Microalgae growth and diversity in anaerobic digestate compared to synthetic media

Document Type : Research Paper

Authors

1 Environmental Engineering Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey.

2 Shannon Applied Biotechnology Centre, Technological University of the Shannon:Midlands Midwest, Moylish Park, V94 E8YF Limerick, Ireland.

3 PhiTech Bioinformatics, 41400 Gebze, Kocaeli, Turkey.

4 Department of Bioengineering, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey.

Abstract

Economizing microalgal cultivation is a considerable milestone targeted by efforts put into microalgal biorefineries. In light of that, the present study was aimed to explore the potential of using anaerobic liquid digestate (ALD) as culture media to grow microalgae and compared it with three different synthetic media (i.e., N8, BBM, and M8) in terms of biomass yield, fatty acid composition, and nutrient utilization/recovery. Moreover, a mixed culture of wild-type microalgae was employed in this study owing to the ability of mixed cultures to survive extreme conditions, eliminating the risk of losing the culture easily, as it mostly happens with pure cultures. The highest nutrient yield coefficients were achieved when the mixed microalgae culture was cultivated in ALD, where the yield coefficient for nitrogen (YN) and yield coefficient for phosphorus (YP) were 10.7 mg biomass mg-1 N and 98 mg biomass mg-1 P, respectively. The highest lipid content (34%) and the highest concentrations of C16:0 (114 mg L-1) and C18:0 (60.9 mg L-1) were also recorded when the mixed microalgae culture was cultivated in ALD. Furthermore, the polyunsaturated fatty acids (PUFA) content also increased significantly in ALD, a beneficial phenomenon as PUFAs in microalgae allow them to adapt more effectively to extreme conditions. Based on the microbial community analysis performed using the multi-marker metabarcoding approach, Diphylleia rotans, Synechocystis PCC-6803, Cyanobium gracile PCC 6307, and Chlorella sorokiniana were identified as the most abundant species in the ALD growth. Overall, based on the findings of the present study, ALD could be used as a promising cultivation medium for microalgae, offering a process integration approach to combine anaerobic digestion and algae cultivation as an effective way to simultaneously treat the high-strength dark-colored ALD and valorize it into profitable byproducts.

Graphical Abstract

Microalgae growth and diversity in anaerobic digestate compared to synthetic media

Highlights

  • Anaerobic liquid digestate (ALD) was compared with synthetic media for microalgal cultivation.
  • Microbial community analysis was performed with a multi-marker metabarcoding approach.
  • ALD led to the highest lipid (34%) and C16:0 and C18:0 contents, 114 and 60.9 mg L-1, respectively.
  • Microalgae`s PUFA content substantially increased for effective adaptation to ALD`s extreme conditions.
  • Highest nutrient yield coefficients achieved when mixed microalgae culture was cultivated in ALD.

Keywords


  1. Addy, M.M., Kabir, F., Zhang, R., Lu, Q., Deng, X., Current, D., Griffith, R., Ma, Y., Zhou, W., Chen, P., Ruan, R., 2017. Co-cultivation of microalgae in aquaponic systems. Bioresour. Technol. 245, 27-34.
  2. APHA, A., 2005. Standard methods for the examination of water and wastewater. USA: Washington DC, USA.
  3. Apprill, A., McNally, S., Parsons, R., Weber, L., 2015. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75(2), 129-137.
  4. Aslan, S., Kapdan, I.K., 2006. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol. Eng. 28(1), 64-70.
  5. Bligh, E.G., Dyer, W.J., 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37(8), 911-917.
  6. Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., 2018. Reproducible, interactive, scalable, and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37(8), 852-857.
  7. Carney, L.T., Lane, T.W., 2014. Parasites in algae mass culture. Front. Microbiol. 5, 278.
  8. Chaïb, S., Pistevos, J. C., Bertrand, C., Bonnard, I., 2021. Allelopathy and allelochemicals from microalgae: an innovative source for bio-herbicidal compounds and biocontrol research. Algal Res. 54, 102213.
  9. Cheng, J., Ye, Q., Xu, J., Yang, Z., Zhou, J., Cen, K., 2016. Improving pollutants removal by microalgae Chlorella PY-ZU1 with 15% CO2 from undiluted anaerobic digestion effluent of food wastes with ozonation pretreatment. Bioresour. Technol. 216, 273-279.
  10. Craggs, R.J., Heubeck, S., Lundquist, T.J., Benemann, J.R., 2011. Algal biofuels from wastewater treatment high rate algal ponds. Water Sci. Technol. 63(4), 660-665.
  11. Crofcheck, C.L., Monstross, M., Xinyi, E., Shea, A.P., Crocker, M., Andrews, R., 2012. Influence of media composition on the growth rate of Chlorella vulgaris and Scenedesmus acutus utilized for CO2 In 2012 Dallas, Texas, American Society of Agricultural and Biological Engineers. p. 1.
  12. Delgadillo-Mirquez, L., Lopes, F., Taidi, B., Pareau, D., 2016. Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture. Biotechnol. Rep. 11, 18-26.
  13. Diesel Prices. 2021. US Gallon (accessed February, 24, 2022).
  14. Ebeling, J.M., Timmons, M.B., Bisogni, J.J., 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems. Aquaculture. 257(1-4), 346-358.
  15. Ermis, H., Altinbas, M., 2019. Determination of biokinetic coefficients for nutrient removal from anaerobic liquid digestate by mixed microalgae. J. Appl. Phycol. 31(3), 1773-1781.
  16. Ermis, H., Guven-Gulhan, U., Cakir, T., Altinbas, M., 2020. Effect of iron and magnesium addition on population dynamics and high value product of microalgae grown in anaerobic liquid digestate. Sci. Rep. 10(1), 1-12.
  17. Islam, B., Sgobba, M., Laughton, C., Orozco, M., Sponer, J., Neidle, S., Haider, S., 2013. Conformational dynamics of the human propeller telomeric DNA quadruplex on a microsecond time scale. Nucleic Acids Res. 41(4), 2723-2735.
  18. Kang, Z., Kim, B.H., Ramanan, R., Choi, J.E., Yang, J.W., Oh, H.M., Kim, H.S., 2015. A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength. J. Microbiol. Biotechnol. 25(1), 109-118.
  19. Kim, B.H., Kang, Z., Ramanan, R., Choi, J.E., Cho, D.H., Oh, H.M., Kim, H.S., 2014. Nutrient removal and biofuel production in high rate algal pond using real municipal wastewater. J. Microbial. Biotechnol. 24(8), 1123-1132.
  20. Koutra, E., Economou, C.N., Tsafrakidou, P., Kornaros, M., 2018. Bio-based products from microalgae cultivated in digestates. Trends Biotechnol. 36(8), 819-833.
  21. Krasikov, V., Aguirre von Wobeser, E., Dekker, H.L., Huisman, J., Matthijs, H.C., 2012. Time‐series resolution of gradual nitrogen starvation and its impact on photosynthesis in the cyanobacterium Synechocystis PCC 6803. Physiol. Plant. 145(3), 426-439.
  22. Larsdotter, K., 2006. Microalgae for phosphorus removal from wastewater in a Nordic climate (Doctoral dissertation, KTH).
  23. Letunic, I., Bork, P., 2016. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44(W1), W242-W245.
  24. Mahfouz, G.N., 2014. Mineral Uptake Rates and Yield Coefficients of the Green Microalgae Scenedesmus Dimorphus.
  25. Martınez, M.E., Sánchez, S., Jimenez, J.M., El Yousfi, F., Munoz, L., 2000. Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour. Technol. 73(3), 263-272.
  26. Mazzuca Sobczuk, T., Chisti, Y., 2010. Potential fuel oils from the microalga Choricystis minor. J. Chem. Technol. Biotechnol. 85(1), 100-108.
  27. Montero, E., Olguín, E.J., De Philippis, R., Reverchon, F., 2018. Mixotrophic cultivation of Chlorococcum sp. under non-controlled conditions using a digestate from pig manure within a biorefinery. J. Appl. Phycol. 30(5), 2847-2857.
  28. Mostert, E.S., Grobbelaar, J.U., 1987. The influence of nitrogen and phosphorus on algal growth and quality in outdoor mass algal cultures. Biomass. 13(4), 219-233.
  29. Neag, E., Török, A.I., Cadar, O., Băbălău-Fuss, V., Roman, C., 2019. Enhancing lipid production of Synechocystis PCC 6803 for biofuels production, through environmental stress exposure. Renewable Energy. 143, 243-251.
  30. Parada, A.E., Needham, D.M., Fuhrman, J.A., 2016. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18(5), 1403-1414.
  31. Park, J.B.K., Craggs, R.J., Shilton, A.N., 2013. Enhancing biomass energy yield from pilot-scale high rate algal ponds with recycling. Water Res. 47(13), 4422-4432.
  32. Patel, A., Barrington, S., Lefsrud, M., 2012. Microalgae for phosphorus removal and biomass production: a six species screen for dual‐purpose organisms. Gcb Bioenergy. 4(5), 485-495.
  33. Price, M.N., Dehal, P.S., Arkin, A.P., 2010. FastTree 2-approximately maximum-likelihood trees for large alignments. PloS one. 5(3), p.e9490.
  34. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O., 2012. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41(D1), D590-D596.
  35. Ramanan, R., Kim, B.H., Cho, D.H., Oh, H.M., Kim, H.S., 2016. Algae-bacteria interactions: evolution, ecology and emerging applications. Biotechnol. Adv. 34(1), 14-29.
  36. Ramanan, R., Kang, Z., Kim, B.H., Cho, D.H., Jin, L., Oh, H.M., Kim, H.S., 2015. Phycosphere bacterial diversity in green algae reveals an apparent similarity across habitats. Algal Res. 8, 140-144.
  37. Ruiz-Marin, A., Mendoza-Espinosa, L.G., Stephenson, T., 2010. Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour. Technol. 101(1), 58-64.
  38. Sahni, S., Singh, M.K., Narang, A., 2021. Sustainable Solution for Future Energy Challenges Through Microbes. Energy Crises, Challenges Solutions. 231-249.
  39. Salama, E.S., Kim, H.C., Abou-Shanab, R.A., Ji, M.K., Oh, Y.K., Kim, S.H., Jeon, B.H., 2013. Biomass, lipid content, and fatty acid composition of freshwater Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress. Bioprocess. Biosyst. Eng. 36(6), 827-833.
  40. Sauvage, T., Schmidt, W.E., Suda, S., Fredericq, S., 2016. A metabarcoding framework for facilitated survey of endolithic phototrophs with tuf A. BMC Ecol. 16(1), 1-21.
  41. Sherwood, A.R., Vis, M.L., Entwisle, T.J., Necchi Jr, O., Presting, G.G., 2008. Contrasting intra versus interspecies DNA sequence variation for representatives of the Batrachospermales (Rhodophyta): insights from a DNA barcoding approach. Phycol. Res. 56(4), 269-279.
  42. Shin, D.Y., Cho, H.U., Utomo, J.C., Choi, Y.N., Xu, X., Park, J.M., 2015. Biodiesel production from Scenedesmus bijuga grown in anaerobically digested food wastewater effluent. Bioresour. Technol. 184, 215-221.
  43. Sreekumar, N., Chennattussery, A.J., Mariya, A., Selvaraju, N., 2018. Anaerobic digester sludge as nutrient source for culturing of microalgae for economic biodiesel production. Int. J. Environ. Sci. Technol. 15(12), 2607-2614.
  44. Stoeck, T., Bass, D., Nebel, M., Christen, R., Jones, M.D., Breiner, H.W., Richards, T.A., 2010. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21-31.
  45. Struthers, B.A., 2021. Algae cultivation and hydrogen production from the waste streams of electricity generation.
  46. Vallet, M., Baumeister, T.U., Kaftan, F., Grabe, V., Buaya, A., Thines, M., Svatoš, A., Pohnert, G., 2019. The oomycete Lagenisma coscinodisci hijacks host alkaloid synthesis during infection of a marine diatom. Nat. commun. 10(1), 1-8.
  47. Van Wychen, S., Ramirez, K., Laurens, L.M.L., 2016. Determination of total lipids as fatty acid methyl esters (FAME) by in situ transesterification: laboratory analytical procedure (LAP) (No. NREL/TP-5100-60958). National Renewable Energy Lab.(NREL), Golden, CO (United States).
  48. Vieira, H.H., Bagatini, I.L., Guinart, C.M., Vieira, A.A.H., 2016. tufA gene as molecular marker for freshwater Chlorophyceae. Algae. 31(2), 155-165.
  49. Wang, Y., Huang, G., 2005. Effect of illumination of nitrate and phosphate removal by coimmobilized Chlorella pyrenoidosa and activated sludge. Artif. Cells, Blood Substitutes, Biotechnol. 33(3), 357-369.
  50. Whitton, B.A., 1992. Diversity, ecology, and taxonomy of the cyanobacteria. In Photosynthetic prokaryotes. Springer, Boston, MA. 1-51.
  51. Xia, A., Murphy, J.D., 2016. Microalgal cultivation in treating liquid digestate from biogas systems. Trends Biotechnol. 34(4), 264-275.
  52. Yilmaz, P., Parfrey, L.W., Yarza, P., Gerken, J., Pruesse, E., Quast, C., Schweer, T., Peplies, J., Ludwig, W., Glöckner, F.O., 2014. The SILVA and “all-species living tree project (LTP)” taxonomic frameworks. Nucleic Acids Res. 42(D1), D643-D648.
  53. Yu, Y., You, L., Liu, D., Hollinshead, W., Tang, Y.J., Zhang, F., 2013. Development of Synechocystis sp. PCC 6803 as a phototrophic cell factory. Mar. Drugs. 11(8), 2894-2916.
  54. Zhang, L., Cheng, J., Pei, H., Pan, J., Jiang, L., Hou, Q., Han, F., 2018. Cultivation of microalgae using anaerobically digested effluent from kitchen waste as a nutrient source for biodiesel production. Renewable Energy. 115, 276-287.
  55. Zhang, S., Kim, T.H., Han, T.H., Hwang, S.J., 2015. Influence of light conditions of a mixture of red and blue light sources on nitrogen and phosphorus removal in advanced wastewater treatment using Scenedesmus dimorphus. Biotechnol. Bioprocess. Eng. 20(4), 760-765.