How does climate change affect biomass production and rural poverty?

Document Type : Review Paper


1 College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, S7N 5E5, Canada.

2 Department of Geography and Planning, College of Arts and Science, University of Saskatchewan, 9 Campus Drive, Saskatoon, Saskatchewan, S7N 5A5, Canada.

3 Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.

4 School of Public Health, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, S7N 5E5, Canada.


The interrelation between climate change, biomass production, and rural poverty is an area of growing concern, as these factors are intricately linked and often exacerbate one another. The objective of this critical review is to investigate existing knowledge, identify research gaps, and explore how climate-induced disruptions affect biomass production, exacerbate rural poverty, and increase vulnerability. High-quality peer-review publications were sourced via Web of Science, Scopus, and Google Scholar to include the most relevant papers in line with the objective. A bibliometric analysis yielded three key concepts: (i) biofuel innovations and sustainable development, (ii) climate dynamics and biomass environmental impact, and (iii) rural poverty and energy challenges. The review delves into the complex interplay of factors influencing biomass production, climate change, and rural/remote poverty. Climate change intensifies the challenges rural communities face, enhancing their vulnerability to poverty. For these communities, biomass production not only offers a sustainable energy alternative but also a pathway to economic upliftment. Addressing climate change through sustainable biomass production emerges as a vital strategy, providing a dual solution by mitigating environmental degradation and offering a robust framework for poverty alleviation in rural areas. The review emphasizes the urgent need to integrate climate action, sustainable energy production, and rural economic development.

Graphical Abstract

How does climate change affect biomass production and rural poverty?


  • Climate change and biomass production have a complex bi-directional relationship.
  • Climate change exacerbates vulnerability to poverty in rural/remote communities.
  • Chain reactions exist between rural poverty, biomass production, and climate change.
  • Sustainable bioenergy may support economic development and environmental health.
  • Community-specific sustainable biofuel solutions should balance food-fuel needs.


Copyright © 2023, Alpha Creation Enterprise.

  1. Abbasi, T., Abbasi, S.A, 2010. Biomass energy and the environmental impacts associated with its production and utilization. Renew. Sust. Energy Rev. 14(3), 919-937.
  2. Agrios, G.N., 2008. Transmission of plant diseases by insects. Encycl. Entomology. 3853-3885.
  3. Ahmed, S., Warne, T., Smith, E., Goemann, H., Linse, G., Greenwood, M., Kedziora, J., Sapp, M., Kraner, D., Roemer, K., 2021. Systematic review on effects of bioenergy from edible versus inedible feedstocks on food security. npj Sci Food. 5(1), 9.
  4. Ainsworth, E.A., Long, S.P., 2005. What have we learned from 15 years of free‐air CO2 enrichment (FACE)? A meta‐analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 165(2), 351-372.
  5. Ainsworth, E.A., Rogers, A., 2007. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ. 30(3), 258-270.
  6. Albashabsheh, N.T., Stamm, J.L.H., 2021. Optimization of lignocellulosic biomass-to-biofuel supply chains with densification: literature review. Biomass bioenergy. 144, 105888.
  7. Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D.D., Hogg, E.T., 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259(4), 660-684.
  8. Antar, M., Lyu, D., Nazari, M., Shah, A., Zhou, X., Smith, D.L., 2021. Biomass for a sustainable bioeconomy: an overview of world biomass production and utilization. Renew. Sust. Energy Rev. 139, 110691.
  9. Arndt, C., Benfica, R., Thurlow, J., 2011a. Gender implications of biofuels expansion in Africa: the case of Mozambique. World Dev. 39(9), 1649-1662.
  10. Arndt, C., Msangi, S., Thurlow, J., 2011b. Are biofuels good for African development? an analytical framework with evidence from Mozambique and Tanzania. Biofuels. 2(2), 221-234.
  11. Arndt, C., Pauw, K., Thurlow, J., 2012. Biofuels and economic development: a computable general equilibrium analysis for Tanzania. Energy Econ. 34(6), 1922-1930.
  12. Bai, C., Zhan, J., Wang, H., Liu, H., Yang, Z., Liu, W., Wang, C., Chu, X., Teng, Y., 2023. Estimation of household energy poverty and feasibility of clean energy transition: evidence from rural areas in the Eastern Qinghai-Tibet Plateau. J. Clean. Prod. 388, 135852.
  13. Bailey, C., Dyer, J.F., Teeter, L., 2011. Assessing the rural development potential of lignocellulosic biofuels in Alabama. Biomass Bioenergy. 35(4), 1408-1417.
  14. Bandyopadhyay, S., Shyamsundar, P., Baccini, A., 2011. Forests, biomass use and poverty in Malawi. Ecol. Econ. 70(12), 2461-2471.
  15. Barnes, D., Toman, M., 2006. Energy, equity and economic development. economic development and environmental sustainability: new policy options. 245.
  16. Barnes, D.F., Floor, W., 1999. Biomass energy and the poor in the developing world. J. Int. Aff. 53(1), 237-259.
  17. Barnes, D.F., Krutilla, K., Hyde, W.F., 2010. The urban household energy transition: social and environmental impacts in the developing world. Routledge.
  18. Becker, D.R., Lowell, E., Bihn, D., Anderson, R., Taff, S.J., 2014. Community biomass handbook volume I: Thermal wood energy. USDA Forest Service-General Technical Report PNW-GTR(899 GTR). 1-97.
  19. Bita, C.E., Gerats, T., 2013. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci. 4, 273.
  20. Boincean, B., Dent, D., 2019. Crop rotation, Farming the Black Earth: Sustainable and Climate-Smart Management of Chernozem Soils. Springer. 89-124.
  21. Brown, C., Meeks, R., Hunu, K., Yu, W., 2011. Hydroclimate risk to economic growth in sub-Saharan Africa. Clim. Change. 106(4), 621-647.
  22. Chakrabarty, S., Boksh, F.M., Chakraborty, A., 2013. Economic viability of biogas and green self-employment opportunities. Renew. Sust. Energy Rev. 28, 757-766.
  23. Chang, S.E., McDaniels, T.L., Mikawoz, J., Peterson, K., 2007. Infrastructure failure interdependencies in extreme events: power outage consequences in the 1998 Ice Storm. Nat. Hazards. 41, 337-358.
  24. de Almeida Castanho, A.D., Galbraith, D., Zhang, K., Coe, M.T., Costa, M.H., Moorcroft, P., 2016. Changing Amazon biomass and the role of atmospheric CO2 concentration, climate, and land use. Global Biogeochem. Cycles. 30(1), 18-39.
  25. de Freitas, E.N., Khatri, V., Contin, D.R., de Oliveira, T.B., Contato, A.G., Peralta, R.M., dos Santos, W.D., Martinez, C.A., Saddler, J.N., Polizeli, M.d.L.T., 2022. Climate change affects cell‐wall structure and hydrolytic performance of a perennial grass as an energy crop. Biofuel Bioprod. Biorefin. 16(2), 471-487.
  26. De Graaff, M.A., Van Groenigen, K.J., Six, J., Hungate, B., van Kessel, C., 2006. Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta‐analysis. Global Change Biol. 12(11), 2077-2091.
  27. Dell, M., Jones, B.F., Olken, B.A., 2012. Temperature shocks and economic growth: evidence from the last half century. Am. Econ. J. Macroecon. 4(3), 66-95.
  28. Dercon, S., 2009. Rural poverty: old challenges in new contexts. The World Bank Research Observer. 24(1), 1-28.
  29. Deutsch, C.A., Tewksbury, J.J., Tigchelaar, M., Battisti, D.S., Merrill, S.C., Huey, R.B., Naylor, R.L., 2018. Increase in crop losses to insect pests in a warming climate. Science. 361(6405), 916-919.
  30. Diaz-Chavez, R., Johnson, F.X., Richard, T.L., Chanakya, H., 2015. Biomass resources, energy access and poverty reduction. Souza, GM, Victoria, R., Joly, C., Verdade, L.(Eds.), Bioenergy and Sustainability: Bridging the Gaps. Scientific Committee on Problems of the Environment (SCOPE), Paris.
  31. Domac, J., Richards, K., Risovic, S., 2005. Socio-economic drivers in implementing bioenergy projects. Biomass Bioenergy. 28(2), 97-106.
  32. Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., Lim, W.M., 2021. How to conduct a bibliometric analysis: an overview and guidelines. J. Bus. Res. 133, 285-296.
  33. Duff, T.J., Cawson, J.G., Penman, T.D., 2019. Determining burnability: Predicting completion rates and coverage of prescribed burns for fuel management. For. Ecol. Manage. 433, 431-440.
  34. Dukes, J.S., Pontius, J., Orwig, D., Garnas, J.R., Rodgers, V.L., Brazee, N., Cooke, B., Theoharides, K.A., Stange, E.E., Harrington, R., 2009. Responses of insect pests, pathogens, and invasive plant species to climate change in the forests of northeastern North America: what can we predict?. Can. J. For. Res. 39(2), 231-248.
  35. Escalante, J., Chen, W.H., Tabatabaei, M., Hoang, A.T., Kwon, E.E., Lin, K.Y.A., Saravanakumar, A., 2022. Pyrolysis of lignocellulosic, algal, plastic, and other biomass wastes for biofuel production and circular bioeconomy: a review of thermogravimetric analysis (TGA) approach. Renew. Sust. Energy Rev. 169, 112914.
  36. Ewing, M., Msangi, S., 2009. Biofuels production in developing countries: assessing tradeoffs in welfare and food security. Environ. Sci. Policy. 12(4), 520-528.
  37. Ezquer, I., Salameh, I., Colombo, L., Kalaitzis, P., 2020. Plant cell walls tackling climate change: biotechnological strategies to improve crop adaptations and photosynthesis in response to global warming. Plants. 9(2), 212.
  38. Faße, A., Winter, E., Grote, U., 2014. Bioenergy and rural development: the role of agroforestry in a Tanzanian village economy. Ecol. Econ. 106, 155-166.
  39. Feng, Z., Kobayashi, K., Ainsworth, E.A., 2008. Impact of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum): a meta‐analysis. Glob Change Biol. 14(11), 2696-2708.
  40. Fernando, A.L., Costa, J., Barbosa, B., Monti, A., Rettenmaier, N., 2018. Environmental impact assessment of perennial crops cultivation on marginal soils in the Mediterranean Region. Biomass Bioenergy. 111, 174-186.
  41. Fischer, G., Hizsnyik, E., Prieler, S., Shah, M., Van Velthuizen, H., 2009. Biofuels and food security. Final Report to Sponsor: The OPEC Fund for International Development (OFID), Vienna, Austria.
  42. Fisher, J.A., Patenaude, G., Meir, P., Nightingale, A.J., Rounsevell, M.D., Williams, M., Woodhouse, I.H., 2013. Strengthening conceptual foundations: analysing frameworks for ecosystem services and poverty alleviation research. Global Environ. Change. 23(5), 1098-1111.
  43. Flanagan, L.B., Johnson, B.G., 2005. Interacting effects of temperature, soil moisture and plant biomass production on ecosystem respiration in a northern temperate grassland. Agric. For. Meteorol. 130(3-4), 237-253.
  44. Freitas, E.N.D., Salgado, J.C.S., Alnoch, R.C., Contato, A.G., Habermann, E., Michelin, M., Martínez, C.A., Polizeli, M.d.L.T., 2021. Challenges of biomass utilization for bioenergy in a climate change scenario. Biology. 10(12), 1277.
  45. Friess, D.A., Adame, M.F., Adams, J.B., Lovelock, C.E., 2022. Mangrove forests under climate change in a 2°C world. Wiley Interdiscip. Rev. Clim. Change. 13(4), e792.
  46. Garnett, T., Roos, E., Little, D.C., 2015. Lean, green, mean, obscene…? What is efficiency? And is it sustainable? animal production and consumption reconsidered. Food Clim. Res Network. (FCRN).
  47. Gasparatos, A., Stromberg, P., Takeuchi, K., 2011. Biofuels, ecosystem services and human wellbeing: Putting biofuels in the ecosystem services narrative. Agric. Ecosyst. Environ. 142(3-4), 111-128.
  48. Gent, S., Twedt, M., Gerometta, C., Almberg, E., 2017. Theoretical and applied aspects of biomass torrefaction: for biofuels and value-added products. Butterworth-Heinemann.
  49. Gerber, N., 2008. Bioenergy and rural development in developing countries: a review of existing studies. ZEF Discussion papers on development policy (122).
  50. GLOBAL-BIO-PACT, 2013. Global Assessment of Biomass and Bioproduct Impacts on Socio-economics and Sustainability.
  51. Glover, J.D., Reganold, J.P., 2010. Perennial grains: food security for the future. Issues Sci. Technol. 26(2), 41-47.
  52. Gong, Y.H., Zhao, D.M., Ke, W.B., Fang, C., Pei, J.Y., Sun, G.J., Ye, J.S., 2020. Legacy effects of precipitation amount and frequency on the aboveground plant biomass of a semi-arid grassland. Sci. Total Environ. 705, 135899.
  53. Grebner, D.L., Perez-Verdin, G., Henderson, J.E., Londo, A.J., 2009. Bioenergy from woody biomass, potential for economic development, and the need for extension. J. Ext. 47(6), 7.
  54. Guta, D.D., 2012. Assessment of biomass fuel resource potential and utilization in Ethiopia: sourcing strategies for renewable energies. Int. J. Renewable Energy Res. 2(1), 131-139.
  55. Haberl, H., Erb, K.H., Krausmann, F., Running, S., Searchinger, T.D., Smith, W.K., 2013. Bioenergy: how much can we expect for 2050?. Environ. Res. Lett. 8(3), 031004.
  56. Habtezion, S., 2016. Gender and climate change: gender and sustainable energy. United Nations Development Programme, New York.
  57. Haile, G.G., Tang, Q., Hosseini‐Moghari, S.M., Liu, X., Gebremicael, T., Leng, G., Kebede, A., Xu, X., Yun, X., 2020. Projected impacts of climate change on drought patterns over East Africa. Earth's Future. 8(7), e2020EF001502.
  58. Hajjari, M., Tabatabaei, M., Aghbashlo, M., Ghanavati, H., 2017. A review on the prospects of sustainable biodiesel production: a global scenario with an emphasis on waste-oil biodiesel utilization. Renew. Sust. Energy Rev. 72, 445-464.
  59. Hallegatte, S., 2016. Shock waves: managing the impacts of climate change on poverty. World Bank Publications.
  60. Hallegatte, S., Rozenberg, J., 2017. Climate change through a poverty lens. Nature Clim Change. 7(4), 250-256.
  61. Hansen, M.C., Stehman, S.V., Potapov, P.V., Loveland, T.R., Townshend, J.R., DeFries, R.S., Pittman, K.W., Arunarwati, B., Stolle, F., Steininger, M.K., 2008. Humid tropical forest clearing from 2000 to 2005 quantified by using multitemporal and multiresolution remotely sensed data. Proc. Natl. Acad. Sci. 105(27), 9439-9444.
  62. Harfouche, A., Meilan, R., Altman, A., 2011. Tree genetic engineering and applications to sustainable forestry and biomass production. Trends Biotechnol. 29(1), 9-17.
  63. Hasegawa, T., Fujimori, S., Takahashi, K., Yokohata, T., Masui, T., 2016. Economic implications of climate change impacts on human health through undernourishment. Clim. Change. 136, 189-202.
  64. Hatfield, J.L., Boote, K.J., Kimball, B.A., Ziska, L., Izaurralde, R.C., Ort, D., Thomson, A.M., Wolfe, D., 2011. Climate impacts on agriculture: implications for crop production. J. Agron. 103(2), 351-370.
  65. Hatfield, J.L., Prueger, J.H., 2015. Temperature extremes: effect on plant growth and development. Weather Clim. Extremes. 10, 4-10.
  66. Heltberg, R., 2004. Fuel switching: evidence from eight developing countries. Energy Econ. 26(5), 869-887.
  67. Hendricks, A.M., Wagner, J.E., Volk, T.A., Newman, D.H., 2016a. Regional economic impacts of biomass district heating in rural New York. Biomass Bioenergy. 88, 1-9.
  68. Hendricks, A.M., Wagner, J.E., Volk, T.A., Newman, D.H., Brown, T.R., 2016b. A cost-effective evaluation of biomass district heating in rural communities. Appl. Energy. 162, 561-569.
  69. Herbert, G.J., Krishnan, A.U., 2016. Quantifying environmental performance of biomass energy. Renew. Sust. Energy Rev. 59, 292-308.
  70. Hertel, T.W., Burke, M.B., Lobell, D.B., 2010. The poverty implications of climate-induced crop yield changes by 2030. Global Environ. Change. 20(4), 577-585.
  71. Hirabayashi, Y., Kanae, S., Emori, S., Oki, T., Kimoto, M., 2008. Global projections of changing risks of floods and droughts in a changing climate. Hydrol. Sci. J. 53(4), 754-772.
  72. Hoekman, S.K., Broch, A., Liu, X.V., 2018. Environmental implications of higher ethanol production and use in the US: a literature review. Part I-Impacts on water, soil, and air quality. Renew. Sust. Energy Rev. 81, 3140-3158.
  73. Holtum, J.A., Winter, K., 2010. Elevated [CO2] and forest vegetation: more a water issue than a carbon issue?. Funct. Plant Biol. 37(8), 694-702.
  74. Hossain, M.L., Beierkuhnlein, C., 2018. Enhanced aboveground biomass by increased precipitation in a central European grassland. Ecol. Process. 7(1), 1-13.
  75. Hou, B., Liao, H., Huang, J., 2018. Household cooking fuel choice and economic poverty: evidence from a nationwide survey in China. Energy Build. 166, 319-329.
  76. Howe, C., Suich, H., van Gardingen, P., Rahman, A., Mace, G.M., 2013. Elucidating the pathways between climate change, ecosystem services and poverty alleviation. Curr. Opin. Environ. Sustainability. 5(1), 102-107.
  77. Huang, J.-G., Bergeron, Y., Denneler, B., Berninger, F., Tardif, J., 2007. Response of forest trees to increased atmospheric CO2. Crit. Rev. Plant Sci. 26(5-6), 265-283.
  78. Huda, A.S.N., Mekhilef, S., Ahsan, A., 2014. Biomass energy in Bangladesh: current status and prospects. Renew. Sust. Energy Rev. 30, 504-517.
  79. Internal Displacement Monitoring Centre, 2021. Global Report on Internal Displacement.
  80. International Energy Agency, 2017. Technology Roadmap Delivering Sustainable Bioenergy. IEA: Paris, France.
  81. International Fund for Agricultural Development, 2010. Rural Poverty Report 2011-New Realities, New Challenges: New Opportunities for Tomorrow's Generation. Quintily, Rome, Italy.
  82. IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland. 151.
  83. IPCC, 2018. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. World Meteorological Organization, Geneva, Switzerland.
  84. Jamieson, M.A., Trowbridge, A.M., Raffa, K.F., Lindroth, R.L., 2012. Consequences of climate warming and altered precipitation patterns for plant-insect and multitrophic interactions. Plant Physiol. 160(4), 1719-1727.
  85. Jasiūnas, J., Lund, P.D., Mikkola, J., 2021. Energy system resilience-a review. Renew. Sust. Energy Rev.150, 111476.
  86. Jensen, L., McLaughlin, D.K., Slack, T., 2003. Rural poverty: the persisting challenge. challenges for rural America in the twenty-first century. 118-131.
  87. Jose, S., 2009. Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor. Syst. 76, 1-10.
  88. Jose, S., Bardhan, S., 2012. Agroforestry for biomass production and carbon sequestration: an overview. Agrofor. Syst. 86, 105-111.
  89. Joshi, G., Pandey, J.K., Rana, S., Rawat, D.S., 2017. Challenges and opportunities for the application of biofuel. Renew. Sust. Energy Rev. 79, 850-866.
  90. Kanagawa, M., Nakata, T., 2007. Analysis of the energy access improvement and its socio-economic impacts in rural areas of developing countries. Ecol. Econ. 62(2), 319-329.
  91. Kardol, P., Campany, C.E., Souza, L., Norby, R.J., Weltzin, J.F., Classen, A.T., 2010. Climate change effects on plant biomass alter dominance patterns and community evenness in an experimental old‐field ecosystem. Global Change Biol. 16(10), 2676-2687.
  92. Karp, A., Halford, N.G., 2011. Energy crops: introduction, Energy crops. Royal Soc. Chem. 1-12.
  93. Katuwal, H., Bohara, A.K., 2009. Biogas: a promising renewable technology and its impact on rural households in Nepal. Renew. Sust. Energy Rev. 13(9), 2668-2674.
  94. Kaygusuz, K., 2011. Energy services and energy poverty for sustainable rural development. Renew. Sust. Energy Rev.15(2), 936-947.
  95. Khalequzzaman, M., Kamijima, M., Sakai, K., Hoque, B.A., Nakajima, T., 2010. Indoor air pollution and the health of children in biomass-and fossil-fuel users of Bangladesh: situation in two different seasons. Health Preventative Med. 15, 236-243.
  96. Kishore, V.V.N., Bhandari, P.M., Gupta, P., 2004. Biomass energy technologies for rural infrastructure and village power-opportunities and challenges in the context of global climate change concerns. Energy Policy. 32(6), 801-810.
  97. Koh, L.P., 2007. Potential habitat and biodiversity losses from intensified biodiesel feedstock production. Conserv. Biol. 21(5), 1373-1375.
  98. Koh, L.P., Wilcove, D.S., 2007. Cashing in palm oil for conservation. Nature. 448(7157), 993-994.
  99. Kreuzwieser, J., Gessler, A., 2010. Global climate change and tree nutrition: influence of water availability. Tree Physiol. 30(9), 1221-1234.
  100. Kurz, W.A., Dymond, C., Stinson, G., Rampley, G., Neilson, E., Carroll, A., Ebata, T., Safranyik, L., 2008. Mountain pine beetle and forest carbon feedback to climate change. Nature. 452(7190), 987-990.
  101. Lal, R., 2008. Carbon sequestration. Philos. Trans. R. Soc. London, Sci. B. 363(1492), 815-830.
  102. Larjavaara, M., Lu, X., Chen, X., Vastaranta, M., 2021. Impact of rising temperatures on the biomass of humid old-growth forests of the world. Carbon Balance Manage. 16(1), 1-9.
  103. Ledo, A., Smith, P., Zerihun, A., Whitaker, J., Vicente‐Vicente, J.L., Qin, Z., McNamara, N.P., Zinn, Y.L., Llorente, M., Liebig, M., 2020. Changes in soil organic carbon under perennial crops. Global Change Biol. 26(7), 4158-4168.
  104. Leichenko, R., Silva, J.A., 2014. Climate change and poverty: vulnerability, impacts, and alleviation strategies. Wiley Interdiscip. Rev. Clim. Change. 5(4), 539-556.
  105. Lemus, R., Lal, R., 2005. Bioenergy crops and carbon sequestration. Crit. Rev. Plant Sci. 24(1), 1-21.
  106. Levin, J., Köhlin, G., Mekonnen, A., 2012. Distributive effect and food security implications of biofuels investment in Ethiopia: a CGE analysis, Royal Swedish Academy of Agriculture and Forestry, 27 September and 22 November 2011.
  107. Li, H., Wu, Y., Liu, S., Xiao, J., 2021. Regional contributions to interannual variability of net primary production and climatic attributions. Agric. For. Meteorol. 303, 108384.
  108. Lim, W.Y., Seow, A., 2012. Biomass fuels and lung cancer. Respirology. 17(1), 20-31.
  109. Louis, M.E.S., Hess, J.J., 2008. Climate change: impacts on and implications for global health. Am. J. Preventative Med. 35(5), 527-538.
  110. Lozano, F.J., Lozano, R., Lozano-García, D.F., Flores-Tlacuahuac, A., 2023. Reducing energy poverty in small rural communities through in situ electricity generation. Discover Sustainability. 4(1), 13.
  111. Machado-Filho, H., 2008. Climate change and the international trade of biofuels. Carbon Climate L. Rev., 67.
  112. Macrotrends, 2023. World rural population. 1960-2023.
  113. Maes, W.H., Verbist, B., 2012. Increasing the sustainability of household cooking in developing countries: policy implications. Renew. Sust. Energy Rev. 16(6), 4204-4221.
  114. Maker, T.M., 2004. Wood-chip heating systems. A guide for institutional and commercial biomass installations. 1-93.
  115. Malico, I., Pereira, R.N., Gonçalves, A.C., Sousa, A.M., 2019. Current status and future perspectives for energy production from solid biomass in the European industry. Renew. Sust. Energy Rev. 112, 960-977.
  116. Maltsoglou, I., Koizumi, T., Felix, E., 2013. The status of bioenergy development in developing countries. Global Food Sec. 2(2), 104-109.
  117. Maracchi, G., Sirotenko, O., Bindi, M., 2005. Impacts of present and future climate variability on agriculture and forestry in the temperate regions: Europe. Clim. Change 70(1-2), 117-135.
  118. Masera, O.R., Saatkamp, B.D., Kammen, D.M., 2000. From linear fuel switching to multiple cooking strategies: a critique and alternative to the energy ladder model. World Dev. 28(12), 2083-2103.
  119. Mathur, S., Agrawal, D., Jajoo, A., 2014. Photosynthesis: response to high temperature stress. J Photochem. Photobiol., B. 137, 116-126.
  120. Mbow, C., Smith, P., Skole, D., Duguma, L., Bustamante, M., 2014. Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Curr. Opin. Environ. Sustain. 6, 8-14.
  121. McCarley, T.R., Hudak, A.T., Sparks, A.M., Vaillant, N.M., Meddens, A.J., Trader, L., Mauro, F., Kreitler, J., Boschetti, L., 2020. Estimating wildfire fuel consumption with multitemporal airborne laser scanning data and demonstrating linkage with MODIS-derived fire radiative energy. Remote Sens. Environ. 251, 112114.
  122. McKendry, P., 2002. Energy production from biomass (part 1): overview of biomass. Bioresour. Technol. 83(1), 37-46.
  123. Meyerson, L.A., 2008. Biosecurity, biofuels, and biodiversity. Ecol. Soc. Am., 291-291.
  124. Miah, M.D., Kabir, R.R.M.S., Koike, M., Akther, S., Shin, M.Y., 2010. Rural household energy consumption pattern in the disregarded villages of Bangladesh. Energy Policy. 38(2), 997-1003.
  125. Miao, Z., Shastri, Y., Grift, T.E., Hansen, A.C., Ting, K.C., 2012. Lignocellulosic biomass feedstock transportation alternatives, logistics, equipment configurations, and modeling. Biofuel Bioprod. Biorefin. 6(3), 351-362.
  126. Milici, V.R., Dalui, D., Mickley, J.G., Bagchi, R., 2020. Responses of plant-pathogen interactions to precipitation: implications for tropical tree richness in a changing world. J. Ecol. 108(5), 1800-1809.
  127. Mirzabaev, A., Guta, D., Goedecke, J., Gaur, V., Börner, J., Virchow, D., Denich, M., von Braun, J., 2018. Bioenergy, food security and poverty reduction: trade-offs and synergies along the water-energy-food security nexus. Sustainability in the Water Energy Food Nexus. Routledge, pp. 60-78.
  128. Mohammed, Y., Mokhtar, A., Bashir, N., Saidur, R., 2013. An overview of agricultural biomass for decentralized rural energy in Ghana. Renew. Sust. Energy Rev. 20, 15-25.
  129. Mondal, S., 2021. Impact of climate change on soil fertility. Clim. Change Microbiome: Sustenance Ecosphere. 551-569.
  130. Morgan, P.B., Ainsworth, E.A., Long, S.P., 2003. How does elevated ozone impact soybean? a meta‐analysis of photosynthesis, growth and yield. Plant Cell Environ. 26(8), 1317-1328.
  131. Muscat, A., De Olde, E.M., de Boer, I.J., Ripoll-Bosch, R., 2020. The battle for biomass: a systematic review of food-feed-fuel competition. Global Food Secur. 25, 100330.
  132. Mysiak, J., Surminski, S., Thieken, A., Mechler, R., Aerts, J., 2016. Brief communication: Sendai framework for disaster risk reduction-success or warning sign for Paris?. Nat. Hazards Earth Syst. Sci. 16(10), 2189-2193.
  133. Nanda, S., Rana, R., Sarangi, P.K., Dalai, A.K., Kozinski, J.A., 2018. A broad introduction to first-, second-, and third-generation biofuels. Recent Advancements Biofuels Bioenergy Utili. 1-25.
  134. Negash, M., Swinnen, J.F., 2013. Biofuels and food security: micro-evidence from Ethiopia. Energy Policy. 61, 963-976.
  135. Nicolae, S., Jean-Francois, D., Nigel, T., Manjola, B., Javier, S.L., Marios, A., 2019. Brief on biomass for energy in the European Union. Publications Office of the European Union: Luxembourg City, Luxembourg.
  136. Olinto, P., Beegle, K., Sobrado, C., Uematsu, H., 2013. The state of the poor: where are the poor, where is extreme poverty harder to end, and what is the current profile of the world’s poor. Economic premise. 125(2), 1-8.
  137. Olsson, L., Opondo, M., Tschakert, P., Agrawal, A., Eriksen, S., Ma, S., Perch, L., Zakieldeen, S., 2014. Livelihoods and poverty, Climate Change 2014 Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 793-832.
  138. Oparaocha, S., Dutta, S., 2011. Gender and energy for sustainable development. Curr. Opin. Environ. Sustainability. 3(4), 265-271.
  139. Openshaw, K., 2010. Biomass energy: employment generation and its contribution to poverty alleviation. Biomass Bioenergy. 34(3), 365-378.
  140. Pachauri, S., Spreng, D., 2004. Energy use and energy access in relation to poverty. Econ. Polit. Wkly. 271-278.
  141. Panwar, P., Mahalingappa, D.G., Kaushal, R., Bhardwaj, D.R., Chakravarty, S., Shukla, G., Thakur, N.S., Chavan, S.B., Pal, S., Nayak, B.G., 2022. Biomass production and carbon sequestration potential of different agroforestry systems in India:a critical review. Forests. 13(8), 1274.
  142. Parmesan, C., 2006. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637-669.
  143. Pathak, U., Gupta, N.C., Suri, J.C., 2020. Risk of COPD due to indoor air pollution from biomass cooking fuel: a systematic review and meta-analysis. Int. J. Environ. Health Res. 30(1), 75-88.
  144. Peng, W., Hisham, Z., Pan, J., 2010. Household level fuel switching in rural Hubei. Energy Sustain Dev. 14(3), 238-244.
  145. Pérez-Peña, M.D.C., Jiménez-García, M., Ruiz-Chico, J., Peña-Sánchez, A.R., 2021. Analysis of research on the SDGs: the relationship between climate change, poverty and inequality. Appl. Sci. 11(19), 8947.
  146. Po, J.Y., FitzGerald, J.M., Carlsten, C., 2011. Respiratory disease associated with solid biomass fuel exposure in rural women and children: systematic review and meta-analysis. Thorax. 66(3), 232-239.
  147. Polade, S.D., Pierce, D.W., Cayan, D.R., Gershunov, A., Dettinger, M.D., 2014. The key role of dry days in changing regional climate and precipitation regimes. Sci. Rep. 4(1), 4364.
  148. Preeti, M., Soma, D., Pal, R., Shishupal, S., Ramana, P.V., 2003. Rural energy matters: the Dhanawas experience. Energy and Resources Institute.
  149. Pritchard, S.G., 2011. Soil organisms and global climate change. Plant Pathol. 60(1), 82-99.
  150. Ramachandran Nair, P.K., Mohan Kumar, B., Nair, V.D., 2009. Agroforestry as a strategy for carbon sequestration. J. Plant. Nutr. Soil Sci. 172(1), 10-23.
  151. Ramsfield, T., Bentz, B., Faccoli, M., Jactel, H., Brockerhoff, E., 2016. Forest health in a changing world: effects of globalization and climate change on forest insect and pathogen impacts. Forestry. 89(3), 245-252.
  152. Ranjbari, M., Esfandabadi, Z.S., Quatraro, F., Vatanparast, H., Lam, S.S., Aghbashlo, M., Tabatabaei, M., 2022. Biomass and organic waste potentials towards implementing circular bioeconomy platforms: a systematic bibliometric analysis. Fuel. 318, 123585.
  153. Rehfuess, E., Mehta, S., Prüss-Üstün, A., 2006. Assessing household solid fuel use: multiple implications for the Millennium Development Goals. Environ. Health Perspect. 114(3), 373-378.
  154. Rosenzweig, C., Hillel, D., 2000. Soils and global climate change: challenges and opportunities. Soil Sci. 165(1), 47-56.
  155. Rubenstein, M.A., Weiskopf, S.R., Bertrand, R., Carter, S.L., Comte, L., Eaton, M.J., Johnson, C.G., Lenoir, J., Lynch, A.J., Miller, B.W., Morelli, T.L., 2023. Climate change and the global redistribution of biodiversity: substantial variation in empirical support for expected range shifts. Environ. Evid. 12(1), 1-21.
  156. Rudinskienė, A., Marcinkevičienė, A., Velička, R., Kosteckas, R., Kriaučiūnienė, Z., Vaisvalavičius, R., 2022. The comparison of soil agrochemical and biological properties in the multi-cropping farming systems. Plants. 11(6), 774.
  157. Schaeffer, R., Szklo, A.S., de Lucena, A.F.P., Borba, B.S.M.C., Nogueira, L.P.P., Fleming, F.P., Troccoli, A., Harrison, M., Boulahya, M.S., 2012. Energy sector vulnerability to climate change: a review. Energy. 38(1), 1-12.
  158. Schuenemann, F., Msangi, S., Zeller, M., 2018. Policies for a sustainable biomass energy sector in Malawi: enhancing energy and food security simultaneously. World Dev. 103, 14-26.
  159. Seleiman, M.F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H.H., Battaglia, M.L., 2021. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants. 10(2), 259.
  160. Seneviratne, S., Pal, J., Eltahir, E., Schär, C., 2002. Summer dryness in a warmer climate: a process study with a regional climate model. Clim. Dyn. 20, 69-85.
  161. S. Department of Agriculture Forest Service, 2020a. 2019 Aerial detection survey results.
  162. [S. Department of Agriculture Forest Service, 2020b. Number of Dead Trees in California 2010 to 2018 (all lands).
  163. Shafiee, M., Keshavarz, P., Lane, G., Pahwa, P., Szafron, M., Jennings, D., Vatanparast, H., 2022. Food security status of indigenous peoples in Canada according to the 4 pillars of food security: a scoping review. Adv. Nutr. 13(6), 2537-2558.
  164. Shao, M.A., Wang, Y., Xia, Y., Jia, X., 2018. Soil drought and water carrying capacity for vegetation in the critical zone of the Loess Plateau: a review. Vadose Zone J. 17(1), 1-8.
  165. Sharma, N., Bohra, B., Pragya, N., Ciannella, R., Dobie, P., Lehmann, S., 2016. Bioenergy from agroforestry can lead to improved food security, climate change, soil quality, and rural development. Food Energy Secur. 5(3), 165-183.
  166. Sheelanere, P., Kulshreshtha, S., 2013. Sustainable biofuel production: opportunities for rural development. Int. J. Environ. Res. 2(1), 1-13.
  167. Shortall, O., 2013. “Marginal land” for energy crops: exploring definitions and embedded assumptions. Energy Policy. 62, 19-27.
  168. Smith, K.R., Mehta, S., Maeusezahl-Feuz, M., 2004. Indoor air pollution from household use of solid fuels, Comparative quantification of health risks: global and regional burden of disease attributable to selected major risk factors. World Health Organization, Geneva, Switzerland. 1435-1493.
  169. Smith, K.R., Sagar, A., 2014. Making the clean available: escaping India’s Chulha Trap. Energy Policy. 75, 410-414.
  170. Souza, G.M., Ballester, M.V.R., de Brito Cruz, C.H., Chum, H., Dale, B., Dale, V.H., Fernandes, E.C., Foust, T., Karp, A., Lynd, L., 2017. The role of bioenergy in a climate-changing world. Environ. Dev. 23, 57-64.
  171. Sovacool, B.K., 2012. Deploying off-grid technology to eradicate energy poverty. Science. 338(6103), 47-48.
  172. Sturrock, R.N., Frankel, S.L., Brown, A.V., Hennon, P.E., Kliejunas, J.T., Lewis, K.J., Worrall, J.J., Woods, A.J., 2011. Climate change and forest diseases. Plant Pathol. 60(1), 133-149.
  173. Subramaniam, Y., Masron, T.A., Azman, N.H.N., 2019. The impact of biofuels on food security. Int. Econ. 160, 72-83.
  174. Tabatabaei, M., Aghbashlo, M., Valijanian, E., Panahi, H.K.S., Nizami, A.S., Ghanavati, H., Sulaiman, A., Mirmohamadsadeghi, S., Karimi, K., 2020. A comprehensive review on recent biological innovations to improve biogas production, part 1: upstream strategies. Renewable Energy. 146, 1204-1220.
  175. Teng, N., Wang, J., Chen, T., Wu, X., Wang, Y., Lin, J., 2006. Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. New Phytol. 172(1), 92-103.
  176. Tester, M., Langridge, P., 2010. Breeding technologies to increase crop production in a changing world. Science. 327(5967), 818-822.
  177. Thurlow, J., Zhu, T., Diao, X., 2012. Current climate variability and future climate change: estimated growth and poverty impacts for Zambia. Rev. Dev. Econ. 16(3), 394-411.
  178. Tilman, D., Hill, J., Lehman, C., 2006. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science. 314(5805), 1598-1600.
  179. Trenberth, K.E., 2005. The impact of climate change and variability on heavy precipitation, floods, and droughts. Hydrol. Sci. J. 17, 1-11.
  180. United Nations Statistics Division, 2023. Sustainable development goals: end poverty in all its forms everywhere.
  181. Vallios, I., Tsoutsos, T., Papadakis, G., 2009. Design of biomass district heating systems. Biomass Bioenergy. 33(4), 659-678.
  182. Van Dam, J., Junginger, M., Faaij, A., Jürgens, I., Best, G., Fritsche, U., 2008. Overview of recent developments in sustainable biomass certification. Biomass Bioenergy. 32(8), 749-780.
  183. Van Eck, N., Waltman, L., 2010. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 84(2), 523-538.
  184. Vicente-Serrano, S.M., Quiring, S.M., Pena-Gallardo, M., Yuan, S., Dominguez-Castro, F., 2020. A review of environmental droughts: increased risk under global warming?. Earth Sci. Rev. 201, 102953.
  185. Viciedo, D.O., de Mello Prado, R., Martínez, C.A., Habermann, E., de Cássia Piccolo, M., 2019. Short-term warming and water stress affect Panicum maximum Jacq. stoichiometric homeostasis and biomass production. Sci. Total Environ. 681, 267-274.
  186. Wang, J., Guan, Y., Wu, L., Guan, X., Cai, W., Huang, J., Dong, W., Zhang, B., 2021. Changing lengths of the four seasons by global warming. Geophys. Res. Lett. 48(6), e2020GL091753.
  187. Watson, R.T., Patz, J., Gubler, D.J., Parson, E.A., Vincent, J.H., 2005. Environmental health implications of global climate change. Environ. Monit. 7(9), 834-843.
  188. Wheeler, T., Von Braun, J., 2013. Climate change impacts on global food security. Science. 341(6145), 508-513.
  189. Whitaker, J., Field, J.L., Bernacchi, C.J., Cerri, C.E., Ceulemans, R., Davies, C.A., DeLucia, E.H., Donnison, I.S., McCalmont, J.P., Paustian, K., 2018. Consensus, uncertainties and challenges for perennial bioenergy crops and land use. GCB Bioenergy. 10(3), 150-164.
  190. Wielkopolan, B., Jakubowska, M., Obrępalska-Stęplowska, A., 2021. Beetles as plant pathogen vectors. Front. Plant Sci. 2241.
  191. World Bioenergy Association, 2013. Biogas-An Important Renewable Energy Source.
  192. Wu, ,  Zheng,   X.,   You,   C.,   Wei,  C.,   2019.   Household   energy consumption in rural China: historical development, present pattern and policy implication. J. Clean. Prod. 211, 981-991.
  193. Wu, Y., Zhao, F., Liu, S., Wang, L., Qiu, L., Alexandrov, G., Jothiprakash, V., 2018. Bioenergy production and environmental impacts. Geosci. Lett. 5(1), 1-9.
  194. Zabaniotou, A., 2018. Redesigning a bioenergy sector in EU in the transition to circular waste-based Bioeconomy-A multidisciplinary review. J. Clean. Prod. 177, 197-206.
  195. Zaidi, S.S.E.A., Mahas, A., Vanderschuren, H., Mahfouz, M.M., 2020. Engineering crops of the future: CRISPR approaches to develop climate-resilient and disease-resistant plants. Genome Biol. 21(1), 1-19.
  196. Zheng, Y., Li, Z., Feng, S., Lucas, M., Wu, G., Li, Y., Li, C., Jiang, G., 2010. Biomass energy utilization in rural areas may contribute to alleviating energy crisis and global warming: a case study in a typical agro-village of Shandong, China. Renew. Sust. Energy Rev. 14(9), 3132-3139.