Nanomaterials and their role in advancing biodiesel feedstock production: A comprehensive review

Document Type : Review Paper


1 Henan Province International Collaboration Lab of Forest Resources Utilization, School of Science, Henan Agricultural University, Zhengzhou 450002, China.

2 Biofuel Research Journal (BRTeam), Terengganu, Malaysia.

3 Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.

4 Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.

5 College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.

6 Department Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.

7 Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.

8 Zhejiang Provincial Engineering Research Center for the Safety of Pressure Vessel and Pipeline, Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China.

9 Laboratory on Convective Heat and Mass Transfer, Tomsk State University, 634045, Tomsk, Russia.

10 School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, China.

11 School of Engineering, Lebanese American University, Byblos, Lebanon.

12 Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia.

13 Division of Engineering, Saint Mary's University, Halifax, NS B3H 3C3, Canada.

14 Sustainable Development Study Centre, Government College University, Lahore, Pakistan.

15 Center of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia.

16 Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.

17 Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, South Korea.

18 Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.

19 Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India.


Sustainable socio-economic development largely depends on the sustainability of the energy supply from economic, environmental, and public health perspectives. Fossil fuel combustion only meets the first element of this equation and is hence rendered unsustainable. Biofuels are advantageous from a public health perspective, but their environmental and economic sustainability might be questioned considering the conflicts surrounding their feedstocks, including land use change and fuel vs. food conflict. Therefore, it is imperative to put more effort into addressing the downsides of biofuel production using advanced technologies, such as nanotechnology. In light of that, this review strives to scrutinize the latest developments in the application of nanotechnology in producing biodiesel, a promising alternative to fossil diesel with proven environmental and health benefits. The main focus is placed on nanotechnology applications in the feedstock production stage. First, the latest findings concerning the application of nanomaterials as nanofertilizers and nanopesticides to improve the performance of oil crops are presented and critically discussed. Then, the most promising results reported recently on applying nanotechnology to boost biomass and oil production by microalgae and facilitating microalgae harvesting are reviewed and mechanistically explained. Finally, the promises held by nanomaterials to enhance animal fat production in livestock, poultry, and aquaculture systems are elaborated. Despite the favorable features of using nanotechnology in biodiesel feedstock production, the presence of nanoparticles in living systems is also associated with important health and environmental challenges, which are critically covered and discussed in this work.

Graphical Abstract

Nanomaterials and their role in advancing biodiesel feedstock production: A comprehensive review


  • The potential of nanotechnology in biodiesel feedstock production is critically discussed.
  • The use of nanofertilizers and nanopesticides in oil crop breeding is fully illustrated.
  • Nanomaterials for boosting microalgal oil yield and biomass harvesting are scrutinized.
  • Health/ecological aspects of nanomaterials in biodiesel feedstock production are covered.


  1. Aacharya, R., Chhipa, H., 2020. Nanocarbon fertilizers: implications of carbon nanomaterials in sustainable agriculture production, in: Carbon Nanomaterials for Agri-Food and Environmental Applications. Elsevier, pp. 297-321.
  2. Abdin, Z., Alim, M.A., Saidur, R., Islam, M.R., Rashmi, W., Mekhilef, S., Wadi, A., 2013. Solar energy harvesting with the application of nanotechnology. Renew. Sustain. Energy Rev. 26, 837-852.
  3. Adegbeye, M.J., Elghandour, M.M.M.Y., Barbabosa-Pliego, A., Monroy, J.C., Mellado, M., Salem, A.Z.M., 2019. Nanoparticles in equine nutrition: mechanism of action and application as feed additives. J. Equine Vet. Sci. 78, 29-37.
  4. Adhikari, T., Kundu, S., Biswas, A.K., Tarafdar, J.C., Subba Rao, A., 2015. Characterization of zinc oxide nano particles and their effect on growth of maize (Zea mays L.) plant. J. Plant Nutr. 38(10), 1505-1515.
  5. Adhikari, T., Sarkar, D., Mashayekhi, H., Xing, B., 2016. Growth and enzymatic activity of maize (Zea mays L.) plant: solution culture test for copper dioxide nano particles. J. Plant Nutr. 39(1), 99-115.
  6. Aratboni, H.A., Rafiei, N., Allaf, M.M., Abedini, S.,Rasheed, R.N., Seif, A., Barati, B., Wang, S., Morones-Ramírez, J.R., 2023. Nanotechnology: an outstanding tool for increasing and better exploitation of microalgae valuable compounds. Algal Res. 71, 103019.
  7. Amde, M., Liu, J.F., Tan, Z.Q., Bekana, D., 2017. Transformation and bioavailability of metal oxide nanoparticles in aquatic and terrestrial environments. a review. Environ. Pollut. 230, 250-267.
  8. Angel, B.M., Batley, G.E., Jarolimek, C.V., Rogers, N.J., 2013. The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems. Chemosphere. 93(2), 359-365.
  9. Arias, L.S., Pessan, J.P., Vieira, A.P.M., Lima, T.M.T.D., Delbem, A.C.B., Monteiro, D.R., 2018. Iron oxide nanoparticles for biomedical applications: a perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics. 7(2), 46.
  10. Azam, M., Bhatti, H.N., Khan, A., Zafar, L., Iqbal, M., 2022. Zinc oxide nano-fertilizer application (foliar and soil) effect on the growth, photosynthetic pigments and antioxidant system of maize cultivar. Biocatal. Agric. Biotechnol. 42, 102343.
  11. Babu, S., Singh, R., Yadav, D., Rathore, S.S., Raj, R., Avasthe, R., Yadav, S.K., Das, A., Yadav, V., Yadav, B., Shekhawat, K., 2022. Nanofertilizers for agricultural and environmental sustainability. Chemosphere. 292, 133451.
  12. Behçet, R., 2011. Performance and emission study of waste anchovy fish biodiesel in a diesel engine. Fuel Process. Technol. 92(6), 1187-1194.
  13. Bezbaruah, A.N., Kalita, H., Almeelbi, T., Capecchi, C.L., Jacob, D.L., Ugrinov, A.G., Payne, S.A., 2014. Ca-alginate-entrapped nanoscale iron: arsenic treatability and mechanism studies. J. Nanoparticle Res. 16, 2175.
  14. Bhuvaneshwari, M., Iswarya, V., Chandrasekaran, N., Mukherjee, A., 2018. A review on ecotoxicity of zinc oxide nanoparticles on freshwater algae, in: Nanomaterials: Ecotoxicity, Safety, and Public Perception. Springer, pp. 191-206.
  15. Bluhm, K., Heger, S., Seiler, T.B., Hallare, A.V, Schäffer, A., Hollert, H., 2012. Toxicological and ecotoxicological potencies of biofuels used for the transport sector-a literature review. Energy Environ. Sci. 5(6), 7381-7392.
  16. Bozich, J.S., Lohse, S.E., Torelli, M.D., Murphy, C.J., Hamers, R.J., Klaper, R.D., 2014. Surface chemistry, charge and ligand type impact the toxicity of gold nanoparticles to Daphnia magna. Environ. Sci. Nano. 1(3), 260-270.
  17. Cecchin, I., Reddy, K.R., Thomé, A., Tessaro, E.F., Schnaid, F., 2017. Nanobioremediation: integration of nanoparticles and bioremediation for sustainable remediation of chlorinated organic contaminants in soils. Int. Biodeterior. Biodegrad. 119, 419-428.
  18. Chen, F., Xiao, Z., Yue, L., Wang, J., Feng, Y., Zhu, X., Wang, Z., Xing, B., 2019. Algae response to engineered nanoparticles: current understanding, mechanisms and implications. Environ. Sci. Nano. 6(4), 1026-1042.
  19. Chen, H., Yada, R., 2011. Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci. Technol. 22(11), 585-594.
  20. Chen, J., Dou, R., Yang, Z., Wang, X., Mao, C., Gao, X., Wang, L., 2016. The effect and fate of water-soluble carbon nanodots in maize (Zea mays). Nanotoxicology. 10(6), 818-828.
  21. Chen, X., Ji, D., Wang, X., Zang, L., 2017. Review on nano zerovalent iron (nZVI): from modification to environmental applications, in: IOP Conference Series: Earth and Environmental Science. IOP Publishing. 51(1), 12004.
  22. Cheng, F., Liu, Y.F., Lu, G.Y., Zhang, X.K., Xie, L.L., Yuan, C.F., Xu, B.B., 2016. Graphene oxide modulates root growth of Brassica napus and regulates ABA and IAA concentration. J. Plant Physiol. 193, 57-63.
  23. Chiaramonti, D., Prussi, M., Buffi, M., Rizzo, A.M., Pari, L., 2017. Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production. Appl. Energy. 185, 963-972.
  24. Cieschi, M.T., Polyakov, A.Y., Lebedev, V.A., Volkov, D.S., Pankratov, D.A., Veligzhanin, A.A., Perminova, I. V, Lucena, J.J., 2019. Eco-friendly iron-humic nanofertilizers synthesis for the prevention of iron chlorosis in soybean (Glycine max) grown in calcareous soil. Front. Plant Sci. 10, 413.
  25. Cundy, A.B., Hopkinson, L., Whitby, R.L., 2008. Use of iron-based technologies in contaminated land and groundwater remediation: a review. Sci. Total Environ. 400(1-3), 42-51.
  26. Dasgupta, N., Ranjan, S., 2018. Nano-food toxicity and regulations, in: An Introduction to Food Grade Nanoemulsions. Springer, pp. 151-179.
  27. Dehhaghi, M., Tabatabaei, M., Aghbashlo, M., Panahi, H.K.S., Nizami, A.S., 2019. A state-of-the-art review on the application of nanomaterials for enhancing biogas production. J. Environ. Manage. 251, 109597.
  28. Deka, J., Paul, A., Chattopadhyay, A., 2012. Modulating enzymatic activity in the presence of gold nanoparticles. RSC Adv. 2(11), 4736-4745.
  29. Demirbas, A., 2005. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Prog. Energy Combust. Sci. 31(5-6), 466-487.
  30. Demirbas, A., 2002. Biodiesel from vegetable oils via transesterification in supercritical methanol. Energy Convers. Manage. 43(17), 2349-2356.
  31. Deng, X.Y., Cheng, J., Hu, X.L., Wang, L., Li, D., Gao, K., 2017. Biological effects of TiO2 and CeO2 nanoparticles on the growth, photosynthetic activity, and cellular components of a marine diatom Phaeodactylum tricornutum. Total Environ. 575, 87-96.
  32. Dewdar, M., Abbas, M.S., El-Hassanin, A.S., El-Aleem, H.A., 2018. Effect of nano micronutrients and nitrogen foliar applications on sugar beet (Beta vulgaris) of quantity and quality traits in marginal soils in Egypt. Int. J. Curr. Microbiol. Appl. Sci. 7(08), 4490-4498.
  33. Dharani, M., Balasubramanian, S., 2016. Synthesis, characterization and application of acryloyl chitosan anchored copolymer towards algae flocculation. Carbohydr. Polym. 152, 459-467.
  34. Dineshkumar, R., Paul, A., Gangopadhyay, M., Singh, N.D.P., Sen, R., 2017. Smart and reusable biopolymer nanocomposite for simultaneous microalgal biomass harvesting and disruption: integrated downstream processing for a sustainable biorefinery. ACS Sustainable Chem. Eng. 5(1), 852-861.
  35. Ding, Y., Kuhlbusch, T.A., Van Tongeren, M., Jiménez, A.S., Tuinman, I., Chen, R., Alvarez, I.L., Mikolajczyk, U., Nickel, C., Meyer, J., 2017. Airborne engineered nanomaterials in the workplace-a review of release and worker exposure during nanomaterial production and handling processes. J. Hazard. Mater. 322, 17-28.
  36. Dueso, C., Muñoz, M., Moreno, F., Arroyo, J., Gil-Lalaguna, N., Bautista, A., Gonzalo, A., Sánchez, J.L., 2018. Performance and emissions of a diesel engine using sunflower biodiesel with a renewable antioxidant additive from bio-oil. Fuel. 234, 276-285.
  37. Duran, S.K., Kumar, P., Sandhu, S.S., 2018. A review on microalgae strains, cultivation, harvesting, biodiesel conversion and engine implementation. Biofuels. 12(1), 91-102.
  38. Egesa, D., Chuck, C.J., Plucinski, P., 2018. Multifunctional role of magnetic nanoparticles in efficient microalgae separation and catalytic hydrothermal liquefaction. ACS Sustainable Chem. Eng. 6(1), 991-999.
  39. El-Desouky, T.A., Ammar, H.A., 2016. Honey mediated silver nanoparticles and their inhibitory effect on aflatoxins and ochratoxin A. J. Appl. Pharm. Sci. 6(6), 083-090.
  40. El Sabry, M.I., McMillin, K.W., Sabliov, C.M., 2018. Nanotechnology considerations for poultry and livestock production systems-a review. Ann. Anim. Sci. 18(2), 319-334.
  41. Elsayed, A.A., Ahmed, E.G., Taha, Z.K., Farag, H.M., Hussein, M.S., AbouAitah, K., 2022. Hydroxyapatite nanoparticles as novel nano-fertilizer for production of rosemary plants. Sci. Hortic. 295, 110851.
  42. Eroglu, E., Eggers, P.K., Winslade, M., Smith, S.M., Raston, C.L., 2013. Enhanced accumulation of microalgal pigments using metal nanoparticle solutions as light filtering devices. Green Chem. 15(11), 3155-3159.
  43. Esper Neto, M., Britt, D.W., Lara, L.M., Cartwright, A., dos Santos, R.F., Inoue, T.T., Batista, M.A., 2020. Initial development of corn seedlings after seed priming with nanoscale synthetic zinc oxide. Agronomy 10(2), 307.
  44. Estime, B., Ren, D., Sureshkumar, R., 2015. Effects of plasmonic film filters on microalgal growth and biomass composition. Algal Res. 11, 85-89.
  45. Farid, M.S., Shariati, A., Badakhshan, A., Anvaripour, B., 2013. Using nano-chitosan for harvesting microalga Nannochloropsis Bioresour. Technol. 131, 555-559.
  46. Farooq, W., Lee, H.U., Huh, Y.S., Lee, Y.C., 2016. Chlorella vulgaris cultivation with an additive of magnesium-aminoclay. Algal Res. 17, 211-216.
  47. Fraceto, L.F., Grillo, R., de Medeiros, G.A., Scognamiglio, V., Rea, G., Bartolucci, C., 2016. Nanotechnology in agriculture: which innovation potential does it have?. Front. Environ. Sci. 4, 20.
  48. Fraga-García, P., Kubbutat, P., Brammen, M., Schwaminger, S., Berensmeier, S., 2018. Bare iron oxide nanoparticles for magnetic harvesting of microalgae: from interaction behavior to process realization. Nanomaterials. 8(5), 292.
  49. Fu, Y., Hu, F., Li, H., Cui, L., Qian, G., Zhang, D., Xu, Y., 2021. Application and mechanisms of microalgae harvesting by magnetic nanoparticles (MNPs). Sep. Purif. Technol. 265, 118519.
  50. Garimella, R., Eltorai, A.E., 2017. Nanotechnology in orthopedics. J. Orthop. 14(1), 30-33.
  51. Ge, S., Agbakpe, M., Wu, Z., Kuang, L., Zhang, W., Wang, X., 2015a. Influences of surface coating, UV irradiation and magnetic field on the algae removal using magnetite nanoparticles. Environ. Sci. Technol. 49(2), 1190-1196.
  52. Ge, S., Agbakpe, M., Zhang, W., Kuang, L., 2015b. Heteroaggregation between PEI-coated magnetic nanoparticles and algae: effect of particle size on algal harvesting efficiency. ACS Appl. Mater. Interfaces 7(11), 6102-6108.
  53. Ge, S., Agbakpe, M., Zhang, W., Kuang, L., Wu, Z., Wang, X., 2015c. Recovering magnetic Fe3O4-ZnO nanocomposites from algal biomass based on hydrophobicity shift under UV irradiation. ACS Appl. Mater. Interfaces. 7(21), 11677-11682.
  54. Ghafariyan, M.H., Malakouti, M.J., Dadpour, M.R., Stroeve, P., Mahmoudi, M., 2013. Effects of magnetite nanoparticles on soybean chlorophyll. Environ. Sci. Technol. 47(18), 10645-10652.
  55. Ghaffari Chanzanagh, E., Seifdavati, J., Mirzaei Gheshlagh, F.A., Abdi Benamar, H., Sharifi, S.R., 2018. Effect of ZnO nanoparticles on in vitro gas production of some animal and plant protein sources. Kafkas Üniversitesi Vet. Fakültesi Derg. 24(1).
  56. Ghazali, W.N.M.W., Mamat, R., Masjuki, H.H., Najafi, G., 2015. Effects of biodiesel from different feedstocks on engine performance and emissions: a review. Renew. Sustainable Energy Rev. 51, 585-602.
  57. Gherbawy, Y.A., Shalaby, I.M., Abd El-sadek, M.S., Elhariry, H.M., Banaja, A.A., 2013. The anti-fasciolasis properties of silver nanoparticles produced by Trichoderma harzianum and their improvement of the anti-fasciolasis drug triclabendazole. Int. J. Mol. Sci. 14(11), 21887-21898.
  58. Giannelli, L., Torzillo, G., 2012. Hydrogen production with the microalga Chlamydomonas reinhardtii grown in a compact tubular photobioreactor immersed in a scattering light nanoparticle suspension. Int. J. Hydrogen Energy. 37(22), 16951-16961.
  59. Goh, B.H.H., Ong, H.C., Cheah, M.Y., Chen, W.H., Yu, K.L., Mahlia, T.M.I., 2019. Sustainability of direct biodiesel synthesis from microalgae biomass: a critical review. Renew. Sust. Energy Rev. 107, 59-74.
  60. Goodrum, J.W., Geller, D.P., Adams, T.T., 2003. Rheological characterization of animal fats and their mixtures with# 2 fuel oil. Biomass Bioenergy. 24(3), 249-256.
  61. Guan, H., Chi, D., Yu, J., Li, H., 2010. Dynamics of residues from a novel nano-imidacloprid formulation in soyabean fields. Crop Prot. 29(9), 942-946.
  62. Guerriero, G., Cai, G., 2018. Interaction of Nano-sized nutrients with plant biomass: a review, in: Phytotoxicity of Nanoparticles. Springer, pp. 135-149.
  63. Guo, R., Liu, Y., Chen, J., 2015. Toxic Effect of Nano-TiO2 and Nano-Carbon on Microcystis Aeruginosa, in: International Conference on Advances in Energy, Environment and Chemical Engineering. Atlantis Press, pp. 700-703
  64. Ha, N.M.C., Nguyen, T.H., Wang, S.L., Nguyen, A.D., 2019. Preparation of NPK nanofertilizer based on chitosan nanoparticles and its effect on biophysical characteristics and growth of coffee in green house. Res. Chem. Intermed. 45, 51-63.
  65. Hamedi, J., Mohammadipanah, F., Panahi, H.K.S., 2015. Biotechnological exploitation of actinobacterial members, in: Halophiles: Biodiversity and Sustainable Exploitation. Springer International Publishing, pp. 57-143.
  66. Handy, R.D., 2012. FSBI briefing paper: nanotechnology in fisheries and aquaculture. Fish. Soc. Br. Isles. 1-29.
  67. Hassan, A.A., Howayda, M.E., Mahmoud, H.H., 2013. Effect of zinc oxide nanoparticles on the growth of mycotoxigenic mould. Stud. Chem. Process. Technol. (SCPT). 1(4), 66-74.
  68. Hassan, F.A.M., Mahmoud, R., El-Araby, I.E., 2017. Growth performance, serum biochemical, economic evaluation and IL6 gene expression in growing rabbits fed diets supplemented with zinc nanoparticles. Zagazig Vet. J. 45(3), 238-249.
  69. Hatami, M., 2017. Toxicity assessment of multi-walled carbon nanotubes on Cucurbita pepo under well-watered and water-stressed conditions. Ecotoxicol. Environ. Saf. 142, 274-283.
  70. Hayles, J., Johnson, L., Worthley, C., Losic, D., 2017. Nanopesticides: a review of current research and perspectives, in: New Pesticides and Soil Sensors. Elsevier, pp. 193-225.
  71. He, M., Yan, Y., Pei, F., Wu, M., Gebreluel, T., Zou, S., Wang, C., 2017. Improvement on lipid production by Scenedesmus obliquus triggered by low dose exposure to nanoparticles. Sci. Rep. 7, 15526.
  72. Hena, S., Fatihah, N., Tabassum, S., Lalung, J., Jing, S.Y., 2016. Magnetophoretic harvesting of freshwater microalgae using polypyrrole/Fe3O4 nanocomposite and its reusability. J. Appl. Phycol. 28, 1597-1609.
  73. Hennig, T.B., Bandeira, F.O., Puerari, R.C., Fraceto, L.F., Matias, W.G., 2023. A systematic review of the toxic effects of a nanopesticide on non-target organisms: estimation of protective concentrations using a species sensitivity distribution (SSD) approach-The case of atrazine. Sci. Total Environ. 871, 162094.
  74. Hu, Y.R., Guo, C., Wang, F., Wang, S.K., Pan, F., Liu, C.Z., 2014a. Improvement of microalgae harvesting by magnetic nanocomposites coated with polyethylenimine. Chem. Eng. J. 242, 341-347.
  75. Hu, Y.R., Guo, C., Xu, L., Wang, F., Wang, S.K., Hu, Z., Liu, C.Z., 2014b. A magnetic separator for efficient microalgae harvesting. Bioresour. Technol. 158, 388-391.
  76. Hu, Y.R., Wang, F., Wang, S.K., Liu, C.Z., Guo, C., 2013. Efficient harvesting of marine microalgae Nannochloropsis maritima using magnetic nanoparticles. Bioresour. Technol. 138, 387-390.
  77. Huang, W.C., Kim, J.D., 2016. Nickel oxide nanoparticle-based method for simultaneous harvesting and disruption of microalgal cells. Bioresour. Technol. 218, 1290-1293.
  78. Iavicoli, I., Leso, V., Beezhold, D.H., Shvedova, A.A., 2017. Nanotechnology in agriculture: opportunities, toxicological implications, and occupational risks. Toxicol. Appl. Pharmacol. 329, 96-111.
  79. Imhoff, J.F., Labes, A., Wiese, J., 2011. Bio-mining the microbial treasures of the ocean: new natural products. Biotechnol. Adv. 29(5), 468-482.
  80. Jain, A., Ranjan, S., Dasgupta, N., Ramalingam, C., 2018. Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit. Rev. Food Sci. Nutr. 58(2), 297-317.
  81. Jeon, H.S., Park, S.E., Ahn, B., Kim, Y.K., 2017. Enhancement of biodiesel production in Chlorella vulgaris cultivation using silica nanoparticles. Biotechnol. Bioprocess Eng. 22, 136-141.
  82. Jha, Z., Behar, N., Sharma, S.N., Chandel, G., Sharma, D.K., Pandey, M.P., 2011. Nanotechnology: prospects of agricultural advancement. Nano Vis. 1(1), 88-100.
  83. Jiang, D., Zeng, G., Huang, D., Chen, M., Zhang, C., Huang, C., Wan, J., 2018. Remediation of contaminated soils by enhanced nanoscale zero valent iron. Environ. Res. 163, 217-227.
  84. Jiang, L.C., Basri, M., Omar, D., Rahman, M.B.A., Salleh, A.B., Rahman, R.N.Z.R.A., Selamat, A., 2012. Green nano-emulsion intervention for water-soluble glyphosate isopropylamine (IPA) formulations in controlling Eleusine indica (E. indica). Pestic. Biochem. Physiol. 102(1), 19-29.
  85. Jindal, A.B., Bachhav, S.S., Devarajan, P.V, 2017. In situ hybrid nano drug delivery system (IHN-DDS) of antiretroviral drug for simultaneous targeting to multiple viral reservoirs: an in vivo proof of concept. Int. J. Pharm. 521(1-2), 196-203.
  86. Johari, S.A., Kalbassi, M.R., Soltani, M., Yu, I.J., 2016. Application of nanosilver-coated zeolite as water filter media for fungal disinfection of rainbow trout (Oncorhynchus mykiss) eggs. Aquacult.. Int. 24, 23-38.
  87. Jurewicz, A., Ilyas, S., Uppal, J.K., Ivandic, I., Korsching, S., Mathur, S., 2020. Evaluation of magnetite nanoparticle-based toxicity on embryo-larvae stages of zebrafish (Danio rerio). ACS Appl. Nano Mater. 3(2), 1621-1629.
  88. Kadar, E., Rooks, P., Lakey, C., White, D.A., 2012. The effect of engineered iron nanoparticles on growth and metabolic status of marine microalgae cultures. Sci. Total Environ. 439, 8-17.
  89. Kah, M., Beulke, S., Tiede, K., Hofmann, T., 2013. Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit. Rev. Environ. Sci. Technol. 43(16), 1823-1867.
  90. Kah, M., Hofmann, T., 2014. Nanopesticide research: current trends and future priorities. Environ. Int. 63, 224-235.
  91. Kalwani, M., Chakdar, H., Srivastava, A., Pabbi, S., Shukla, P., 2022. Effects of nanofertilizers on soil and plant-associated microbial communities: emerging trends and perspectives. Chemosphere. 287, 132107.
  92. Kang, N.K., Lee, B., Choi, G.G., Moon, M., Park, M.S., Lim, J., Yang, J.W., 2014. Enhancing lipid productivity of Chlorella vulgaris using oxidative stress by TiO2 Korean J. Chem. Eng. 31, 861-867.
  93. Kelsey, J.W., White, J.C., 2013. Effect of C60 fullerenes on the accumulation of weathered p,p′-DDE by plant and earthworm species under single and multispecies conditions. Environ. Toxicol. Chem. 32(5), 1117-1123.
  94. Khan, S., Naushad, M., Iqbal, J., Bathula, C., Sharma, G., 2022. Production and harvesting of microalgae and an efficient operational approach to biofuel production for a sustainable environment. Fuel. 311, 122543.
  95. Kim, B., Bui, V.K.H., Farooq, W., Jeon, S.G., Oh, Y.K., Lee, Y.C., 2018. Magnesium aminoclay-Fe3O4 (MgAC-Fe3O4) hybrid composites for harvesting of mixed microalgae. Energies. 11(6), 1359.
  96. Kim, B., Praveenkumar, R., Lee, J., Nam, B., Kim, D.M., Lee, K., Lee, Y.C., Oh, Y.K., 2016. Magnesium aminoclay enhances lipid production of mixotrophic Chlorella KR-1 while reducing bacterial populations. Bioresour. Technol. 219, 608-613.
  97. Kings, A.J., Raj, R.E., Miriam, L.R.M., Visvanathan, M.A., 2017. Cultivation, extraction and optimization of biodiesel production from potential microalgae Euglena sanguinea using eco-friendly natural catalyst. Energy Convers. Manage. 141, 224-235.
  98. Kole, C., Kole, P., Randunu, K.M., Choudhary, P., Podila, R., Ke, P.C., Rao, A.M., Marcus, R.K., 2013. Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). Bmc Biotechnol. 13(1), 37.
  99. Kong, S., Wang, Y., Zhan, H., Yuan, S., Liu, M., Zhou, C., 2013. Arsenite and arsenate removal from contaminated groundwater by nanoscale iron-manganese binary oxides: column studies. Environ. Eng. Sci. 30(11), 689-696.
  100. Kovač, T., Borišev, I., Crevar, B., Kenjerić, F.Č., Kovač, M., Strelec, I., Ezekiel, C.N., Sulyok, M., Krska, R., Šarkanj, B., 2018. Fullerol C60(OH)24 nanoparticles modulate aflatoxin B1 biosynthesis in Aspergillus flavus. Sci. Rep. 8(1), 12855.
  101. Kumar, A., Singh, K., Verma, P., Singh, O., Panwar, A., Singh, T., Kumar, Y., Raliya, R., 2022a. Effect of nitrogen and zinc nanofertilizer with the organic farming practices on cereal and oil seed crops. Sci. Rep. 12(1), 6938.
  102. Kumar, N., Banerjee, C., Negi, S., Shukla, P., 2022b. Microalgae harvesting techniques: updates and recent technological interventions. Crit. Rev. Biotechnol. 43(3), 342-368.
  103. Kumar, S., Nehra, M., Dilbaghi, N., Marrazza, G., Hassan, A.A., Kim, K.H., 2019. Nano-based smart pesticide formulations: emerging opportunities for agriculture. J. Control. Release. 294, 131-153.
  104. Lahiani, M.H., Dervishi, E., Chen, J., Nima, Z., Gaume, A., Biris, A.S., Khodakovskaya, M. V, 2013. Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl. Mater. Interfaces. 5(16), 7965-7973.
  105. Lahiani, M.H., Nima, Z.A., Villagarcia, H., Biris, A.S., Khodakovskaya, M. V., 2017. Assessment of effects of the long-term exposure of agricultural crops to carbon nanotubes. J. Agric. Food Chem. 66(26), 6654-6662.
  106. Lapeñas, L.A., Peña-Bahamonde, J., Nguyen, H., de Luna, M.D.G., Rodrigues, D.F., 2022. Manganese ferrite nanoparticle-algal cell interaction mechanisms for potential application in microalgae harvesting. Clean. Chem. Eng. 4, 100061.
  107. Larue, C., Pinault, M., Czarny, B., Georgin, D., Jaillard, D., Bendiab, N., Mayne-L’Hermite, M., Taran, F., Dive, V., Carrière, M., 2012. Quantitative evaluation of multi-walled carbon nanotube uptake in wheat and rapeseed. J. Hazard. Mater. 227, 155-163.
  108. Lau, Z.L., Low, S.S., Ezeigwe, E.R., Chew, K.W., Chai, W.S., Bhatnagar, A., Yap, Y.J., Show, P.L., 2022. A review on the diverse interactions between microalgae and nanomaterials: growth variation, photosynthetic performance and toxicity. Bioresour. Technol. 351, 127048.
  109. Lee, K., Lee, S.Y., Na, J.G., Jeon, S.G., Praveenkumar, R., Kim, D.M., Chang, W.S., Oh, Y.K., 2013a. Magnetophoretic harvesting of oleaginous Chlorella by using biocompatible chitosan/magnetic nanoparticle composites. Bioresour. Technol. 149, 575-578.
  110. Lee, Y.C., Kim, B., Farooq, W., Chung, J., Han, J.I., Shin, H.J., Jeong, S.H., Park, J.Y., Lee, J.S., Oh, Y.K., 2013b. Harvesting of oleaginous Chlorella by organoclays. Bioresour. Technol. 132, 440-445.
  111. Lee, K., Lee, S.Y., Praveenkumar, R., Kim, B., Seo, J.Y., Jeon, S.G., Na, J.G., Park, J.Y., Kim, D.M., Oh, Y.K., 2014a. Repeated use of stable magnetic flocculant for efficient harvest of oleaginous Chlorella Bioresour. Technol. 167, 284-290.
  112. Lee, Y.C., Lee, H.U., Lee, K., Kim, B., Lee, S.Y., Choi, M.H., Farooq, W., Choi, J.S., Park, J.Y., Lee, J., 2014b. Aminoclay-conjugated TiO2 synthesis for simultaneous harvesting and wet-disruption of oleaginous Chlorella Chem. Eng. J. 245, 143-149.
  113. Lee, K., Na, J.G., Seo, J.Y., Shim, T.S., Kim, B., Praveenkumar, R., Park, J.Y., Oh, Y.K., Jeon, S.G., 2015a. Magnetic-nanoflocculant-assisted water-nonpolar solvent interface sieve for microalgae harvesting. ACS Appl. Mater. Interfaces. 7(33), 18336-18343.
  114. Lee, Y.C., Lee, K., Oh, Y.K., 2015b. Recent nanoparticle engineering advances in microalgal cultivation and harvesting processes of biodiesel production: a review. Bioresour. Technol. 184, 63-72.
  115. Lefevre, E., Bossa, N., Wiesner, M.R., Gunsch, C.K., 2016. A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): behavior, transport and impacts on microbial communities. Sci. Total Environ. 565, 889-901.
  116. Lei, C., Zhang, L., Yang, K., Zhu, L., Lin, D., 2016. Toxicity of iron-based nanoparticles to green algae: effects of particle size, crystal phase, oxidation state and environmental aging. Environ. Pollut. 218, 505-512.
  117. Li, M., Liu, W., Slaveykova, V.I., 2020. Effects of mixtures of engineered nanoparticles and metallic pollutants on aquatic organisms. Environments. 7(4), 27.
  118. Li, S., Li, X., Ho, S.H., 2022. How to enhance carbon capture by evolution of microalgal photosynthesis?. Sep. Purif. Technol. 291, 120951.
  119. Liang, T., Yin, Q., Zhang, Y., Wang, B., Guo, W., Wang, J., Xie, J., 2013. Effects of carbon nanoparticles application on the growth, physiological characteristics and nutrient accumulation in tobacco plants. J. Food, Agric. Environ. 11(3/4), 954-958.
  120. Lim, J.K., Chieh, D.C.J., Jalak, S.A., Toh, P.Y., Yasin, N.H.M., Ng, B.W., Ahmad, A.L., 2012. Rapid magnetophoretic separation of microalgae. Small. 8(11), 1683-1692.
  121. Lin, Z., Xu, Y., Zhen, Z., Fu, Y., Liu, Y., Li, W., Luo, C., Ding, A., Zhang, D., 2015. Application and reactivation of magnetic nanoparticles in Microcystis aeruginosa Bioresour. Technol. 190, 82-88.
  122. Liu, F., Xiong, F., Fan, Y., Li, J., Wang, H.Z., Xing, G.M., Yan, F.M., Tai, F.J., He, R., 2016a. Facile and scalable fabrication engineering of fullerenol nanoparticles by improved alkaline-oxidation approach and its antioxidant potential in maize. J. Nanopart. Res. 18, 338.
  123. Liu, L., Bilal, M., Duan, X., Iqbal, H.M.N., 2019. Mitigation of environmental pollution by genetically engineered bacteria-current challenges and future perspectives. Sci. Total Environ. 667, 444-454.
  124. Liu, P.R., Zhang, H.L., Wang, T., Yang, W.L., Hong, Y., Hou, Y.L., 2016b. Functional graphene-based magnetic nanocomposites as magnetic flocculant for efficient harvesting of oleaginous microalgae. Algal Res. 19, 86-95.
  125. Liu, P., Wang, T., Yang, Z., Hong, Y., Xie, X., Hou, Y., 2020. Effects of Fe3O4 nanoparticle fabrication and surface modification on Chlorella harvesting efficiency. Sci. Total Environ. 704, 135286.
  126. Liu, Q., Zhang, X., Zhao, Y., Lin, J., Shu, C., Wang, C., Fang, X., 2013. Fullerene-induced increase of glycosyl residue on living plant cell wall. Environ. Sci. Technol. 47(13), 7490-7498.
  127. Liu, R., Lal, R., 2015. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. 514, 131-139.
  128. Liu, R., Lal, R., 2014. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci. Rep. 4(1), 5686.
  129. Liu, X., Zhang, F., Zhang, S., He, X., Wang, R., Fei, Z., Wang, Y., 2005. Responses of peanut to nano-calcium carbonate. Plant Nutr. Fertitizer Sci. 11(3), 385-389.
  130. Mahapatra, D.M., Satapathy, K.C., Panda, B., 2022. Biofertilizers and nanofertilizers for sustainable agriculture: phycoprospects and challenges. Sci. Total Environ. 803, 149990.
  131. Manzo, S., Buono, S., Rametta, G., Miglietta, M., Schiavo, S., Di Francia, G., 2015. The diverse toxic effect of SiO2 and TiO2 nanoparticles toward the marine microalgae Dunaliella tertiolecta. Environ. Sci. Pollut. Res. 22, 15941-15951.
  132. Manzoor, M.A., Shah, I.H., Ali Sabir, I., Ahmad, A., Albasher, G., Dar, A.A., Altaf, M.A., Shakoor, A., 2023. Environmental sustainable: biogenic copper oxide nanoparticles as nano-pesticides for investigating bioactivities against phytopathogens. Environ. Res. 231, 115941.
  133. Mathimani, T., Mallick, N., 2018. A comprehensive review on harvesting of microalgae for biodiesel-Key challenges and future directions. Renew. Sust. Energy Rev. 91, 1103-1120.
  134. Mirbakhsh, M., 2023. Role of Nano-fertilizer in Plants Nutrient Use Efficiency (NUE)-a mini review. arXiv preprint arXiv:2305.14357.
  135. Mishra, A., Kumari, M., Pandey, S., Chaudhry, V., Gupta, K.C., Nautiyal, C.S., 2014. Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma Bioresour. Technol. 166, 235-242.
  136. Mohammadi, K., 2015. Grain oil and fatty acids composition of soybean affected by nano-iron chelate, chemical fertilizers and farmyard manure. Arch. Agron. Soil Sci. 61(11), 1593-1600.
  137. Mohapatra, P., Swain, R.K., Mishra, S.K., Behera, T., Swain, P., Behura, N.C., Sahoo, G., Sethy, K., Bhol, B.P., Dhama, K., 2014. Effects of dietary nano-selenium supplementation on the performance of layer grower birds. Asian J. Anim. Vet. Adv. 9(10), 641-652.
  138. Mousavi, S.A.A., Pourtalebi, S., 2015. Inhibitory effects of silver nanoparticles on growth and aflatoxin B1 production by Aspergillus Parasiticus. Iran. J. Med. Sci. 40(6), 501.
  139. Mubeen, I., Mfarrej, M.F.B., Razaq, Z., Iqbal, S., Naqvi, S.A.H., Hakim, F., Mosa, W.F.A., Moustafa, M., Fang, Y., Li, B., 2023. Nanopesticides in comparison with agrochemicals: outlook and future prospects for sustainable agriculture. Plant Physiol. Biochem. 107670.
  140. Mukherjee, A., Majumdar, S., Servin, A.D., Pagano, L., Dhankher, O.P., White, J.C., 2016. Carbon nanomaterials in agriculture: a critical review. Front. Plant Sci. 7, 172.
  141. Muralisankar, T., Bhavan, P.S., Radhakrishnan, S., Seenivasan, C., Manickam, N., Srinivasan, V., 2014. Dietary supplementation of zinc nanoparticles and its influence on biology, physiology and immune responses of the freshwater prawn, Macrobrachium rosenbergii. Trace Elem. Res. 160, 56-66.
  142. Mykhaylenko, N.F., Zolotareva, E.K., 2017. The effect of copper and selenium nanocarboxylates on biomass accumulation and photosynthetic energy transduction efficiency of the green algae Chlorella vulgaris. Nanoscale Res. Lett. 12, 147.
  143. Nabi, M.N., Rahman, M.M., Akhter, M.S., 2009. Biodiesel from cotton seed oil and its effect on engine performance and exhaust emissions. Appl. Therm. Eng. 29(11-12), 2265-2270.
  144. Nan, B., Mutlu, B., Karaca, G.A., Koç, R.Ç., Özçimen, D., 2023. Bioprospecting Antarctic microalgae as anticancer agent against PC-3 and AGS cell lines. Biochem. Eng. J. 195, 108900.
  145. Nassar, N.N., 2010. Rapid removal and recovery of Pb (II) from wastewater by magnetic nanoadsorbents. J. Hazard. Mater. 184(1-3), 538-546.
  146. Nguyen, K.C., Seligy, V.L., Massarsky, A., Moon, T.W., Rippstein, P., Tan, J., Tayabali, A.F., 2013. Comparison of toxicity of uncoated and coated silver nanoparticles, in: Journal of Physics: Conference Series. IOP Publishing. 429(1), 12025.
  147. Nguyen, M.K., Moon, J.Y., Bui, V.K.H., Oh, Y.K., Lee, Y.C., 2019. Recent advanced applications of nanomaterials in microalgae biorefinery. Algal Res. 41, 101522.
  148. Nguyen, N.Y.T., Grelling, N., Wetteland, C.L., Rosario, R., Liu, H., 2018. Antimicrobial activities and mechanisms of magnesium oxide nanoparticles (nMgO) against pathogenic bacteria, yeasts, and biofilms. Sci. Rep. 8(1), 16260.
  149. Nigam, P.S., Singh, A., 2011. Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci. 37(1), 52-68.
  150. Nozhevnikova, A.N., Botchkova, E.A., Plakunov, V.K., 2015. Multi-species biofilms in ecology, medicine, and biotechnology. Microbiology. 84, 731-750.
  151. OECD/FAO, 2019. OECD-FAO Agricultural Outlook. OECD Agriculture statistics (database).
  152. Oloumi, H., Mousavi, E.A., Nejad, R.M., 2018. Multi-wall carbon nanotubes effects on plant seedlings growth and cadmium/lead uptake in vitro. Russ. J. plant Physiol. 65, 260-268.
  153. Ooms, M.D., Jeyaram, Y., Sinton, D., 2015. Wavelength-selective plasmonics for enhanced cultivation of microalgae. Appl. Phys. Lett. 106(6), 063902.
  154. Pádrová, K., Lukavský, J., Nedbalová, L., Čejková, A., Cajthaml, T., Sigler, K., Vítová, M., Řezanka, T., 2015. Trace concentrations of iron nanoparticles cause overproduction of biomass and lipids during cultivation of cyanobacteria and microalgae. J. Appl. Phycol. 27, 1443-1451.
  155. Pan, X.H., Nie, D., Guo, X.P., Xu, S., Zhang, D., Cao, F., Guan, X., 2023. Effective control of the tomato wilt pathogen using TiO2 nanoparticles as a green nanopesticide. Environ. Sci. Nano. 10(5), 1441-1452.
  156. Pandey, G., 2018. Challenges and future prospects of agri-nanotechnology for sustainable agriculture in India. Environ. Technol. Innov. 11, 299-307.
  157. Patel, A.K., Kumar, P., Chen, C.W., Tambat, V.S., Nguyen, T.B., Hou, C.Y., Chang, J.S., Dong, C.D., Singhania, R.R., 2022. Nano magnetite assisted flocculation for efficient harvesting of lutein and lipid producing microalgae biomass. Bioresour. Technol. 363, 128009.
  158. Patil, R.M., Thorat, N.D., Shete, P.B., Bedge, P.A., Gavde, S., Joshi, M.G., Tofail, S.A.M., Bohara, R.A., 2018. Comprehensive cytotoxicity studies of superparamagnetic iron oxide nanoparticles. Biochem. Biophys. Rep. 13, 63-72.
  159. Paz-Trejo, C., Flores-Márquez, A.R., Gómez-Arroyo, S., 2023. Nanotechnology in agriculture: a review of genotoxic studies of nanopesticides in animal cells. Environ. Sci. Pollut. Res. 30, 6473-66485.
  160. Pérez-de-Luque, A., 2017. Interaction of nanomaterials with plants: What do we need for real applications in agriculture?. Front. Environ. Sci. 5, 12.
  161. Prasad, T.N.V.K.V., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Reddy, K.R., Sreeprasad, T.S., Sajanlal, P.R., Pradeep, T., 2012. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J. Plant Nutr. 35(6), 905-927.
  162. Prochazkova, G., Safarik, I., Branyik, T., 2013. Harvesting microalgae with microwave synthesized magnetic microparticles. Bioresour. Technol. 130, 472-477.
  163. Qian, K., Guo, H., Chen, G., Ma, C., Xing, B., 2018. Distribution of different surface modified carbon dots in pumpkin seedlings. Sci. Rep. 8(1), 7991.
  164. Raghupathi, K.R., Koodali, R.T., Manna, A.C., 2011. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir. 27(7), 4020-4028.
  165. Rana, M.S., Prajapati, S.K., 2023. Multifarious applications of nanoparticles in microalgae for bioenergy generation: State-of-the-art review. J. Environ. Chem. Eng. 11(1), 109145.
  166. Rani, N., Duhan, A., Pal, A., Kumari, P., Beniwal, R.K., Verma, D., Goyat, A., Singh, R., 2023. Are nano-pesticides really meant for cleaner production? an overview on recent developments, benefits, environmental hazards and future prospectives. J. Clean. Prod. 411, 137232.
  167. Ranjan, S., Dasgupta, N., Singh, S., Gandhi, M., 2019. Toxicity and regulations of food nanomaterials. Environ. Chem. Lett. 17, 929-944.
  168. Rashid, M.I., Shahzad, T., Shahid, M., Ismail, I.M.I., Shah, G.M., Almeelbi, T., 2017. Zinc oxide nanoparticles affect carbon and nitrogen mineralization of Phoenix dactylifera leaf litter in a sandy soil. J. Hazard. Mater. 324, 298-305.
  169. Ray, A., Nayak, M., Ghosh, A., 2022. A review on co-culturing of microalgae: a greener strategy towards sustainable biofuels production. Sci. Total Environ. 802, 149765.
  170. Reetu, Clifford, M., Prakash, R., Rai, M.P., 2023. Latest advances and status analysis of nanomaterials for microalgae photosystem, lipids and biodiesel: a state of art. J. Environ. Chem. Eng. 11, 109111.
  171. Refaie, A.M., Ghazal, M.N., Easa, F.M., Barakat, S.A., Morsy, W.A., Younan, G.E., Eisa, W.H., 2015. Nano-copper as a new growth promoter in the diet of growing New Zealand white rabbits. Egypt. J. Rabbit Sci. 25(1), 39-57.
  172. Ren, W., Chang, H., Wang, Y., Teng, Y., Ma, W., Luo, Y., 2018. Effect of sulfonated graphene on uptake, translocation, and metabolism of 2,4,4-trichlorobiphenyl in maize seedlings. Environ. Sci. Pollut. Res. 25, 20084-20096.
  173. Ribi -Zelenovi, L., Spasojevi, M., uki, D., Vuji, J., 2009. Modern agriculture and nanotechnology. Acta Agric. Serbica. 14, 13-21.
  174. Rodea-Palomares, I., Gonzalo, S., Santiago-Morales, J., Leganés, F., García-Calvo, E., Rosal, R., Fernández-Piñas, F., 2012. An insight into the mechanisms of nanoceria toxicity in aquatic photosynthetic organisms. Aquat. Toxicol. 122-123, 133-143.
  175. Rudic, V., Cepoi, L., Gutsul, T., Rudi, L., Chiriac, T., Miscu, V., Sadovnic, D., Nicorici, A., 2012. Red algae porphyridium cruentum growth stimulated by CdSe quantum dots covered with thioglycerol. J. Nanoelectron. Optoelectron. 7(7), 681-687.
  176. Saikia, J., Gogoi, A., Baruah, S., 2019. Nanotechnology for Water Remediation, in: Environmental Nanotechnology. Springer, pp. 195-211.
  177. Sanchez, M.C., Toledano-Osorio, M., Bueno, J., Figuero, E., Toledano, M., Medina-Castillo, A.L., Osorio, R., Herrera, D., Sanz, M., 2019. Antibacterial effects of polymeric PolymP-n Active nanoparticles. an in vitro biofilm study. Dent. Mater. 35(1), 156-168.
  178. Sangeetha, J., Thangadurai, D., Hospet, R., Purushotham, P., Karekalammanavar, G., Mundaragi, A.C., David, M., Shinge, M.R., Thimmappa, S.C., Prasad, R., 2017. Agricultural nanotechnology: concepts, benefits, and risks, in: Nanotechnology: An Agricultural Paradigm. Springer, pp. 1-17.
  179. Sarkar, R.D., Singh, H.B., Kalita, M.C., 2021. Enhanced lipid accumulation in microalgae through nanoparticle-mediated approach, for biodiesel production: a mini-review. Heliyon. 7(9), e08057.
  180. Sarma, S.J., Das, R.K., Brar, S.K., Le Bihan, Y., Buelna, G., Verma, M., Soccol, C.R., 2014. Application of magnesium sulfate and its nanoparticles for enhanced lipid production by mixotrophic cultivation of algae using biodiesel waste. Energy. 78, 16-22.
  181. Sathya, A.B., Thirunavukkarasu, A., Nithya, R., Nandan, A., Sakthishobana, K., Kola, A.K., Sivashankar, R., Tuan, H.A., Deepanraj, B., 2023. Microalgal biofuel production: potential challenges and prospective research. Fuel. 332, 126199.
  182. Satpati, G.G., Dikshit, P.K., Mal, N., Pal, R., Sherpa, K.C., Rajak, R.C., Rather, S.U., Raghunathan, S., Davoodbasha, M.A., 2023. A state of the art review on the co-cultivation of microalgae-fungi in wastewater for biofuel production. Sci. Total Environ. 870, 161828.
  183. Saware, K., Aurade, R.M., Kamala Jayanthi, P.D., Abbaraju, V., 2015. Modulatory effect of citrate reduced gold and biosynthesized silver nanoparticles on -amylase activity. J. Nanopart. 2015.
  184. Sawosz, E., Łukasiewicz, M., Łozicki, A., Sosnowska, M., Jaworski, S. awomir, Niemiec, J., Scott, A., Jankowski, J., Józefiak, D., Chwalibog, A., 2018. Effect of copper nanoparticles on the mineral content of tissues and droppings, and growth of chickens. Arch. Anim. Nutr. 72(5), 396-406.
  185. Sekhon, B.S., 2014. Nanotechnology in agri-food production: an overview. Nanotechnol. Sci. Appl. 7, 31-53.
  186. Seo, J.Y., Lee, K., Lee, S.Y., Jeon, S.G., Na, J.G., Oh, Y.K., Park, S. Bin, 2014. Effect of barium ferrite particle size on detachment efficiency in magnetophoretic harvesting of oleaginous Chlorella Bioresour. Technol. 152, 562-566.
  187. Seo, J.Y., Praveenkumar, R., Kim, B., Seo, J.C., Park, J.Y., Na, J.G., Jeon, S.G., Park, S. Bin, Lee, K., Oh, Y.K., 2016. Downstream integration of microalgae harvesting and cell disruption by means of cationic surfactant-decorated Fe3O4 Green Chem. 18(14), 3981-3989.
  188. Ševců, A., El-Temsah, Y.S., Joner, E.J., Černík, M., 2011. Oxidative stress induced in microorganisms by zero-valent iron nanoparticles. Microbes Environ. 26(4), 271-281.
  189. Shang, Y., Hasan, M.K., Ahammed, G.J., Li, M., Yin, H., Zhou, J., 2019. Applications of nanotechnology in plant growth and crop protection: a review. Molecules. 24(14), 2558.
  190. Sharifi, R., Mohammadi, K., Rokhzadi, A., 2016. Effect of seed priming and foliar application with micronutrients on quality of forage corn (Zea mays). Environ. Exp. Biol. 14(4), 151-156.
  191. Sharma, N., Singhvi, R., 2017. Effects of chemical fertilizers and pesticides on human health and environment: a review. Int. J. Agric. Environ. Biotechnol. 10(6), 675-680.
  192. Sheykhbaglou, R., Sedghi, M., Shishevan, M.T., Sharifi, R.S., 2010. Effects of nano-iron oxide particles on agronomic traits of soybean. Not. Sci. Biol. 2(2), 112-113.
  193. Singh, A., Bhati, A., Tripathi, K.M., Sonkar, S.K., 2018. Nanocarbons in agricultural plants: can be a potential nanofertilizer?. Nanotechnol. Environ. Sci. 153-190.
  194. Sohrabi, Y., Omer, K.M., Yazdani, M., Sharifi Kalyani, F., 2023. The effect of nano-fertilizer of paulownia on morpho-physiological traits and dry matter yield of basil under different irrigation levels. J. Plant Nutr. 46(9), 1868-1888.
  195. Srivastava, A., Rao, D.P., 2014. Enhancement of seed germination and plant growth of wheat, maize, peanut and garlic using multiwalled carbon nanotubes. Eur. Chem. Bull. 3(5), 502-504.
  196. Stampoulis, D., Sinha, S.K., White, J.C., 2009. Assay-dependent phytotoxicity of nanoparticles to plants. Environ. Sci. Technol. 43(24), 9473-9479.
  197. Sukenik, A., Shelef, G., 1984. Algal autoflocculation-verification and proposed mechanism. Biotechnol. Bioeng. 26(2), 142-147.
  198. Sun, Y., Huang, Y., Liao, Q., Xia, A., Fu, Q., Zhu, X., Fu, J., 2018. Boosting Nannochloropsis oculata growth and lipid accumulation in a lab-scale open raceway pond characterized by improved light distributions employing built-in planar waveguide modules. Bioresour. Technol. 249, 880-889.
  199. Sun, Y., Liang, J., Tang, L., Li, H., Zhu, Y., Jiang, D., Song, B., Chen, M., Zeng, G., 2019. Nano-pesticides: a great challenge for biodiversity?. Nano Today. 28, 100757.
  200. Sun, Y., Liao, Q., Huang, Y., Xia, A., Fu, Q., Zhu, X., Zheng, Y., 2016. Integrating planar waveguides doped with light scattering nanoparticles into a flat-plate photobioreactor to improve light distribution and microalgae growth. Bioresour. Technol. 220, 215-224.
  201. Taha, R.A., Hassan, M.M., Ibrahim, E.A., Baker, N.H.A., Shaaban, E.A., 2016. Carbon nanotubes impact on date palm in vitro cultures. Plant Cell, Tissue Organ Cult. (PCTOC). 127, 525-534.
  202. Talebi, A.F., Mohtashami, S.K., Tabatabaei, M., Tohidfar, M., Bagheri, A., Zeinalabedini, M., Mirzaei, H.H., Mirzajanzadeh, M., Shafaroudi, S.M., Bakhtiari, S., 2013. Fatty acids profiling: a selective criterion for screening microalgae strains for biodiesel production. Algal Res. 2(3), 258-267.
  203. Tan, H., Wang, C., Li, H., Peng, D., Zeng, C., Xu, H., 2020. Remediation of hexavalent chromium contaminated soil by nano-FeS coated humic acid complex in combination with Cr-resistant microflora. Chemosphere. 242, 125251.
  204. Tang, J., Wu, Y., Esquivel-Elizondo, S., Sørensen, S.J., Rittmann, B.E., 2018. How microbial aggregates protect against nanoparticle toxicity. Trends Biotechnol. 36(11), 1171-1182.
  205. Tiwari, D.K., Dasgupta-Schubert, N., Cendejas, L.M.V., Villegas, J., Montoya, L.C., García, S.E.B., 2014. Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl. Nanosci. 4, 577-591.
  206. Toh, P.Y., Ng, B.W., Ahmad, A.L., Chieh, D.C.J., Lim, J., 2014a. The role of particle-to-cell interactions in dictating nanoparticle aided magnetophoretic separation of microalgal cells. Nanoscale. 6(21), 12838-12848.
  207. Toh, P.Y., Ng, B.W., Chong, C.H., Ahmad, A.L., Yang, J.W., Derek, C.J.C., Lim, J., 2014b. Magnetophoretic separation of microalgae: the role of nanoparticles and polymer binder in harvesting biofuel. RSC Adv. 4(8), 4114-4121.
  208. Tork, M.B., Khalilzadeh, R., Kouchakzadeh, H., 2017. Efficient harvesting of marine Chlorella vulgaris microalgae utilizing cationic starch nanoparticles by response surface methodology. Bioresour. Technol. 243, 583-588.
  209. Tripathi, D.K., Singh, S., Singh, S., Pandey, R., Singh, V.P., Sharma, N.C., Prasad, S.M., Dubey, N.K., Chauhan, D.K., 2017. An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol. Biochem. 110, 2-12.
  210. Turan, N.B., Erkan, H.S., Engin, G.O., Bilgili, M.S., 2019. Nanoparticles in the aquatic environment: usage, properties, transformation and toxicity-a review. Process Saf. Environ. Prot. 130, 238-249.
  211. Udayan, A., Sirohi, R., Sreekumar, N., Sang, B.I., Sim, S.J., 2022. Mass cultivation and harvesting of microalgal biomass: current trends and future perspectives. Bioresour. Technol. 344, 126406.
  212. Uniyal, S., Garg, A.K., Jadhav, S.E., Chaturvedi, V.K., Mohanta, R.K., 2017. Comparative efficacy of zinc supplementation from different sources on nutrient digestibility, hemato-biochemistry and anti-oxidant activity in guinea pigs. Livest. Sci. 204, 59-64.
  213. Usman, M., Farooq, M., Wakeel, A., Nawaz, A., Cheema, S.A., ur Rehman, H., Ashraf, I., Sanaullah, M., 2020. Nanotechnology in agriculture: current status, challenges and future opportunities. Sci. Total Environ. 721, 137778.
  214. Vale, G., Mehennaoui, K., Cambier, S., Libralato, G., Jomini, S., Domingos, R.F., 2016. Manufactured nanoparticles in the aquatic environment-biochemical responses on freshwater organisms: a critical overview. Aquat. Toxicol. 170, 162-174.
  215. Vasistha, S., Balakrishnan, D., Manivannan, A., Rai, M.P., 2023. Microalgae on distillery wastewater treatment for improved biodiesel production and cellulose nanofiber synthesis: a sustainable biorefinery approach. Chemosphere. 315, 137666.
  216. Verma, S.K., Das, A.K., Gantait, S., Kumar, V., Gurel, E., 2019. Applications of carbon nanomaterials in the plant system: a perspective view on the pros and cons. Sci. Total Environ. 667, 485-499.
  217. Vignesh, P., Jayaseelan, V., Pugazhendiran, P., Prakash, M.S., Sudhakar, K., 2022. Nature-inspired nano-additives for Biofuel application-a review. Chem. Eng. J. Adv. 100360.
  218. Vijayakumar, S., Rajapriya, A., Vidhya, E., Nilavukkarasi, M., Punitha, V.N., 2023. Agriculture revolution impact on a modest dosage of silver nano-fertilizer: a green strategy. Chem. Africa. 1-8.
  219. Wang, C., Zhang, Ligen, Su, W., Ying, Z., He, J., Zhang, Lili, Zhong, X., Wang, T., 2017. Zinc oxide nanoparticles as a substitute for zinc oxide or colistin sulfate: effects on growth, serum enzymes, zinc deposition, intestinal morphology and epithelial barrier in weaned piglets. PLoS One. 12(7), e0181136.
  220. Wang, J., Zhu, X., Tan, L., Zhao, T., Ni, Z., Zhang, N., Wang, Jiangtao, 2022. Single and combined nanotoxicity of ZnO nanoparticles and graphene quantum dots against the microalga Heterosigma akashiwo. Environ. Sci. Nano. 9(8), 3094-3109.
  221. Wang, S.K., Stiles, A.R., Guo, C., Liu, C.Z., 2015. Harvesting microalgae by magnetic separation: a review. Algal Res. 9, 178-185.
  222. Wang, S.K., Wang, F., Hu, Y.R., Stiles, A.R., Guo, C., Liu, C.Z., 2014a. Magnetic flocculant for high efficiency harvesting of microalgal cells. ACS Appl. Mater. Interfaces. 6(1), 109-115.
  223. Wang, S.K., Wang, F., Stiles, A.R., Guo, C., Liu, C.Z., 2014b. Botryococcus braunii cells: ultrasound-intensified outdoor cultivation integrated with in situ magnetic separation. Bioresour. Technol. 167, 376-382.
  224. Wang, T., Yang, W.L., Hong, Y., Hou, Y.L., 2016a. Magnetic nanoparticles grafted with amino-riched dendrimer as magnetic flocculant for efficient harvesting of oleaginous microalgae. Chem. Eng. J. 297, 304-314.
  225. Wang, Z., Zhang, L., Zhao, J., Xing, B., 2016b. Environmental processes and toxicity of metallic nanoparticles in aquatic systems as affected by natural organic matter. Environ. Sci. Nano. 3(2), 240-255.
  226. Wang, Y., Yang, K., 2013. Toxicity of single-walled carbon nanotubes on green microalga Chromochloris zofingiensis. Chinese J. Oceanol. Limnol. 31(2), 306-311.
  227. Xiao, M., Xin, J., Fan, J., Ji, B., 2022. Response mechanisms of microalgal-bacterial granular sludge to zinc oxide nanoparticles. Bioresour. Technol. 361, 127713.
  228. Xing, Y., Li, W., Wang, Q., Li, X., Xu, Q., Guo, X., Bi, X., Liu, X., Shui, Y., Lin, H., 2019. Antimicrobial nanoparticles incorporated in edible coatings and films for the preservation of fruits and vegetables. Molecules. 24(9), 1695.
  229. Xiong, J.L., Li, J., Wang, H.C., Zhang, C.L., Naeem, M.S., 2018. Fullerol improves seed germination, biomass accumulation, photosynthesis and antioxidant system in Brassica napus under water stress. Plant Physiol. Biochem. 129, 130-140.
  230. Xu, L., Guo, C., Wang, F., Zheng, S., Liu, C.Z., 2011. A simple and rapid harvesting method for microalgae by in situ magnetic separation. Bioresour. Technol. 102(21), 10047-10051.
  231. Xue, W., Huang, D., Zeng, G., Wan, J., Cheng, M., Zhang, C., Hu, C., Li, J., 2018. Performance and toxicity assessment of nanoscale zero valent iron particles in the remediation of contaminated soil: a review. Chemosphere. 210, 1145-1156.
  232. Xun, W., Shi, L., Yue, W., Zhang, C., Ren, Y., Liu, Q., 2012. Effect of high-dose nano-selenium and selenium-yeast on feed digestibility, rumen fermentation, and purine derivatives in sheep. Biol. Trace Elem. Res. 150, 130-136.
  233. Yadav, K.K., Singh, J.K., Gupta, N., Kumar, V.J.J.M.E.S., 2017. A review of nanobioremediation technologies for environmental cleanup: a novel biological approach. J. Mater. Env. Sci. 8(2), 740-757.
  234. Yan, S., Zhao, L., Li, H., Zhang, Q., Tan, J., Huang, M., He, S., Li, L., 2013. Single-walled carbon nanotubes selectively influence maize root tissue development accompanied by the change in the related gene expression. J. Hazard. Mater. 246-247, 110-118.
  235. Yang, L., Su, Q., Si, B., Zhang, Y., Zhang, Y., Yang, H., Zhou, X., 2022a. Enhancing bioenergy production with carbon capture of microalgae by ultraviolet spectrum conversion via graphene oxide quantum dots. Chem. Eng. J. 429, 132230.
  236. Yang, Y., Fan, X., Zhang, J., Qiao, S., Wang, X., Zhang, X., Miao, L., Hou, J., 2022b. A critical review on the interaction of iron-based nanoparticles with blue-green algae and their metabolites: from mechanisms to applications. Algal Res. 64, 102670.
  237. Yang, M., Dong, C., Shi, Y., 2023. Nano fertilizer synergist effects on nitrogen utilization and related gene expression in wheat. BMC Plant Biol. 23(1), 26.
  238. Yang, Y., Hou, J., Wang, P., Wang, C., Miao, L., Ao, Y., Xu, Y., Wang, X., Lv, B., You, G., 2018. Interpretation of the disparity in harvesting efficiency of different types of Microcystis aeruginosa using polyethylenimine (PEI)-coated magnetic nanoparticles. Algal Res. 29, 257-265.
  239. Yang, Z., Fang, Z., Zheng, L., Cheng, W., Tsang, P.E., Fang, J., Zhao, D., 2016. Remediation of lead contaminated soil by biochar-supported nano-hydroxyapatite. Ecotoxicol. Environ. Saf. 132, 224-230.
  240. Yin, Z., Zhu, L., Li, S., Hu, T., Chu, R., Mo, F., Hu, D., Liu, C., Li, B., 2020. A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: environmental pollution control and future directions. Bioresour. Technol. 301, 122804.
  241. Yusefi-Tanha, E., Fallah, S., Rostamnejadi, A., Pokhrel, L.R., 2020. Zinc Oxide Nanoparticles (ZnONPs) as Nanofertilizer: Improvement on Seed Yield and Antioxidant Defense System in Soil Grown Soybean (Glycine max Kowsar). BioRxiv. 2020-04.
  242. Zhai, G., Gutowski, S.M., Walters, K.S., Yan, B., Schnoor, J.L., 2015. Charge, size, and cellular selectivity for multiwall carbon nanotubes by maize and soybean. Environ. Sci. Technol. 49(12), 7380-7390.
  243. Zhang, C., Wang, J., Tan, L., Chen, X., 2016. Toxic effects of nano-ZnO on marine microalgae Skeletonema costatum: attention to the accumulation of intracellular Zn. Aquat. Toxicol. 178, 158-164.
  244. Zhang, J., Guo, W., Li, Q., Wang, Z., Liu, S., 2018. The effects and the potential mechanism of environmental transformation of metal nanoparticles on their toxicity in organisms. Environ. Sci. Nano. 5(11), 2482-2499.
  245. Zhang, W., 2018. Global pesticide use: profile, trend, cost/benefit and more. Proc. Int. Acad. Ecol. Environ. Sci. 8(1), 1-27.
  246. Zhang, X., Amendola, P., Hewson, J.C., Sommerfeld, M., Hu, Q., 2012. Influence of growth phase on harvesting of Chlorella zofingiensis by dissolved air flotation. Bioresour. Technol. 116, 477-484.
  247. Zhang, X.L., Yan, S., Tyagi, R.D., Surampalli, R.Y., 2013. Biodiesel production from heterotrophic microalgae through transesterification and nanotechnology application in the production. Renew. Sust. Energy Rev. 26, 216-223.
  248. Zhao, J., Ni, T., Li, J., Lu, Q., Fang, Z., Huang, Q., Zhang, R., Li, R., Shen, B., Shen, Q., 2016a. Effects of organic-inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice-wheat cropping system. Appl. soil Ecol. 99, 1-12.
  249. Zhao, X., Liu, W., Cai, Z., Han, B., Qian, T., Zhao, D., 2016b. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Res. 100, 245-266.
  250. Zhao, Q., Wang, S., Lv, Z., Zupanic, A., Guo, S., Zhao, Q., Jiang, L., Yu, Y., 2022. Using nanomaterials to increase the efficiency of chemical production in microbial cell factories: a comprehensive review. Biotechnol. Adv. 59, 107982.
  251. Zheng, H., Mortensen, L.J., Ravichandran, S., Bentley, K., DeLouise, L.A., 2017. Effect of nanoparticle surface coating on cell toxicity and mitochondria uptake. J. Biomed. Nanotechnol. 13(2), 155-166.
  252. Zheng, M., Lu, J., Zhao, D., 2018. Effects of starch-coating of magnetite nanoparticles on cellular uptake, toxicity and gene expression profiles in adult zebrafish. Sci. Total Environ. 622, 930-941.
  253. Zheng, Z., Wang, X., Zhong, X., Hu, B., Liu, H., Yao, M., 2016. Experimental study on the combustion and emissions fueling biodiesel/n-butanol, biodiesel/ethanol and biodiesel/2,5-dimethylfuran on a diesel engine. Energy. 115, 539-549.
  254. Zhou, X., Feng, C., 2017. The impact of environmental regulation on fossil energy consumption in China: Direct and indirect effects. J. Clean. Prod. 142, 3174-3183.
  255. Zhou, X., Wang, Y., Gu, Q., Li, W., 2009. Effects of different dietary selenium sources (selenium nanoparticle and selenomethionine) on growth performance, muscle composition and glutathione peroxidase enzyme activity of crucian carp (Carassius auratus gibelio). Aquaculture. 291(1-2), 78-81.
  256. Zhu, L.D., Hiltunen, E., Li, Z., 2019. Using magnetic materials to harvest microalgal biomass: evaluation of harvesting and detachment efficiency. Environ. Technol. 40(8), 1006-1012.
  257. Zhu, L., Nugroho, Y.K., Shakeel, S.R., Li, Z., Martinkauppi, B., Hiltunen, E., 2017. Using microalgae to produce liquid transportation biodiesel: what is next?. Renew. Sust. Energy Rev. 78, 391-400.