Enhancing waste degradation and biogas production by pre-digestion with a hyperthermophilic anaerobic bacterium

Document Type : Research Paper

Authors

1 Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA.

2 Department of Plant and Wildlife Science, Brigham Young University, Provo, UT 84602, USA.

3 Department of Food Science and Nutrition, Utah State University, Logan, UT 84322, USA.

4 Aqua Engineering, Bountiful, UT 84010, USA.

Abstract

The hyperthermophilic anaerobic bacterium, Caldicellulosiruptor bescii, is effective in degrading and solubilizing lignocellulosic materials. Laboratory studies have characterized the chemistry of the process for crystalline cellulose and switchgrass, but the data are insufficient for engineering commercial plants to use C. bescii for pre-digestion of waste streams. The purpose of this study is three-fold: 1) to identify any potential toxicities in C. bescii pre-digestion and biogas production from several wastes; 2) to determine the potential enhancement of biogas production by anaerobic digestion of pre-digested dairy manure and waste activated sludge; and 3) to identify variables that must be quantified and controlled for engineering commercial, continuous-flow systems for waste disposal and biogas production incorporating C. bescii pre-digestion. Tests were run at lab-, bench- and pilot plant-scale with C.bescii pre-digestion and controls run at 75°C and pH 7-8 followed by mesophilic anaerobic digestion at 37-41°C. The lab- and bench-scale tests demonstrate that C. bescii is capable of growing on several organic wastes and pre-digestion with C. bescii increases conversion of waste into biogas, typically by a factor of 2 or more. Incorporation of C. bescii pre-digestion in an optimized commercial system is predicted to provide 75-85% volatile solids conversion to biogas with 75% methane when digesting dairy manure and sewage sludge. Achieving these results at a commercial scale requires further work to quantify C. bescii growth and enzyme production rates, as well as rates of base- and enzyme-catalyzed hydrolysis of the polymeric materials, e.g., lignocellulose, in the waste in order to optimize retention times.

Graphical Abstract

Enhancing waste degradation and biogas production by pre-digestion with a hyperthermophilic anaerobic bacterium

Highlights

  • Several organic wastes successfully pre-digested with Caldicellulosiruptor bescii.
  • Waste destruction and biogas production increased in all cases.
  • Pre-digestion doubled biogas production from dairy manure and waste activated sludge.
  • Optimization requires optimizing both pre-digestion and digestion retention times.

Keywords


  1. Anukam, A., Berghel, J., 2020. Biomass pretreatment and characterization: a review. Biomass.
  2. Atelge, M.R., Atabania, A.E., Banu, J.R., Krisae, D., Kayaf, M., Eskicioglue, C., Kumarg, G., Lee, C., Yildizi, Y.Ş., Unalana, S., Mohanasundaram, R., Dumank, F., 2020. A critical review of pretreatment technologies to enhance anaerobic digestion and energy recovery. Fuel. 270, 117494.
  3. Baird, R.B., Eaton, A.D., Rice, E.W., Bridgewater, L. eds., 2017. Standard Methods for the examination of water and wastewater. 23rd American Public Health Association, Washington, D.C.
  4. Basen, M., Rhaesa, A.M., Kataeva, I., Prybol, C.J., Scott, I.M., Poole, F.L., Adams, M.W., 2014. Degradation of high loads of crystalline cellulose and of unpretreated plant biomass by the thermophilic bacterium Caldicellulosiruptor bescii. Bioresour. Technol. 152, 384-392.
  5. Carrere, H., Antonopoulou, G., Affes, R., Passos, F., Battimelli, A., Lyberatos, G., Ferrer, I., 2016. Review of feedstock pretreatment strategies for improved anaerobic digestion: from lab-scale research to full-scale application. Bioresour. Technol. 199, 386-397.
  6. Cheah, W.Y., Sankaran, R., Show, P.L., Ibrahim, T.N.B.T., Chew, K.W., Culaba, A., Jo-Shu, C., 2020. Pretreatment methods for lignocellulosic biofuels production: current advances, challenges and future prospects. Biofuel Res. J. 25, 1115-1127.
  7. Ferrer, I., Ponsáb, S., Vázquez, F., Font, X., 2008. Increasing biogas production by thermal (70 C) sludge pretreatment prior to thermophilic anaerobic digestion. Biochem. Eng. J. 42(2), 186-192.
  8. Kataeva, I., Foston, M.B., Yang, S.J., Pattathil, S., Biswal, A.K., Poole II, F.L., Basen, M., Rhaesa, A.M., Thomas, T.P., Azadi, P., Olman, V., Saffold, T.D., Mohler, K.E., Lewis, D.L., Doeppke, C., Zeng, Y., Tschaplinski, T.J., York, W.S., Davis, M., Mohnen, D., Xu, Y., Ragauskas, A.J., Ding, S.Y., Kelly, R.M., Hahn M.G., Adams, M.W.W., 2013. Carbohydrate and lignin are simultaneously solubilized from unpretreated switchgrass by microbial action at high temperature. Energy Environ. Sci. 6(7), 2186-2195.
  9. Kumar, A.K., Sharma, S., 2017. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour. Bioprocess. 4(1), 7.
  10. Lee, J-S., Saddler, J., Binod, P., 2016. Pretreatment of biomass. Bioresour. Technol. 199, 1.
  11. Liao Z., P.K., Peot, C., Lancaster R., Mlls N., Kleiven M., 2014. Thermal hydrolysis pretreatment for advanced anaerobic digestion for sludge treatment and disposal in large scale projects. In: DSD International Conference, Hong Kong.
  12. Liu, X., Wang, Q., Tang, Y., Pavlostathis, S.G., 2021. Hydrothermal pretreatment of sewage sludge for enhanced anaerobic digestion: resource transformation and energy balance. Chem. Eng. J. 410, 127430.
  13. Lochner, A., Giannone, R.J., Rodriguez Jr, M., Shah, M.B., Mielenz, J.R., Keller, M., Antranikian, G., Graham, D.E., Hettich, R.L., 2011. Use of label-free quantitative proteomics to distinguish the secreted cellulolytic systems of Caldicellulosiruptor bescii and Caldicellulosiruptor obsidiansis. Appl. Environ. Microbiol. 77(12), 4042-4054.
  14. Lu, J., Gavala, H.N., Skiadas, I.V., Mladenovska, Z., Ahring, B.K., 2008. Improving anaerobic sewage sludge digestion by implementation of a hyper-thermophilic prehydrolysis step. J. Environ. Manage. 88(4), 881-889.
  15. Nasir, I.M., Mohd Ghazi, T.I., Omar, R., 2012. Anaerobic digestion technology in livestock manure treatment for biogas production: a review. Eng. Life Sci. 12(3), 258-269.
  16. Popovic, M., Woodfield, B.F., Hansen, L.D., 2019. Thermodynamics of hydrolysis of cellulose to glucose from 0 to 100°C: cellulosic biofuel applications and climate change implications. J. Chem. Thermodyn. 128, 244-250.
  17. Rico, C., Rico, J.L., Muñoz, N., Gómez, B., Tejero, I., 2011. Effect of mixing on biogas production during mesophilic anaerobic digestion of screened dairy manure in a pilot plant. Eng. Life Sci. 11(5), 476-481.
  18. Sayara, T., Sánchez, A., 2019. A review on anaerobic digestion of lignocellulosic wastes: pretreatments and operational conditions. Appl. Sci. 9(21), 4655.
  19. Sevillano, C.A., Pesantes, A.A., Peña Carpio, E., Martínez, E.J., Gómez, X., 2021. Anaerobic digestion for producing renewable energy-The evolution of this technology in a new uncertain scenario. Entropy. 23(2), 145.
  20. Straub, C.T., Khatibi, P.A., Otten, J.K., Adams, M.W.W., Kelly, R.M., 2019. Lignocellulose solubilization and conversion by extremely thermophilic Caldicellulosiruptor bescii improves by maintaining metabolic activity. Biotech. Bioeng. 116(8), 1901-1908.
  21. Tabatabaei, M., Aghbashlo, M., Valijanian, E., Panahi, H.K.S., Nizami, A.S., Ghanavati, H., Sulaiman, A., Mirmohamadsadeghi, S., Karimi, K., 2020. A comprehensive review on recent biological innovations to improve biogas production, Part 1: upstream strategies. Renewable Energy. 146, 1204-1220.
  22. Vyas, P., Kumar, A., Singh, S., 2018. Biomass breakdown: a review on pretreatment, instrumentations and methods. Front. Biosci. Elite. 10, 155-174.
  23. Xu, Y., Lu, Y., Zheng, L., Wang, Z., Dai, X., 2020. Perspective on enhancing the anaerobic digestion of waste activated sludge. J. Hazard. Mater. 389, 121847.
  24. Yang, S.J., Kataeva, I., Wiegel, J., Yin, Y., Dam, P., Xu, Y., Westpheling, J., Adams, M.W.W., 2010. Classification of ‘Anaerocellum thermophilum’ strain DSM 6725 as Caldicellulosiruptor bescii nov. Int. J. Syst. Evolution. Microbiol. 60(9), 2011-2015.
  25. Zamri, M.F.M.A., Hasmady, S., Akhiar, A., Ideris, F., Shamsuddin, A.H., Mofijur, M., Fattah, I.M.R., Mahlia, T.M.I., 2021. A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste. Renew. Sust. Energy Rev. 137, 110637.