Design and construction of artificial microbial consortia to enhance lignocellulosic biomass degradation

Document Type : Research Paper


1 Department of Bioengineering and Alcoholic Drink Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Ménesi út 45, Hungary.

2 Faculty of Chemical Engineering and Food Technology, Nong Lam University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam.

3 Biorefining and Advanced Materials Research Center, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom.


Cellulose-rich agricultural residues are promising renewable sources for producing various value-added products such as 2nd generation biofuels. However, the efficiency of the bioconversion process is not always satisfactory due to the slow and incomplete degradation of lignocellulosic biomass. An interesting approach would be using microbial communities with high lignocellulose-degrading ability for environmentally friendly pretreatment. This study focused on characterizing the degradation performance of bacteria, fungal, and yeast strains and designing and constructing different microbial consortia for solid-state treatment of wheat bran and wheat straw. The microbial consortia, namely BFY4 and BFY5, contained different bacteria, fungal, and yeast led to high ratios of sugar accumulation ranging from 3.21 to 3.5 with degradation rates over 33%, owing to more favorable hydrolytic enzyme activities and improved reducing sugar yield during the process. After 72 h, the highest FPase (0.213 IU/gds) and xylanase (7.588 IU/gds) activities were also detected in the wheat straw pretreated by BFY4 and BFY5, respectively, while CMCase activity peaked (0.928 IU/gds) when wheat bran was used as substrate. The amount of released glucose increased during the treatment process when the two substrates were used in the same ratio. Our results indicated that substrate composition also plays an important role in the degradation capacity of mixed cultures. These findings can be instrumental in advancing the primary knowledge required to apply such bioprocesses at the pilot scale.

Graphical Abstract

Design and construction of artificial microbial consortia to enhance lignocellulosic biomass degradation


  • A new approach was introduced for designing and constructing microbial consortia for lignocellulosic pretreatments.
  • Adding yeast into a mixed culture of fungi and bacteria improved lignocellulosic biodegradation.
  • The developed artificial microbial consortia, BFY4 and BFY5, showed high lignocellulosic degradation capabilities.
  • Pretreatment with BFY4 or BFY5 consortia resulted in the highest yield of reducing sugars.


  1. Ali, S.S., Abomohra, A.E.F., Sun, J., 2017. Effective bio-pretreatment of sawdust waste with a novel microbial consortium for enhanced biomethanation. Bioresour. Technol. 238, 425-432.
  2. Ali, S.S., Mustafa, A.M., Kornaros, M., Manni, A., Sun, J., Khalil, M.A., 2020. Construction of novel microbial consortia CS-5 and BC-4 valued for the degradation of catalpa sawdust and chlorophenols simultaneously with enhancing methane production. Bioresour. Technol. 301, 122720.
  3. Baruah, J., Nath, B.K., Sharma, R., Kumar, S., Deka, R.C., Baruah, D.C., Kalita, E., 2018. Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Front. Energy Res. 6, 141.
  4. Beri, D., York, W.S., Lynd, L.R., Peña, M.J., Herring, C.D., 2020. Development of a thermophilic co-culture for corn fiber conversion to ethanol. Nat. Commun. 11(1), 1937.
  5. Chang, Y.C., Choi, D.B., Takamizawa, K., Kikuchi, S., 2014. Isolation of Bacillus strains capable of decomposing alkali lignin and their application in combination with lactic acid bacteria for enhancing cellulase performance. Bioresour. Technol. 152, 429-436.
  6. Dashtban, M., Maki, M., Leung, K.T., Mao, C., Qin, W., 2010. Cellulase activities in biomass conversion: measurement methods and comparison. Crit. Rev. Biotechnol. 30(4), 302-309.
  7. Deng, Y.J., Wang, S.Y., 2016. Synergistic growth in bacteria depends on substrate complexity. J. Microbiol. 54, 23-30.
  8. Dicko, M., Ferrari, R., Tangthirasunun, N., Gautier, V., Lalanne, C., Lamari, F., Silar, P., 2020. Lignin degradation and its use in signaling development by the Coprophilous ascomycete Podospora anserina. J. Fungi 6(4), 278.
  9. Ding, C., Li, M., Hu, Y., 2018. High-activity production of xylanase by Pichia stipitis: purification, characterization, kinetic evaluation and xylooligosaccharides production. Int. J. Biol. Macromol. 117, 72-77.
  10. Farkas, C., Rezessy-Szabó, J.M., Gupta, V.K., Truong, D.H., Friedrich, L., Felföldi, J., Nguyen, Q.D., 2019. Microbial saccharification of wheat bran for bioethanol fermentation. J. Clean. Prod. 240, 118269.
  11. Ferrari, R., Gautier, V., Silar, P., 2021. Lignin degradation by ascomycetes, in: Advances in Botanical Research. Academic Press, pp. 77-113.
  12. Fu, N., Peiris, P., Markham, J., Bavor, J., 2009. A novel co-culture process with Zymomonas mobilis and Pichia stipitis for efficient ethanol production on glucose/xylose mixtures. Enzyme Microb. Technol. 45(3), 210-217.
  13. Gonçalves, F.A.G., Colen, G., Takahashi, J.A., 2014. Yarrowia lipolytica and its multiple applications in the biotechnological industry. Sci. World J. 2014.
  14. Guo, H., Hong, C., Zheng, B., Jiang, D., Qin, W., 2018. Improving enzymatic digestibility of wheat straw pretreated by a cellulase-free xylanase-secreting Pseudomonas boreopolis G22 with simultaneous production of bioflocculants. Biotechnol. Biofuels. 11, 250.
  15. Haruta, S., Cui, Z., Huang, Z., Li, M., Ishii, M., Igarashi, Y., 2002. Construction of a stable microbial community with high cellulose-degradation ability. Appl. Microbiol. Biotechnol. 59, 529-534.
  16. Himmel, M.E., Ding, S.Y., Johnson, D.K., Adney, W.S., Nimlos, M.R., Brady, J.W., Foust, T.D., 2007. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science. 315(5813), 804-807.
  17. Htet, N.N.W., Hlaing, T.S., Yu, S.Z., Yu, S.S., 2018. Isolation and characterization of xylose-utilizing yeasts for ethanol production. J. Bacteriol. Mycol. Open Access. 6(2), 109-114.
  18. Jain, A., Pelle, H.S., Baughman, W.H., Henson, J.M., 2017. Conversion of ammonia‐pretreated switchgrass to biofuel precursors by bacterial-fungal consortia under solid‐state and submerged‐state cultivation. J. Appl. Microbiol. 122(4), 953-963.
  19. Kalyani, D., Lee, K.M., Kim, T.S., Li, J., Dhiman, S.S., Kang, Y.C., Lee, J.K., 2013. Microbial consortia for saccharification of woody biomass and ethanol fermentation. Fuel. 107, 815-822.
  20. Kang, S.W., Park, Y.S., Lee, J.S., Hong, S.I., Kim, S.W., 2004. Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour. Technol. 91(2), 153-156.
  21. Kaprelyants, L., Pozhitkova, L., Buzhylov, M., 2019. Application of co-bioprocessing techniques (enzymatic hydrolysis and fermentation) for improving the nutritional value of wheat bran as food functional ingredients. EUREKA Life Sci. (5), 31-45.
  22. Kato, S., Haruta, S., Cui, Z.J., Ishii, M., Igarashi, Y., 2008. Network relationships of bacteria in a stable mixed culture. Microb. Ecol. 56, 403-411.
  23. Kato, S., Haruta, S., Cui, Z.J., Ishii, M., Igarashi, Y., 2004. Effective cellulose degradation by a mixed-culture system composed of a cellulolytic Clostridium and aerobic non-cellulolytic bacteria. FEMS Microbiol. Ecol. 51(1), 133-142.
  24. Kim, H., Lee, S.J., Shin, K.S., 2018. Characterization of new oligosaccharide converted from cellobiose by novel strain of Bacillus subtilis. Food Sci. Biotechnol. 27, 37-45.
  25. Kim, Y.K., Lee, S.C., Cho, Y.Y., Oh, H.J., Ko, Y.H., 2012. Isolation of cellulolytic Bacillus subtilis strains from agricultural environments. Int. Scholarly Res. Not. 2012.
  26. Kumari, D., Singh, R., 2018. Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renew. Sust. Energy Rev. 90, 877-891.
  27. Lee, J.A., Baugh, A.C., Shevalier, N.J., Strand, B., Stolyar, S., Marx, C.J., 2021. Cross-feeding of a toxic metabolite in a synthetic lignocellulose-degrading microbial community. Microorganisms 9(2), 321.
  28. Levin, D.B., Islam, R., Cicek, N., Sparling, R., 2006. Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. Int. J. Hydrogen Energy. 31(11), 1496-1503.
  29. Minty, J.J., Singer, M.E., Scholz, S.A., Bae, C.H., Ahn, J.H., Foster, C.E., Liao, J.C., Lin, X.N., 2013. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proc. Natl. Acad. Sci. 110(36), 14592-14597.
  30. Moraes, E.C., Alvarez, T.M., Persinoti, G.F., Tomazetto, G., Brenelli, L.B., Paixão, D.A.A., Ematsu, G.C., Aricetti, J.A., Caldana, C., Dixon, N., Bugg, T.D.H., Squina, F.M., 2018. Lignolytic-consortium omics analyses reveal novel genomes and pathways involved in lignin modification and valorization. Biotechnol. Biofuels. 11, 75.
  31. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M., 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96(6), 673-686.
  32. Nidetzky, B., Steiner, W., Haynt, M., Claeyssenst, M., 1994. Cellulose hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interaction. Biochem. J. 298(3), 705-710.
  33. Paudel, Y.P., Qin, W., 2015a. Two Bacillus species isolated from rotting wood samples are good candidates for the production of bioethanol using agave biomass. J. Microb. Biochem. Technol. 7(4), 218-225.
  34. Paudel, Y.P., Qin, W., 2015b. Characterization of novel cellulase-producing bacteria isolated from rotting wood samples. Appl. Biochem. Biotechnol. 177, 1186-1198.
  35. Pérez, J., Muñoz-Dorado, J., de la Rubia, T.D.L.R., Martínez, J., 2002. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int. Microbiol. 5, 53-63.
  36. Pirota, R.D.P.B., Miotto, L.S., Delabona, P.S., Farinas, C.S., 2013. Improving the extraction conditions of endoglucanase produced by Aspergillus niger under solid-state fermentation. Braz. J. Chem. Eng. 30, 117-123.
  37. Puentes-Téllez, P.E., Falcao Salles, J., 2018. Construction of effective minimal active microbial consortia for lignocellulose degradation. Microb. Ecol. 76, 419-429.
  38. Qiu, W., Chen, H., 2012. Enhanced the enzymatic hydrolysis efficiency of wheat straw after combined steam explosion and laccase pretreatment. Bioresour. Technol. 118, 8-12.
  39. Rezessy-Szabó, J.M., Nguyen, D.Q., Bujna, E., Takács, K., Kovács, M., Hoschke, Á., 2003. Thermomyces lanuginosus CBS 395.62/b strain as rich source of α-galactosidase enzyme. Food Technol. Biotechnol. 41(1), 55-59.
  40. Rodríguez, A., Falcón, M.A.F., Carnicero, A., Perestelo, F., De La Fuente, G., Trojanowski, J., 1996. Laccase activities of Penicillium chrysogenum in relation to lignin degradation. Appl. Microbiol. Biotechnol. 45, 399-403.
  41. Rouhollah, H., Iraj, N., Giti, E., Sorah, A., 2007. Mixed sugar fermentation by Pichia stipitis, Sacharomyces cerevisiaea, and an isolated xylose-fermenting Kluyveromyces marxianus and their cocultures. African J. Biotechnol. 6(9).
  42. Scholz, S.A., Graves, I., Minty, J.J., Lin, X.N., 2018. Production of cellulosic organic acids via synthetic fungal consortia. Biotechnol. Bioeng. 115(4), 1096-1100.
  43. Shahab, R.L., Brethauer, S., Davey, M.P., Smith, A.G., Vignolini, S., Luterbacher, J.S., Studer, M.H., 2020. A heterogeneous microbial consortium producing short-chain fatty acids from lignocellulose. Science. 369(6507), eabb1214.
  44. Sharma, H.K., Xu, C., Qin, W., 2019. Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview. Waste Biomass Valorization. 10, 235-251.
  45. Sindhu, R., Binod, P., Pandey, A., 2016. Biological pretreatment of lignocellulosic biomass-an overview. Bioresour. Technol. 199, 76-82.
  46. Suwannarangsee, S., Bunterngsook, B., Arnthong, J., Paemanee, A., Thamchaipenet, A., Eurwilaichitr, L., Laosiripojana, N., Champreda, V., 2012. Optimisation of synergistic biomass-degrading enzyme systems for efficient rice straw hydrolysis using an experimental mixture design. Bioresour. Technol. 119, 252-261.
  47. Taha, M., Shahsavari, E., Al-Hothaly, K., Mouradov, A., Smith, A.T., Ball, A.S., Adetutu, E.M., 2015. Enhanced biological straw saccharification through coculturing of lignocellulose-degrading microorganisms. Appl. Biochem. Biotechnol. 175, 3709-3728.
  48. Tsao, G.T., Xia, L., Cao, N., Gong, C.S., 2000. Solid-state fermentation with Aspergillus niger for cellobiase production. Biochem. Biotechnol. 84. 743-749.
  49. Tsoi, R., Wu, F., Zhang, C., Bewick, S., Karig, D., You, L., 2018. Metabolic division of labor in microbial systems. Proc. Natl. Acad. Sci. 115(10), 2526-2531.
  50. Vu, V., Farkas, C., Riyad, O., Bujna, E., Kilin, A., Sipiczki, G., Sharma, M., Usmani, Z., Gupta, V.K., Nguyen, Q.D., 2022. Enhancement of the enzymatic hydrolysis efficiency of wheat bran using the Bacillus strains and their consortium. Bioresour. Technol. 343, 126092.
  51. Wang, Y., Elzenga, T., Dirk, J., 2021. Effect of culture conditions on the performance of lignocellulose‑degrading synthetic microbial consortia. Appl. Microbiol. Biotechnol. 105, 7981-7995.
  52. WBA, 2019. Global bioenergy statistics. World Bioenergy Association. Stockholm.
  53. Xu, C., Yu, H., 2021. Insights into constructing a stable and efficient microbial consortium. Chinese J. Chem. Eng. 30, 112-120.
  54. Zha, J., Yuwen, M., Qian, W., Wu, X., 2021. Yeast-based biosynthesis of natural products from xylose. Front. Bioeng. Biotechnol. 9.
  55. Zhang, W., Ren, X., Lei, Q., Wang, L., 2021a. Screening and comparison of lignin degradation microbial consortia from wooden antiques. Molecules. 26(10), 2862.
  56. Zhang, Y., Nielsen, J., Liu, Z., 2021b. Yeast based biorefineries for oleochemical production. Curr. Opin. Biotechnol. 67, 26-34.