Enhancing the potential of sugarcane bagasse for the production of ENplus quality fuel pellets by torrefaction: an economic feasibility study

Document Type : Research Paper

Authors

1 Faculty of Science, Energy and Environment, King Mongkut's University of Technology North Bangkok, Rayong Campus, Rayong 21120, Thailand.

2 Tree Moments Co., Ltd, Bangkok 10500, Thailand.

3 Energy Research Institute, Chulalongkorn University, Bangkok 10330, Thailand.

Abstract

When fossil fuel substitution with biomass is viewed as a potential solution to global warming caused by greenhouse gas emissions, the demand for biomass fuel pellets has increased worldwide. Although agricultural waste is an attractive potential feedstock for fuel pellet production due to its relatively high calorific value and low cost, its excessive ash content is a major drawback. This research investigates the properties of sugarcane bagasse fuel pellets treated by dry and wet torrefaction and evaluates the economic value of selling the fuel pellets, which were priced based on their quality. It was found that the wet torrefaction could significantly reduce the ash content in the product (1% ash content at a torrefaction temperature of above 180°C), resulting in higher quality and more marketable fuel pellets. Consequently, the yield and the net present value of the production of wet torrefied fuel pellets were greater than those of dry torrefied pellets. Nevertheless, the production of fuel pellets from sugarcane bagasse treated by either process is shown to be economically viable.

Graphical Abstract

Enhancing the potential of sugarcane bagasse for the production of ENplus quality fuel pellets by torrefaction: an economic feasibility study

Highlights

  • Production of sugarcane bagasse fuel by dry and wet torrefaction was investigated.
  • Both wet and dry torrefaction could increase the calorific value of sugarcane bagasse.
  • Wet torrefaction could reduce the ash content of the fuel to the standard level.
  • Wet and dry torrefaction was both economically viable for fuel pellet production.

Keywords


  1. Abedi, A., Dalai, A.K., 2017. Study on the quality of oat hull fuel pellets using bio-additives. Biomass Bioenergy. 106, 166-175.
  2. Abelha, P., Kiel, J., 2020. Techno-economic assessment of biomass upgrading by washing and torrefaction. Biomass Bioenergy. 142, 105751.
  3. Agar, D.A., Rudolfsson, M., Kalén, G., Campargue, M., Perez, D.D.S., Larsson, S.H., 2018. A systematic study of ring-die pellet production from forest and agricultural biomass. Fuel Process. Technol. 180, 47-55.
  4. Aggarwal, A., 2022. DownToEarth, Biomass co-firing: Why India’s target for coal power plants is challenging.
  5. Akbari, M., Oyedun, A.O., Gemechu, E., Kumar, A., 2021. Comparative life cycle energy and greenhouse gas footprints of dry and wet torrefaction processes of various biomass feedstocks. J. Environ. Chem. Eng. 9(4), 105415.
  6. Akbari, M., Oyedun, A.O., Kumar, A., 2020. Techno-economic assessment of wet and dry torrefaction of biomass feedstock. Energy. 207, 118287.
  7. Al Ramahi, M., Keszthelyi-Szabó, G., Beszédes, S., 2021. Coupling hydrothermal carbonization with anaerobic digestion: an evaluation based on energy recovery and hydrochar utilization. Biofuel Res. J. 8(3), 1444-1453.
  8. Alizadeh, P., Tabil, L.G., Adapa, P.K., Cree, D., Mupondwa, E., Emadi, B., 2022. Torrefaction and densification of wood sawdust for bioenergy applications. Fuel, 3(1), 152-175.
  9. Anukam, A., Mamphweli, S., Okoh, O., Reddy, P., 2017. Influence of torrefaction on the conversion efficiency of the gasification process of sugarcane bagasse. Bioengineering. 4(1), 22.
  10. Azargohar, R., Soleimani, M., Nosran, S., Bond, T., Karunakaran, C., Dalai, A.K., Tabil, L.G., 2019. Thermo-physical characterization of torrefied fuel pellet from co-pelletization of canola hulls and meal. Ind. Crops Prod. 128, 424-435.
  11. Bach, Q.V., Chen, W.H., Lin, S.C., Sheen, H.K., Chang, J. S., Wet torrefaction of microalga Chlorella vulgaris ESP-31 with microwave-assisted heating. Energy Convers. Manage. 141, 163-170.
  12. Barskov, S., Zappi, M., Buchireddy, P., Dufreche, S., Guillory, J., Gang, D., Hernandez, R., Bajpai, R., Baudier, J., Cooper, R., Sharp, R., 2019. Torrefaction of biomass: A review of production methods for biocoal from cultured and waste lignocellulosic feedstocks. Renewable Energy. 142, 624-642.
  13. Bates, R.B., Ghoniem, A.F., 2013. Biomass torrefaction: modeling of reaction thermochemistry. Bioresour. Technol. 134, 331-340.
  14. Batidzirai, B., Mignot, A.P.R., Schakel, W.B., Junginger, H.M., Faaij, A.P.C., 2013. Biomass torrefaction technology: techno-economic status and future prospects. Energy. 62, 196-214.
  15. Cahyanti, M.N., Doddapaneni, T.R.K.C., Kikas, T., 2020. Biomass torrefaction: an overview on process parameters, economic and environmental aspects and recent advancements. Bioresour. Technol. 301, 122737.
  16. Canadian Biomass, 2022. Wood pellet market outlooks.
  17. Chen, D., Chen, F., Cen, K., Cao, X., Zhang, J., Zhou, J., 2020. Upgrading rice husk via oxidative torrefaction: characterization of solid, liquid, gaseous products and a comparison with non-oxidative torrefaction. Fuel. 275, 117936.
  18. Chen, W.H., Peng, J., Bi, X.T., 2015. A state-of-the-art review of biomass torrefaction, densification and applications. Renew. Sust. Energy. Rev. 44, 847-866.
  19. Chen, W.H., Lin, B.J., Lin, Y.Y., Chu, Y.S., Ubando, A.T., Show, P.L., Ong, H.C., Chang, J.S., Ho, S.H., Culaba, A.B., Pétrissans, A., 2021. Progress in biomass torrefaction: principles, applications and challenges. Prog. Energy Combust. Sci. 82, 100887.
  20. da Silva, J.C.G., Pereira, J.L.C., Andersen, S.L.F., Moreira, R.D.F.P.M., José, H.J., 2020. Torrefaction of ponkan peel waste in tubular fixed-bed reactor: in-depth bioenergetic evaluation of torrefaction products. Energy. 210, 118569.
  21. Department of Alternative Energy Development and Efficiency, Ministry of Energy, Thailand, 2012. คู่มือการพัฒนาและการลงทุนผลิตพลังงานทดแทน [Development and investment guide for renewable energy generation].
  22. Devaraja, U.M.A., Dissanayake, C.L.W., Gunarathne, D.S., Chen, W.H., 2022. Oxidative torrefaction and torrefaction-based biorefining of biomass: a critical review. Biofuel Res. J. 9(3), 1672-1696.
  23. DiPasquale, J., 2020. Opportunities and barriers for Arizona to supply wood fiber to South Korean renewable energy markets. Dissertation, Northern Arizona University, Arizona.
  24. Doddapaneni, T.R.K.C., Praveenkumar, R., Tolvanen, H., Rintala, J., Konttinen, J., 2018. Techno-economic evaluation of integrating torrefaction with anaerobic digestion. Appl. Energy. 213, 272-284.
  25. EIA, 2022. U.S. Energy Information Administration. United State natural gas industrial price.
  26. European Pellet Council (EPC), 2015. ENplus Handbook Version 3.0. AEBIOM - European Biomass Association, Brussels.
  27. Future Market Insights, 2022. 2017-2021 Biomass pellets market outlook compared to 2022-2032 forecast.
  28. Garcia-Maraver, A., Rodriguez, M.L., Serrano-Bernardo, F., Diaz, L.F., Zamorano, M., 2015. Factors affecting the quality of pellets made from residual biomass of olive trees. Fuel Process. Technol. 129, 1-7.
  29. Ghafghazi, S., Sowlati, T., Sokhansanj, S., Bi, X., Melin, S., 2011. Particulate matter emissions from combustion of wood in district heating applications. Renew. Sust. Energy. Rev. 15(6), 3019-3028.
  30. Ghiasi, B., Kumar, L., Furubayashi, T., Lim, C.J., Bi, X., Kim, C.S., Sokhansanj, S., 2014. Densified biocoal from woodchips: is it better to do torrefaction before or after densification?. Appl. Energy. 134, 133-142.
  31. Gong, S.H., Im, H.S., Um, M., Lee, H.W., Lee, J.W., 2019. Enhancement of waste biomass fuel properties by sequential leaching and wet torrefaction. Fuel. 239, 693-700.
  32. Hosseinizand, H., Sokhansanj, S., Lim, C. J., 2018. Co-pelletization of microalgae Chlorella vulgaris and pine sawdust to produce solid fuels. Fuel Process. Technol. 177, 129-139.
  33. Kanwal, S., Chaudhry, N., Munir, S., Sana, H., 2019. Effect of torrefaction conditions on the physicochemical characterization of agricultural waste (sugarcane bagasse). Waste Manage. 88, 280-290.
  34. Kizuka, R., Ishii, K., Ochiai, S., Sato, M., Yamada, A., Nishimiya, K., 2021. Improvement of biomass fuel properties for rice straw pellets using torrefaction and mixing with wood chips. Waste Biomass Valorization. 12(6), 3417-3429.
  35. Kohl, T., Teles, M., Melin, K., Laukkanen, T., Järvinen, M., Park, S. W., Guidici, R., 2015. Exergoeconomic assessment of CHP-integrated biomass upgrading. Appl. Energy. 156, 290-305.
  36. Koppejan, J., Sokhansanj, S., Melin, S., Madrali, S., 2012. Status overview of torrefaction technologies. In IEA bioenergy task. 32, pp. 1-54.
  37. Kumar, L., Koukoulas, A.A., Mani, S., Satyavolu, J., 2017. Integrating torrefaction in the wood pellet industry: a critical review. Energy Fuels. 31(1), 37-54.
  38. Lin, Y.L., Zheng, N.Y., Hsu, C.H., 2021. Torrefaction of fruit peel waste to produce environmentally friendly biofuel. J. Clean. Prod. 284, 124676.
  39. Lo, S. L.Y., How, B.S., Leong, W.D., Teng, S.Y., Rhamdhani, M.A., Sunarso, J., 2021. Techno-economic analysis for biomass supply chain: a state-of-the-art review. Renew. Sust. Energy. Rev. 135, 110164.
  40. Liu, Z., Fei, B., Jiang, Z., Cai, Z., Yu, Y., 2013. The properties of pellets from mixing bamboo and rice straw. Renewable Energy. 55, 1-5.
  41. Mandegari, M.A., Farzad, S., Görgens, J.F., 2017. Recent trends on techno-economic assessment (TEA) of sugarcane biorefineries. Biofuel Res. J. 4(3), 704-712.
  42. Manouchehrinejad, M., Bilek, E.T., Mani, S., 2021. Techno-economic analysis of integrated torrefaction and pelletization systems to produce torrefied wood pellets. Renewable Energy. 178, 483-493.
  43. Medic, D., Darr, M., Shah, A., Potter, B., Zimmerman, J. 2012. Effect of torrefaction process parameters on biomass feedstock upgrading. In 2010 Pittsburgh, Pennsylvania. Fuel. 91(1), 147-154.
  44. Miranda, M.T., Sepúlveda, F.J., Arranz, J.I., Montero, I., Rojas, C.V., 2018. Physical-energy characterization of microalgae Scenedesmus and experimental pellets. Fuel. 226, 121-126.
  45. Miranda, N.T., Motta, I.L., Maciel Filho, R., Maciel, M.R.W., 2021. Sugarcane bagasse pyrolysis: a review of operating conditions and products properties. Renew. Sust. Energy Rev. 149, 111394.
  46. Muazu, R.I., Gadkari, S., Sadhukhan, J., 2022. Integrated life cycle assessment modelling of densified fuel production from various biomass species. Energies. 15(11), 3872.
  47. Nakason, K., Khemthong, P., Kraithong, W., Chukaew, P., Panyapinyopol, B., Kitkaew, D., Pavasant, P., 2021. Upgrading properties of biochar fuel derived from cassava rhizome via torrefaction: effect of sweeping gas atmospheres and its economic feasibility. Case Stud. Therm. Eng. 23, 100823.
  48. Ndagi, M., Kolawole, A.T., Olawale, F. M., Sulaiman, A., Investigation of the thermo-physical and mechanical properties of coir and sugarcane bagasse for low temperature insulation. Int. J. Eng. Mater. Manuf. 6(4), 340-356.
  49. Pala, M., Kantarli, I.C., Buyukisik, H.B., Yanik, J., 2014. Hydrothermal carbonization and torrefaction of grape pomace: a comparative evaluation. Bioresour. Technol. 161, 255-262.
  50. Park, S., Jeong, H.R., Shin, Y.A., Kim, S.J., Ju, Y.M., Oh, K.C., Cho, L.H., Kim, D., 2021. Performance optimisation of fuel pellets comprising pepper stem and coffee grounds through mixing ratios and torrefaction. Energies. 14(15), 4667.
  51. Peng, J.H., Bi, H.T., Sokhansanj, S., Lim, J.C., Melin, S., 2010. An economical and market analysis of Canadian wood pellets. Int. J. Green Energy. 7(2), 128-142.
  52. Perera, S.M., Wickramasinghe, C., Samarasiri, B.K.T., Narayana, M., 2021. Modeling of thermochemical conversion of waste biomass-a comprehensive review. Biofuel Res. J. 8(4), 1481-1528.
  53. Pirraglia, A., Gonzalez, R., Saloni, D., Denig, J., 2013. Technical and economic assessment for the production of torrefied ligno-cellulosic biomass pellets in the US. Energy Convers. Manage. 66, 153-164.
  54. Pirraglia, A., Gonzalez, R., Saloni, D., 2010. Techno-economical analysis of wood pellets production for US manufacturers. BioResources. 5(4), 2374-2390.
  55. Pirraglia, A., Gonzales, R., Saloni, D., Wright, J., Denig, J., 2012. Fuel properties and suitability of Eucalyptus benthamii and Eucalyptus macarthurii for torrefied wood and pellets. BioResources. 7(1), 0217-0235.
  56. Pradhan, P., Mahajani, S.M., Arora, A., 2018. Production and utilization of fuel pellets from biomass: a review. Fuel Process. Technol. 181, 215-232.
  57. Prins, M.J., Ptasinski, K.J., Janssen, F.J., 2006. More efficient biomass gasification via torrefaction. Energy. 31(15), 3458-3470.
  58. Provincial Waterworks Authority, Thailand, Provincial water tariffs.
  59. Radics, R.I., Gonzalez, R., Bilek, E.T.M., Kelley, S.S., 2017. Systematic review of torrefied wood economics. Bioresources. 12(3), 6868-6884.
  60. Ríos-Badrán, I.M., Luzardo-Ocampo, I., García-Trejo, J.F., Santos-Cruz, J., Gutiérrez-Antonio, C., 2020. Production and characterization of fuel pellets from rice husk and wheat straw. Renewable Energy. 145, 500-507.
  61. Sarker, T.R., Azargohar, R., Stobbs, J., Karunakaran, C., Meda, V., Dalai, A.K., 2022. Complementary effects of torrefaction and pelletization for the production of fuel pellets from agricultural residues: a comparative study. Ind Crops Prod. 181, 114740.
  62. Scatolino, M.V., Neto, L.F.C., Protásio, T.D.P., Carneiro, A.D.C.O., Andrade, C.R., Guimarães Júnior, J.B., Mendes, L.M., Options for generation of sustainable energy: production of pellets based on combinations between lignocellulosic biomasses. Waste Biomass Valorization. 9(3), 479-489.
  63. Shahrukh, H., Oyedun, A.O., Kumar, A., Ghiasi, B., Kumar, L., Sokhansanj, S., 2015. Net energy ratio for the production of steam pretreated biomass-based pellets. Biomass Bioenergy. 80, 286-297.
  64. Shankar Tumuluru, J., Sokhansanj, S., Hess, J.R., Wright, C.T., Boardman, R.D., 2011. A review on biomass torrefaction process and product properties for energy applications. Ind. Biotechnol. 7(5), 384-401.
  65. Tenorio, C., Moya, R., Tomazello-Filho, M., Valaert, J., 2015. Quality of pellets made from agricultural and forestry crops in Costa Rican tropical climates. BioResources, 10(1), 482-498.
  66. Thrän, D., Witt, J., Schaubach, K., Kiel, J., Carbo, M., Maier, J., Ndibe, C., Koppejan, J., Alakangas, E., Majer, S., Schipfer, F., 2016. Moving torrefaction towards market introduction-Technical improvements and economic-environmental assessment along the overall torrefaction supply chain through the SECTOR project. Biomass Bioenergy. 89, 184-200.
  67. Unnasch, S., Buchan, L., 2021. Life cycle analysis of renewable fuel standard implementation for thermal pathways for wood pellets and chips. Life Cycle Associates Report LCA.6161. 209.2021, Prepared for Technology Transition Corporation.
  68. Visser, L., Hoefnagels, R., Junginger, M., 2020. Wood pellet supply chain costs-a review and cost optimization analysis. Renew. Sust. Energy Rev. 118, 109506.
  69. Wiloso, E.I., Setiawan, A.A.R., Prasetia, H., Wiloso, A.R., Sudiana, I.M., Lestari, R., Nugroho, S., Hermawan, D., Fang, K., Heijungs, R., 2020. Production of sorghum pellets for electricity generation in Indonesia: a life cycle assessment. Biofuel Res. J. 7(3),
  70. Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C., 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 86(12-13), 1781-1788.
  71. Yang, I., Kim, S.H., Sagong, M., Han, G.S., 2016. Fuel characteristics of agropellets fabricated with rice straw and husk. Korean J. Chem. Eng. 33(3), 851-857.
  72. Yue, Y., Singh, H., Singh, B., Mani, S., 2017. Torrefaction of sorghum biomass to improve fuel properties. Bioresour. Technol, 232, 372-379.
  73. Yun, H., Clift, R., Bi, X., 2020. Environmental and economic assessment of torrefied wood pellets from British Columbia. Energy Convers. Manage. 208, 112513.
  74. Zhang, C., Ho, S.H., Chen, W.H., Xie, Y., Liu, Z., Chang, J.S., 2018. Torrefaction performance and energy usage of biomass wastes and their correlations with torrefaction severity index. Appl. Energy. 220, 598-604.
  75. Zhang, S., Chen, T., Xiong, Y., Dong, Q., 2017. Effects of wet torrefaction on the physicochemical properties and pyrolysis product properties of rice husk. Energy Convers. Manage. 141, 403-409.
  76. Zhang, Y., Chen, F., Chen, D., Cen, K., Zhang, J., Cao, X., 2020. Upgrading of biomass pellets by torrefaction and its influence on the hydrophobicity, mechanical property, and fuel quality. Biomass Convers. 1-10.
  77. Zheng, A., Zhao, Z., Chang, S., Huang, Z., Zhao, K., Wei, G., He, F., Li, H., 2015. Comparison of the effect of wet and dry torrefaction on chemical structure and pyrolysis behavior of corncobs. Bioresour. Technol. 176, 15-22.