A critical review of multiple alternative pathways for the production of a high-value bioproduct from sugarcane mill byproducts: the case of adipic acid

Document Type : Review Paper


Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.


Biobased fuels, chemicals, and materials can replace fossil fuel products and mitigate climate change. Sugarcane mills have the potential to produce a wider range of biobased chemicals in a similar approach to bioethanol production, including adipic acid. Multiple alternative pathways for converting simple sugars into adipic acid have been described, with the potential for integration into a sugar mill. The economics and expected greenhouse gas emissions reductions compared to fossil-based adipic acid were investigated in the present study to identify preferred pathways for implementation in sugarcane biorefineries. Nine biobased pathways for adipic acid production were screened for technical performances, resulting in the selection of four preferred options for rigorous comparison, i.e., direct microbial conversion of sugars, and production via cis,cis-muconic acid, glucaric acid, and glycerol as intermediate, obtained from sugars. The minimum selling prices of adipic acid for an attractive return on investment were determined for these pathways, using either A-molasses or a combination of A-molasses and pretreated sugarcane lignocelluloses in biorefineries designed to be energy-self-sufficient. Adipic acid production from A-molasses via cis,cis-muconic acid was the best overall performing scenario with the lowest minimum selling price of USD 2,538/Mt and lowered greenhouse gas emissions (2,325 g CO2 eq/kg wet) compared to fossil-based adipic acid production. The scenarios with combined A-molasses and lignocellulosic feedstock had increased minimum selling prices by 29 to 101% compared to adipic acid production from A‑molasses via cis,cis-muconic acid. 

Graphical Abstract

A critical review of multiple alternative pathways for the production of a high-value bioproduct from sugarcane mill byproducts: the case of adipic acid


  • Biobased adipic acid (ADA) production has great potential to revitalize the sugarcane industry.
  • Compared to fossil-based, biobased ADA production can lower GHG emissions up to 80%.
  • Biobased ADA production from A-molasses is only 15% more expensive compared to fossil-based ADA.
  • The intermediate cis,cis-muconic acid found the best route for ADA production.
  • The adoption of biobased ADA faces competition from the petrochemical market.


  1. Aden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J., Wallace, B., Montague, L., Slayton, A., Lukas, J., 2002. Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. National Renewable Energy Laboratory, (NREL), Golden, United States.
  2. Alonso, D.M., Wettstein, S.G., Dumesic, J.A., 2013a. Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem. 15(3), 584-595.
  3. Alonso, D.M., Wettstein, S.G., Mellmer, M.A., Gurbuz, E.I., Dumesic, J.A., 2013b. Integrated conversion of hemicellulose and cellulose from lignocellulosic biomass. Energy Environ. Sci. 6(1), 76-80.
  4. Andersson, C., Hodge, D., Berglund, K.A., Rova, U., 2007. Effect of different carbon sources on the production of succinic acid using metabolically engineered Escherichia coli. Biotechnol. Prog. 23(2), 381-388.
  5. Archer, R., Diamond, G.M., Dias, E.L., Murphy, V.J., Petro, M., Super, J.D., 2016. Process for the separation of mono- and di-carboxylic acid compounds. U.S. Patent 9,487,465B2.
  6. Babu, T., Yun, E.J., Kim, S., Kim, D.H., Liu, K.H., Kim, S.R., Kim, K.H., 2015. Engineering Escherichia coli for the production of adipic acid through the reversed β-oxidation pathway. Process Biochem. 50(12), 2066-2071.
  7. Barton, N.R., Burgard, A.P., Burk, M.J., Crater, J.S., Osterhout, R.E., Pharkya, P., Steer, B.A., Sun, J., Trawick, J.D., Van Dien, S.J., Yang, T.H., Yim, H., 2015. An integrated biotechnology platform for developing sustainable chemical processes. J. Ind. Microbiol. Biotechnol. 42(3), 349-360.
  8. Beerthuis, R., Rothenberg, G., Shiju, N.R., 2015. Catalytic routes towards acrylic acid, adipic acid and ε-caprolactam starting from biorenewables. Green Chem. 17(3), 1341-1361.
  9. Boussie, T.R., Diamond, G.M., Dias, E., Murphy, V., 2016. Synthesis of adipic acid starting from renewable raw materials, in: Cavani, F., Albonetti, S., Basile, F., Gandini, A. (Eds.), Chemicals and Fuels from Bio-Based Building Blocks. Wiley-VCH Verlag GmbH & Co. KGaA, pp. 151-172.
  10. Boussie, T.R., Dias, E.L., Fresco, Z.M., Murphy, V.J., Shoemaker, J., Archer, R., Jiang, H., 2014. Production of adipic acid and derivatives from carbohydrate-containing materials. Patent US20100317823A1.
  11. Brandão, M., Heijungs, R., Cowie, A.R., 2022. On quantifying sources of uncertainty in the carbon footprint of biofuels: crop/feedstock, LCA modelling approach, land-use change, and GHG metrics. Biofuel Res. J. 9(2), 1608-1616.
  12. Bui, V., Lau, M.K., MacRae, D., Schweitzer, D., Amyris Inc, 2014. Methods for the producing isomers of muconic acid and muconate salt. U.S. Patent 8,809,583B2.
  13. Buntara, T., Noel, S., Phua, P.H., Meliµn-cabrera, I., de Vries, J.G., Heeres, H.J., 2011. Caprolactam from renewable resources: catalytic conversion of 5-hydroxymethylfurfural into caprolactone. Angew. Chem. 50(31), 7083-7087.
  14. Chen, N., Wang, J., Zhao, Y., Deng, Y., 2018. Metabolic engineering of Saccharomyces cerevisiae for efficient production of glucaric acid at high titer. Microb. Cell. Fact. 17(1), 1-11.
  15. Choe, B., Lee, S., Won, W., 2021. Coproduction of butene oligomers and adipic acid from lignocellulosic biomass: process design and evaluation. Energy. 235, 121278.
  16. Coşgun, A., Günay, M.E., Yıldırım, R., 2023. A critical review of machine learning for lignocellulosic ethanol production via fermentation route. Biofuel Res. J. 10(2),1859-1875.
  17. Dake, S.B., Gholap, R.V., Chaudhari, R.V., 1987. Carbonylation of 1,4-butanediol diacetate using rhodium complex catalyst: a kinetic study. Ind. Eng. Chem. Res. 26(8), 1513-1518.
  18. Davis, R.E., Grundl, N.J., Tao, L., Biddy, M.J., Tan, E.C., Beckham, G.T., Humbird, D., Thompson, D.N., Roni, M.S., 2018. Process design and economics for the conversion of lignocellulosic biomass to hydrocarbon fuels and coproducts: 2018 biochemical design case update. National Renewable Energy Laboratory, Colorado. NREL/TP-5100-71949.
  19. Deng, Y., Mao, Y., 2015. Production of adipic acid by the native-occurring pathway in Thermobifida fusca J. Appl. Microbiol. 119(4), 1057-1063.
  20. Derrien, E., Mounguengui-Diallo, M., Perret, N., Marion, P., Pinel, C., Besson, M., 2017. Aerobic oxidation of glucose to glucaric acid under alkaline-free conditions: Au-Based bimetallic catalysts and the effect of residues in a hemicellulose hydrolysate. Ind. Eng. Chem. Res. 56(45), 13175-13189.
  21. Dirkx, J.M.H., Van der Baan, H.S., 1981. The oxidation of gluconic acid with platinum on carbon as catalyst. J. Catal. 67(1), 14-20.
  22. Dirkx, J.M., Van der Baan, H.S., Van den Broek, J.M.A.J.J., 1977. The preparation of D-glucaric acid by the oxidation of D-gluconic acid catalysed by platinum on carbon. Carbohydr. Res. 59(1), 63-72.
  23. Dogbe, E.S., Mandegari, M., Görgens, J.F., 2020. Revitalizing the sugarcane industry by adding value to A-molasses in biorefineries. Biofuel Bioprod. Biorefin. 14(5), 1089-1104.
  24. Dogbe, E.S., Mandegari, M.A., Görgens, J.F., 2018. Exergetic diagnosis and performance analysis of a typical sugar mill based on Aspen Plus® simulation of the process. Energy. 145, 614-625.
  25. Dutta, S., Iris, K.M., Tsang, D.C., Ng, Y.H., Ok, Y.S., Sherwood, J., Clark, J.H., 2019. Green synthesis of gamma-valerolactone (GVL) through hydrogenation of biomass-derived levulinic acid using non-noble metal catalysts: a critical review. Chem. J. 372, 992-1006.
  26. Ewing, T.A., Nouse, N., van Lint, M., van Haveren, J., Hugenholtz, J., van Es, D.S., 2022. Fermentation for the production of biobased chemicals in a circular economy: a perspective for the period 2022-2050. Green Chem. 24(17), 6373-6405.
  27. Fallahi, A., Farzad, S., Mohtasebi, S.S., Mandegari, M., Görgens, J.F., Gupta, V.K., Lam, S.S., Tabatabaei, M., Aghbashlo, M., 2021. Sustainability assessment of sugarcane residues valorization to biobutadiene by exergy and exergoeconomic evaluation. Renew. Sust. Energy Rev. 147,
  28. Farzad, S., Mandegari, M.A., Guo, M., Haigh, K.F., Shah, N., Görgens, J.F., 2017. Multi-product biorefineries from lignocelluloses: a pathway to revitalisation of the sugar industry?. Biotechnol. Biofuels 10, 1-24.
  29. Fazzino, F., Pedullà, A., Calabrò., P.S., 2023. Boosting the circularity of waste management: pretreated mature landfill leachate enhances the anaerobic digestion of market waste. Biofuel Res. J. 10(1),1764-1773.
  30. Flederbach, B., Winch, J., 2019. Adipic acid production issue paper. ClimeCo Corporation, Boyertown, Pennsylvania.
  31. Fruchey, O.S., Manzer, L.E., Dunuwila, D., Keen, B.T., Albin, B.A., Clinton, N.A., Dombek, B.D., 2011. Processes for producing adipic acid from fermentation broths containing diammonium adipate. U.S. Patent 20110269993A1.
  32. Gheewala, S.H., 2023. Life cycle assessment for sustainability assessment of biofuels and bioproducts. Biofuel Res. J. 10(1), 1810-1815.
  33. Grand View Research. 2021. Bio-based platform chemicals market." San Francisco, United States.
  34. Gunukula, S., Anex, R.P., 2017. Techno-economic analysis of multiple bio-based routes to adipic acid. Biofuel Bioprod. Biorefin. 11(5), 897-907.
  35. Guo, H., Liu, H., Jin, Y., Zhang, R., Yu, Y., Deng, L., Wang, F., 2022. Advances in research on the bio-production of 1,4-butanediol by the engineered microbes. Biochem. Eng. J. 185, 108478.
  36. Han, J., 2016. A bio-based ‘green’ process for catalytic adipic acid production from lignocellulosic biomass using cellulose and hemicellulose derived γ-valerolactone. Energy Convers. Manage. 129, 75-80.
  37. Humbird, D., Davis, R., Tao, L., Kinchin, C., Hsu, D., Aden, A., Schoen, P., Lukas, J., Olthof, B., Worley, M.J.B.B., Sexton, D., Dudgeon, D., 2011. Process design and economics for conversion of lignocellulosic biomass to ethanol. National Renewable Energy Laboratory, Colorado. NREL/TP-5100-51400
  38. Jarunglumlert, T., Bampenrat, A., Sukkathanyawat, H., Pavasant, P., Prommuak, C., 2022. Enhancing the potential of sugarcane bagasse for the production of ENplus quality fuel pellets by torrefaction: an economic feasibility study. Biofuel Res. J. 9(4), 1707-1720.
  39. Jin, X., Zhao, M., Vora, M., Shen, J., Zeng, C., Yan, W., Thapa, P.S., Subramaniam, B., Chaudhari, R.V., 2016. Synergistic effects of bimetallic PtPd/TiO2 nanocatalysts in oxidation of glucose to glucaric acid: structure dependent activity and selectivity. Ind. Eng. Chem. Res. 55(11), 2932-2945.
  40. Kalle, G.P., Naik, S.C., 1986. Effect of controlled aeration on glycerol production in a sulphite process by Saccharomyces Cerevisiae. Biotechnol. Bioeng. 29(9), 1173-1175.
  41. Kapanji, K.K., Haigh, K.F., Görgens, J.F., 2019. Techno-economic analysis of chemically catalysed lignocellulose biorefineries at a typical sugar mill: sorbitol or glucaric acid and electricity co-production. Bioresour. Technol. 289, 121635.
  42. Kohlstedt, M., Starck, S., Barton, N., Stolzenberger, J., Selzer, M., Mehlmann, K., Schneider, R., Pleissner, D., Rinkel, J., Dickschat, J.S., Venus, J., B.J.H. van Duuren, J., Wittmann, C., 2018. From lignin to nylon: Cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida. Metab. Eng. 47, 279-293.
  43. Lee, J., Saha, B., Vlachos, D.G., 2016. Pt catalysts for efficient aerobic oxidation of glucose to glucaric acid in water. Green Chem. 18(13), 3815-3822.
  44. Ling, C., Peabody, G.L., Salvachúa, D., Kim, Y.M., Kneucker, C.M., Calvey, C.H., Monninger, M.A., Munoz, N.M., Poirier, B.C., Ramirez, K.J., St. John, P.C., Woodworth, S.P., Magnuson, J.K., Burnum-Johnson, K.E., Guss, A.M., Johnson, C.W., Beckham, G.T., 2022. Muconic acid production from glucose and xylose in Pseudomonas putida via evolution and metabolic engineering. Nat. Commun. 13(1), 4925.
  45. Louw, J., Farzad, S., Görgens, J.F., 2023. Polyethylene furanoate: technoeconomic analysis of biobased production. Biofuel Bioprod. Biorefin. 17(1), 135-152.
  46. Moon, T.S., Dueber, J.E., Shiue, E., Prather, K.L.J., 2010. Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli. Metab. Eng. 12(3), 298-305.
  47. Moonsamy, T.A., Mandegari, M., Farzad, S., Görgens, J.F., 2022. A new insight into integrated first and second-generation bioethanol production from sugarcane. Ind. Crops Prod. 188, 115675.
  48. Morakile, T., Mandegari, M., Farzad, S., Görgens, J.F. 2022. Comparative techno-economic assessment of sugarcane biorefineries producing glutamic acid, levulinic acid and xylitol from sugarcane. Industrial Crops. Prod. 184.
  49. Motagamwala, A.H., Won, W., Sener, C., Alonso, D.M., Maravelias, C.T., Dumesic, J.A., 2018. Toward biomass-derived renewable plastics: production of 2,5-furandicarboxylic acid from fructose. Sci. Adv. 4, p.eaap9722.
  50. Mounguengui-diallo, M., Vermersch, F., Perret, N., Pinel, C., Besson, M., 2018. Base free oxidation of 1,6-hexanediol to adipic acid over supported noble metal mono- and bimetallic catalysts. Appl. Catal., A. 551, 88-97.
  51. Munene, C.N., Kampen, W.H., Njapau, H., 2002. Effects of altering fermentation parameters on glycerol and bioethanol production from cane molasses. Sci. Food Agric. 82(3), 309-314.
  52. Nieder-Heitmann, M., Haigh, K., Görgens, J.F., 2019a. Process design and economic evaluation of integrated, multi-product biorefineries for the co-production of bio-energy, succinic acid, and polyhydroxybutyrate (PHB) from sugarcane bagasse and trash lignocelluloses. Biofuel Bioprod. Biorefin.13(3), 599-617.
  53. Nieder‐Heitmann, M., Haigh, K., Louw, J., Görgens, J.F., 2019b. Economic evaluation and comparison of succinic acid and electricity co‐production from sugarcane bagasse and trash lignocelluloses in a biorefinery, using different pretreatment methods: dilute acid (H2SO4), alkaline (NaOH), organosolv, ammonia fibre expansion (AFEX™), steam explosion (STEX), and wet oxidation. Biofuel Bioprod. Biorefin. 14(1), 55-77.
  54. Niu, W., Draths, K.M., Frost, J.W., 2002. Benzene-free synthesis of adipic acid. Biotechnol Prog. 18(2), 201-211.
  55. Nobbs, J.D., Zainal, N.Z.B., Tan, J., Drent, E., Stubbs, L.P., Li, C., Lim, S.C.Y., Kumbang, D.G.A., van Meurs, M., 2016. Bio-based pentenoic acids as intermediates to higher value-added mono-and dicarboxylic acids. Chemistry Select. 1, 539-544.
  56. Ntimbani, R.N., Farzad, S., Görgens, J.F., 2021. Techno‐economics of one‐stage and two‐stage furfural production integrated with ethanol co‐production from sugarcane lignocelluloses. Biofuel Bioprod. Biorefin. 15(6), 1900-1911.
  57. OECD/FAO, 2019. OECD-FAO Agricultural outlook 2019-2028, OECD-FAO Agricultural Outlook. OECD Publishing, Paris.
  58. Oh, M.Y., Jin, G., Lee, B., Kim, J., Won, W., 2022. Co-production of 1,4-pentanediol and adipic acid from corn stover with biomass-derived co-solvent: process synthesis and analysis. J. Clean Prod. 359, 131920.
  59. Overkamp, K.M., Bakker, B.M., Kotter, P., Luttik, M.A.H., Dijken, J.P., Pronk, J.T., 2002. Metabolic engineering of glycerol production in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 68, 2814-2821.
  60. Paulik, F.E., Hershman, A., Knox, W.R., Roth, J.F., 1988. Carbonylation catalysts. US 4792620.
  61. Pothakos, V., Debeer, N., Debonne, I., Rodriguez, A., Starr, J.N., Anderson, T., 2018. Fermentation titer optimization and impact on energy and water consumption during downstream processing. Chem. Eng. Technol. 41(12), 2358-2365.
  62. Qi, L., Mui, Y.F., Lo, S.W., Lui, M.Y., Akien, G.R., Horváth, I.T., 2014. Catalytic conversion of fructose, glucose, and sucrose to 5‑(hydroxymethyl)furfural and levulinic and formic acids in γ‑valerolactone as a green solvent. ACS Catal. 4(5), 1470-1477.
  63. Ratshoshi, B.K., Farzad, S., Görgens, J.F., 2021. Techno-economic assessment of polylactic acid and polybutylene succinate production in an integrated sugarcane biorefinery. Biofuel Bioprod. Biorefin. 15(6), 1871-1887.
  64. Reizman, I.M.B., Stenger, A.R., Reisch, C.R., Gupta, A., Connors, N.C., Prather, K.L.J., 2015. Improvement of glucaric acid production in coli via dynamic control of metabolic fluxes. Metab. Eng. Commun. 2, 109-116.
  65. Rios, J., Lebeau, J., Yang, T., Li, S., Lynch, M.D., 2021. A critical review on the progress and challenges to a more sustainable, cost competitive synthesis of adipic acid. Green Chem. 23(9), 3172-3190.
  66. Satam, C.C., Realff, M.J., 2020. Comparison of two routes for the bio‐based production of economically important C4 J. Adv. Manuf. Process. 2(3), p.e10054.
  67. Silva-Moris, V.A., Rocha, S.C.S., 2006. Vibrofluidized bed drying of adipic acid. Drying Tech. 24(3), 303-313.
  68. Skoczinski, P., Chinthapalli, R., Carus, M., Baltus, W., de Guzman, D., Kab, H., Raschka, A., Ravenstijn, J., 2020. Bio-based building blocks and polymers-global capacities, production and trends 2019-2024. nova-Institut GmbH, Germany.
  69. Skoog, E., Shin, J.H., Saez-jimenez, V., Mapelli, V., Olsson, L., 2018. Biobased adipic acid-The challenge of developing the production host. Biotechnol. Adv. 36(8), 2248-2263.
  70. Soltanian, S., Aghbashlo, M., Farzad, S., Tabatabaei, M., Mandegari, M., Görgens, J.F., 2019. Exergoeconomic analysis of lactic acid and power cogeneration from sugarcane residues through a biorefinery approach. Renewable Energy. 143, 872-889.
  71. Steinwinder, T., Gill, E., Gerhardt, M., 2011. Process design of wastewater treatment for the NREL cellulosic ethanol model. National Renewable Energy Laboratory, Colorado. NREL/SR-5100-51838.
  72. Thaore, V.B., Armstrong, R.D., Hutchings, G.J., Knight, D.W., Chadwick, D., Shah, N., 2020. Sustainable production of glucaric acid from corn stover via glucose oxidation: an assessment of homogeneous and heterogeneous catalytic oxidation production routes. Chem. Eng. Res. Des. 153, 337-349.
  73. Vardon, D.R., Franden, M.A., Johnson, C.W., Karp, E.M., Guarnieri, M.T., Linger, J.G., Salm, M.J., Strathmann, T.J., Beckham, G.T., 2015. Adipic acid production from lignin. Energy Environ. Sci. 8(2), 617-628.
  74. Vardon, D.R., Rorrer, N.A., Salvachúa, D., Settle, A.E., Johnson, C.W., Menart, M.J., Cleveland, N.S., Ciesielski, P.N., Steirer, K.X., Dorgan, J.R., Beckham, G.T., 2016. Cis, cis-Muconic acid: separation and catalysis to bio-adipic acid for nylon-6,6 polymerization. Green Chem. 18(11), 3397-3413.
  75. Wei, L., Zhang, J., Deng, W., Xie, S., Zhang, Q., Wang, Y., 2019. Catalytic transformation of 2,5-furandicarboxylic acid to adipic acid over niobic acid-supported Pt nanoparticles. Chem. Commun. 55(55), 8013-8016.
  76. Wong, P.K., Li, C., Stubbs, L., Van Meurs, M., Kumbang, D.G.A., Lim, S.C.Y., Drent, E., 2015. Synthesis of diacids. Patent US 20150183703A1.
  77. Yan Cheah, W., Sankaran, R., Loke Show, P., Nilam Baizura Tg Ibrahim, T., Wayne Chew, K., Culaba, A., Chang, J.S., 2020. Pretreatment methods for lignocellulosic biofuels production: current advances, challenges and future prospects. Biofuel Res. J. 7(1), 1115-1127.
  78. Yu, J.L., Xia, X.X., Zhong, J.J., Qian, Z.G., 2014. Direct biosynthesis of adipic acid from a synthetic pathway in recombinant Escherichia coli. Biotechnol. Bioeng. 111(12), 2580-2586.
  79. Zhao, M., Huang, D., Zhang, X., Koffas, M.A.G., Zhou, J., Deng, Y., 2018. Metabolic engineering of Escherichia coli for producing adipic acid through the reverse adipate-degradation pathway. Metab. Eng. 47, 254-262.
  80. Zhou, P., Zhang, Z., 2016. One-pot catalytic conversion of carbohydrates into furfural and 5-hydroxymethylfurfural. Catal. Sci. Technol. 6(11), 3694-3712.
  81. Zhou, Y., Zhao, M., Zhou, S., Zhao, Y., Li, G., Deng, Y., 2020. Biosynthesis of adipic acid by a highly efficient induction-free system in Escherichia coli. J. Biotechnol. 314-315, 8-13.