour, S., 2018. Energy management in a network of grid-connected microgrids/nanogrids using compromise programming. IEEE Trans. Smart Grid. 9(3), 2180-2191.
  44. Rehl, T., Müller, J., 2011. Life cycle assessment of biogas digestate processing technologies. Resour. Conserv. Recycl. 56(1), 92-104.
  45. Rogelj, J., Shindell, D., Jiang, K., Fifita, S., Forster, P., Ginzburg, V., Handa, C., Kheshgi, H., Kobayashi, S., Kriegler, E., Mundaca, L., Séférian, R., Vilariño, M.V., 2018. Mitigation pathways compatible with 1.5°C in the context of sustainable development. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathw. IPCC Spec. Rep. Glob. Warm. 1.5 o pp 82.
  46. Romero, C., Amador, F., Barco, A., 1987. Multiple objectives in agricultural planning: a compromise programming application. Am. J. Agric. Econ. 69(1), 78-86.
  47. Saaty, T.L., 1990. How to make a decision: the analytic hierarchy process. Eur. J. Oper. Res. 48(1), 9-26.
  48. Siksnelyte, I., Zavadskas, E.K., Streimikiene, D., Sharma, D., 2018. An overview of multi-criteria decision-making methods in dealing with sustainable energy development issues. Energies. 11(10), 2754.
  49. United Nations Framework Convention on Climate Change, 2019. Greenhouse gas inventory data - flexible queries annex I parties.
  50. Wall, D.M., O’Kiely, P., Murphy, J.D., 2013. The potential for biomethane from grass and slurry to satisfy renewable energy targets. Bioresour. Technol. 149, 425-431.
  51. Wallace, M., 2020. Economic Impact assessment of the tillage sector in Ireland. Dublin.
  52. Wang, S., Jena, U., Das, K.C., 2018. Biomethane production potential of slaughterhouse waste in the United States. Energy Convers. Manage. 173, 143-157.
  53. WBCSD and WRI, 2004. The greenhouse gas protocol a corporate accounting and reporting standard. Greenh. Gas Protoc. 1-116.
  54. WBCSD and WRI, 2013a. Corporate Value Chain (Scope 3) Accounting and Reporting Standard.
  55. WBCSD and WRI, 2013b. Technical Guidance for Calculating Scope 3 Emissions (version 1.0).
  56. Weber, B., Stadlbauer, E.A., 2017. Sustainable paths for managing solid and liquid waste from distilleries and breweries. J. Clean. Prod. 149, 38-48.
  57. Yan, B., Yan, J., Li, Y., Qin, Y., Yang, L., 2021. Spatial distribution of biogas potential, utilization ratio and development potential of biogas from agricultural waste in China. J. Clean. Prod. 292, 126077.
  58. Yu, P.L., 1985. Multiple-criteria decision making. Springer US, Boston, MA.
  59. Zelany, M., 1974. A concept of compromise solutions and the method of the displaced ideal. Comput. Oper. Res. 1(3-4), 479-496.
  60. Zeleny, M., 1976. The theory of the displaced ideal. In Multiple criteria decision making Kyoto. Springer, Berlin, Heidelberg. pp. 153-206.