Beyond conventional biomass valorisation: pyrolysis-derived products for biomedical applications

Document Type : Research Paper

Authors

1 School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.

2 Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.

3 Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.

4 Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.

Abstract

Biomass valorisation is conventionally associated with the production of green biofuels. However, this could extend beyond the conventional perception of biomass application into other domains such as medical sciences. Acid condensate (AC) obtained from pyrolysis promises a good potential for biomedical applications, notably for its antimicrobial, antioxidant, and anti-inflammatory properties. In this study, concentrated AC extract (CACE) obtained from microwave-assisted pyrolysis of palm kernel shells was fractionated, and the resulting fractions were pooled according to similar thin layer chromatography profiles into combined fractions (CFACs). CFACs were evaluated for total phenolic content, antioxidant level, cytotoxicity, and wound healing activities toward human skin fibroblast cells (HSF 1184). CFAC-3 showed the highest total phenolic content (624.98 ± 8.70 µg GAE/mg of sample) and antioxidant activities (DPPH IC50 of 29.47 ± 0.74 µg/mL, ABTS of 1247.13 ± 27.89 μg TE/mg sample, FRAP of 24.26 ± 0.71 mmol Fe(II)/mg sample, HFRS of 257.74 ± 1.74 µg/mL) compared to CACE (DPPH IC50 of 81.76 ± 2.81 µg/mL, ABTS of 816.95 ± 30.49 μg TE/mg sample, FRAP of 9.22 ± 0.66 mmol Fe(II)/mg sample, HFRS of 689.30 ± 36.00 µg/mL), no cytotoxic properties at ≤50 µg/mL, and significantly faster wound closure (at 1.25 µg/mL) compared to the control 12 h after treatment. The phosphorylation of the phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) were upregulated, thus indicating that wound healing of CFAC-3 followed through this signalling pathway. To conclude, phenolic-rich CFAC-3 obtained from the pyrolysis of palm kernel shells demonstrated potential biomedical application as an alternative wound healing agent with high antioxidant and wound-healing activity. To the best of our knowledge, this was the first study to report on the wound healing activity of AC and its wound healing mechanism.

Graphical Abstract

Beyond conventional biomass valorisation: pyrolysis-derived products for biomedical applications

Highlights

  • Acid condensate obtained by pyrolysis of palm kernel shells showed potential biomedical application.
  • Combined fraction acid condensate 3 (CFAC-3) exhibited high antioxidant activity.
  • CFAC-3 exhibited no cytotoxicity at ≤50 µg/mL and at 1.25 µg/mL showed the fastest wound scratch closure.
  • The mechanism was the upregulation of the phosphorylation of the PI3K/AKT signalling pathway for CFAC-3 1.25 µg/mL.
  • Molecular docking showed a good binding affinity of CFAC-3 compounds towards AKT and ERK2.

Keywords


  1. Abas, F.Z., Ani, F.N., Zakaria, Z.A., 2018. Microwave-assisted production of optimized pyrolysis liquid oil from oil palm fiber. J. Clean. Prod. 182, 404-413.
  2. Abate, M., Pisanti, S., Caputo, M., Citro, M., Vecchione, C., Martinelli, R., 2020. 3-Hydroxytyrosol promotes angiogenesis in vitro by stimulating endothelial cell migration. Int. J. Mol. Sci. 21(10), 3657.
  3. Addis, R., Cruciani, S., Santaniello, S., Bellu, E., Sarais, G., Ventura, C., Maioli, M., Pintore, G., 2020. Fibroblast proliferation and migration in wound healing by phytochemicals: evidence for a novel synergic outcome. Int. J. Med. Sci. 17(8), 1030-1042.
  4. Balasuriya, N., Kunkel, M.T., Liu, X., Biggar, K.K., Li, S.S.C., Newton, A.C., O’Donoghue, P., 2018. Genetic code expansion and live cell imaging reveal that Thr-308 phosphorylation is irreplaceable and sufficient for Akt1 activity. J. Biol. Chem. 293(27), 10744-10756.
  5. Bardwell, A.J., Abdollahi, M., Bardwell, L., 2003. Docking sites on MEKs, MAP kinase phosphatases, and the Elk-1 transcription factor compete for binding to ERK2 and are crucial for enzymatic activity. Biochem. J. 370, 1077-1085.
  6. Brand-Williams, W., Cuvelier, M.E., Berset, C., 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28(1), 25-30.
  7. Collard, F.X., Blin, J., 2014. A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew. Sust. Energy Rev. 38, 549-608.
  8. de Souza, J.L.S., Alves, T., Camerini, L., Nedel, F., Campos, A.D., Lund, R.G., 2021. Antimicrobial and cytotoxic capacity of pyroligneous extracts films of Eucalyptus grandis and chitosan for oral applications. Sci. Reports. 11(1), 1-10.
  9. Diaz, R., Quiles, M.T., Guillem-Marti, J., Lopez-Cano, M., Huguet, P., Ramon-Y-Cajal, S., Reventos, J., Armengol, M., Arbos, M.A., 2011. Apoptosis-like cell death induction and aberrant fibroblast properties in human incisional hernia fascia. Am. J. Pathol. 178(6), 2641-2653.
  10. Filippelli, A., Ciccone, V., Loppi, S., Morbidelli, L., 2021. Characterization of the safety profile of sweet chestnut wood distillate employed in agriculture. Safety. 7(4), 79.
  11. Ghasemi, M., Turnbull, T., Sebastian, S., Kempson, I., 2021. The MTT assay: utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. Int. J. Mol. Sci. 22(23), 12827.
  12. Ho, C.L., Lin, C.S., Li, L.H., Hua, K.F., Ju, T.C., 2021. Inhibition of pro-inflammatory mediator expression in macrophages using wood vinegar from griffith’s ash. Chin. J. Physiol. 64(5), 232.
  13. Ho, C.L., Lin, C.Y., Ka, S.M., Chen, A., Tasi, Y.L., Liu, M.L., Chiu, Y.C., Hua, K.F., 2013. Bamboo vinegar decreases inflammatory mediator expression and NLRP3 inflammasome activation by inhibiting reactive oxygen species generation and protein kinase C-α/δ activation. PLoS One. 8(10), e75738.
  14. Hou, B., Cai, W., Chen, T., Zhang, Z., Gong, H., Yang, W., Qiu, L., 2019. Vaccarin hastens wound healing by promoting angiogenesis via activation of MAPK/ERK and PI3K/AKT signaling pathways in vivo. Acta Cirúrgica Bras. 34.
  15. Ibrahim, D., Kassim, J., Sheh-Hong, L., Rusli, W., 2013. Efficacy of pyroligneous acid from Rhizophora apiculata on pathogenic Candida albicans. J. Appl. Pharm. Sci. 3(7), 007-013.
  16. Kanaparthy, A., Kanaparthy, R., 2016. Cytotoxicity of endodontic sealers-a comparative study using L-929 mouse skin fibroblast cell response-an ex-vivo study. Int. J. Med. Res. Health Sci. 5(1), 59-62.
  17. Kang, C.W., Han, Y.E., Kim, J., Oh, J.H., Cho, Y.H., Lee, E.J., 2017. 4-Hydroxybenzaldehyde accelerates acute wound healing through activation of focal adhesion signalling in keratinocytes. Sci. Rep. 7(1), 1-11.
  18. Kim, S.P., Yang, J.Y., Kang, M.Y., Park, J.C., Nam, S.H., Friedman, M., 2011. Composition of liquid rice hull smoke and anti-inflammatory effects in mice. J. Agric. Food Chem. 59(9), 4570-4581.
  19. Kimura, Y., Suto, S., Tatsuka, M., 2002. Evaluation of carcinogenic/co-carcinogenic activity of Chikusaku-eki, a bamboo charcoal by-product used as a folk remedy, in BALB/c 3T3 cells. Biol. Pharm. Bull. 25(8), 1026-1029.
  20. Kong, A.N.T., Yu, R., Chen, C., Mandlekar, S., Primiano, T., 2000. Signal transduction events elicited by natural products: role of MAPK and caspase pathways in homeostatic response and induction of apoptosis. Arch. Pharm. Res. 23(1), 1-16.
  21. Lee, C.S., Yi, E.H., Kim, H.R., Huh, S.R., Sung, S.H., Chung, M.H., Ye, S.K., 2011. Anti-dermatitis effects of oak wood vinegar on the DNCB-induced contact hypersensitivity via STAT3 suppression. J. Ethnopharmacol. 135(3), 747-753.
  22. Lee, T.H., Lee, G.W., Park, K.H., Mohamed, M.A.A., Bang, M.H., Baek, Y.S., Son, Y., Chung, D.K., Baek, N.I., Kim, J., 2014. The stimulatory effects of Stewartia koreana extract on the proliferation and migration of fibroblasts and the wound healing activity of the extract in mice. Int. J. Mol. Med. 34(1), 145-152.
  23. Liu, S., Sun, J.P., Zhou, B., Zhang, Z.Y., 2006. Structural basis of docking interactions between ERK2 and MAP kinase phosphatase 3. Proc. Natl. Acad. Sci. 103(14), 5326-5331.
  24. Loo, A.Y., Jain, K., Darah, I., 2008. Antioxidant activity of compounds isolated from the pyroligneous acid, Rhizophora apiculata. Food Chem. 107(3), 1151-1160.
  25. Lordani, T.V.A., de Lara, C.E., Ferreira, F.B.P., de Souza Terron Monich, M., Mesquita da Silva, C., Felicetti Lordani, C.R., Giacomini Bueno, F., Vieira Teixeira, J.J., Lonardoni, M.V.C., 2018. Therapeutic effects of medicinal plants on cutaneous wound healing in humans: a systematic review. Mediators Inflammation. 2018, 7354250.
  26. Lu, C.C., Yang, J.S., Chiu, Y.J., Tsai, F.J., Hsu, Y.M., Yin, M.C., Juan, Y.N., Ho, T.J., Chen, H.P., 2021. Dracorhodin perchlorate enhances wound healing via β-catenin, ERK/p38, and AKT signaling in human HaCaT keratinocytes. Exp. Ther. Med. 22(2) 1-9.
  27. Ma, C., Li, W., Zu, Y., Yang, L., Li, J., 2014. Antioxidant properties of pyroligneous acid obtained by thermochemical conversion of Schisandra chinensis Molecules. 19(12), 20821-20838.
  28. Mahmud, K.N., Hashim, N.M., Ani, F.N., Zakaria, Z.A., 2019. Antioxidants, toxicity, and nitric oxide inhibition properties of pyroligneous acid from palm kernel shell biomass. Waste Biomass Valorization. 11(11), 6307-6319.
  29. Malaysian-German Chamber of Commerce and Industry, 2017. Oil palm biomass & biogas in Malaysia, 2017. EU-Malaysia Chamb. Commer. Ind.
  30. Mathew, S., Zakaria, Z.A., Musa, N.F., 2015. Antioxidant property and chemical profile of pyroligneous acid from pineapple plant waste biomass. Process Biochem. 50(11), 1985-1992.
  31. Melguizo‐rodríguez, L., de Luna‐Bertos, E., Ramos‐torrecillas, J., Illescas‐montesa, R., Costela‐ruiz, V.J., García‐martínez, O., 2021. Potential effects of phenolic compounds that can be found in olive oil on wound healing. Foods. 10(7), 1642.
  32. Mohd Hamzah, M.A.A., Hasham, R., Nik Malek, N.A.N., Raja Sulong, R.S., Yahayu, M., Abdul Razak, F.I., Zakaria, Z.A., 2022. Structural-based analysis of antibacterial activities of acid condensate from palm kernel shell. Biomass Convers. Biorefin.
  33. Mustaffa, N.A.A.W., Hasham, R., Sarmidi, M.R., 2015. An in vitro study of wound healing activity of Ficus deltoidea leaf extract. J. Teknol. 77(3), 67-72.
  34. Pericacho, M., Velasco, S., Prieto, M., Llano, E., López-Novoa, J.M., Rodríguez-Barbero, A., 2013. Endoglin haploinsufficiency promotes fibroblast accumulation during wound healing through Akt activation. PLoS One. 8(1), e54687.
  35. Purnomo, H., Okarda, B., Dewayani, A.A., Ali, M., Achdiawan, R., Kartodihardjo, H., Pacheco, P., Juniwaty, K.S., 2018. Reducing forest and land fires through good palm oil value chain governance. For. Policy Econ. 91, 94-106.
  36. Qu, K., Cha, H.J., Ru, Y., Que, H., Xing, M., 2021. Buxuhuayu decoction accelerates angiogenesis by activating the PI3K-Akt-eNOS signalling pathway in a streptozotocin-induced diabetic ulcer rat model. J. Ethnopharmacol. 273, 113824.
  37. Rabiu, Z., Hamzah, M.A.A.M., Hasham, R., Zakaria, Z.A., 2021. Characterization and antiinflammatory properties of fractionated pyroligneous acid from palm kernel shell. Environ. Sci. Pollut. Res. 28(30), 40535-40543.
  38. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C., 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 26(9-10), 1231-1237.
  39. Rowan, M.P., Cancio, L.C., Elster, E.A., Burmeister, D.M., Rose, L.F., Natesan, S., Chan, R.K., Christy, R.J., Chung, K.K., 2015. Burn wound healing and treatment: review and advancements. Crit. Care 19(1), 1-12.
  40. Sanchez, M.C., Lancel, S., Boulanger, E., Neviere, R., 2018. Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: a systematic review. Antioxidants. 7(8), 98.
  41. Sani, N.S., Malek, N.A.N.N., Jemon, K., Kadir, M.R.A., Hamdan, H., 2017. Effect of mass concentration on bioactivity and cell viability of calcined silica aerogel synthesized from rice husk ash as silica source. J. Sol-Gel Sci. Technol. 82(1), 120-132.
  42. Sen, C.K., 2021. Human wound and its burden: updated 2020 compendium of estimates. Adv. Wound Care. 10(5), 281-292.
  43. Sepe, L., Ferrari, M.C., Cantarella, C., Fioretti, F., Paolella, G., 2013. Ras activated ERK and PI3K pathways differentially affect directional movement of cultured fibroblasts. Cell. Physiol. Biochem. 31(1), 123-142.
  44. Sierecki, E., Sinko, W., McCammon, J.A., Newton, A.C., 2010. Discovery of small molecule inhibitors of the ph domain leucine-rich repeat protein phosphatase (PHLPP) by chemical and virtual screening. J. Med. Chem. 53(19), 6899-6911.
  45. Song, H.S., Park, T.W., Sohn, U.D., Shin, Y.K., Choi, B.C., Kim, C.J., Sim, S.S., 2008. The effect of caffeic acid on wound healing in skin-incised mice. Korean J. Physiol. Pharmacol. 12(6), 343-347.
  46. Tanoue, T., Adachi, M., Moriguchi, T., Nishida, E., 2000. A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nat. Cell Biol. 2(2), 110-116.
  47. Theapparat, Y., Khongthong, S., Rodjan, P., Lertwittayanon, K., Faroongsarng, D., 2019. Physicochemical properties and in vitro antioxidant activities of pyroligneous acid prepared from brushwood biomass waste of Mangosteen, Durian, Rambutan, and Langsat. J. For. Res. 30(3), 1139-1148.
  48. Tiilikkala, K., Fagernäs, L., Tiilikkala, J., 2010. History and use of wood pyrolysis liquids as biocide and plant protection product. Open Agric. J. 4, 111-118.
  49. Trott, O., Olson, A.J., 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31(2), 455-461.
  50. Viana, R.D.S., Aquino, F.L.T.D., Barreto, E., 2021. Effect of trans-cinnamic acid and p-coumaric acid on fibroblast motility: a pilot comparative study of in silico lipophilicity measure. Nat. Prod. Res. 35(24), 5872-5878.
  51. Wang, S., Wang, K., Liu, Q., Gu, Y., Luo, Z., Cen, K., Fransson, T., 2009. Comparison of the pyrolysis behavior of lignins from different tree species. Biotechnol. Adv. 27(5), 562-567.
  52. Wang, S., Wang, Y., Leng, F., Chen, J., Qiu, K., Zhou, J., 2016. Separation and enrichment of catechol and sugars from bio-oil aqueous phase. BioResources. 11(1), 1707-1720.
  53. Wei, Q., Ma, X., Zhao, Z., Zhang, S., Liu, S., 2010. Antioxidant activities and chemical profiles of pyroligneous acids from walnut shell. J. Anal. Appl. Pyrolysis. 88(2), 149-154.
  54. Wong, K.A., Holloway, S., 2019. An observational study of the surgical site infection rate in a General Surgery Department at a General Hospital in Malaysia. Wounds Asia. 2(2), 10-19.
  55. Yang, J.F., Yang, C.H., Liang, M.T., Gao, Z.J., Wu, Y.W., Chuang, L.Y., 2016. Chemical composition, antioxidant, and antibacterial activity of wood vinegar from Litchi chinensis. Molecules. 21(9), 1150.
  56. Yang, Q., Zhou, H., Bartocci, P., Fantozzi, F., Mašek, O., Agblevor, F.A., Wei, Z., Yang, H., Chen, H., Lu, X., Chen, G., Zheng, C., Nielsen, C.P., McElroy, M.B., 2021. Prospective contributions of biomass pyrolysis to China’s 2050 carbon reduction and renewable energy goals. Nat. Commun. 12, 1698.
  57. Zhai, M., Shi, G., Wang, Y., Mao, G., Wang, D., Wang, Z., 2015. Chemical compositions and biological activities of pyroligneous acids from walnut shell. BioResources. 10(1), 1715-1729.
  58. Zhang, Y., Chen, X., Gueydan, C., Han, J., 2018. Plasma membrane changes during programmed cell deaths. Cell Res. 28(1), 9-21.
  59. Zhao, Y., Tang, H., Zeng, X., Ye, D., Liu, J., 2018. Resveratrol inhibits proliferation, migration and invasion via Akt and ERK1/2 signaling pathways in renal cell carcinoma cells. Biomed. Pharmacother. 98, 36-44.
  60. Zheng, Z., Li, M., Jiang, P., Sun, N., Lin, S., 2022. Peptides derived from sea cucumber accelerate cells proliferation and migration for wound healing by promoting energy metabolism and upregulating the ERK/AKT pathway. Eur. J. Pharmacol. 921, 174885.
  61. Zrelli, H., Kusunoki, M., Miyazaki, H., 2015. Role of hydroxytyrosol-dependent regulation of HO-1 expression in promoting wound healing of vascular endothelial cells via Nrf2 De Novo synthesis and stabilization. Phyther. Res. 29(7), 1011-1018.
  62. Zulkifli, S.E., Hamzah, M.A.A.M., Yahayu, M., Aziz, A.A., Hashim, N.M., Zakaria, Z.A., 2021. Optimisation of microwave-assisted production of acid condensate from palm kernel shell and its biological activities. Biomass Convers. Biorefin.