Transitioning from hydrogen to methane in biorefineries: A sustainable route to clean energy and chemicals

Document Type : Review Paper


Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada.


This review discusses the sustainable transformation of low-quality hydrocarbon fuels, such as biomass-derived bio-oil, into valuable chemicals and clean fuels by introducing the concept of "methanotreating" that uses methane as a hydrogen source for the deoxygenation of bio-oils, thereby addressing environmental concerns associated with conventional hydrogen production. We explore the challenges of methane activation and its potential in biomass upgrading, highlighting the importance of catalyst selection and composition. Methanotreating is a promising and sustainable method for producing high-quality fuels and chemicals, with a deoxygenation performance of over 95%. This present work calls for further research and development in catalyst design and application to advance this innovative approach toward a greener and more efficient energy future.

Graphical Abstract

Transitioning from hydrogen to methane in biorefineries: A sustainable route to clean energy and chemicals


  • Methanotreating presents a promising alternative to traditional hydrotreating for deoxygenation.
  • Methanotreating enhances biomass-derived bio-oil quality, improving fuel and chemical production.
  • Methanotreating offers an innovative pathway to reduce environmental impacts and mitigate climate change.


Copyright © 2023, Alpha Creation Enterprise.

  1. Aishah, N.A.S., Anggoro, D.D., 2003. Characterization and activity of Cr, Cu and Ga modified ZSM-5 for direct conversion of methane to liquid hydrocarbons. J. Nat. Gas Chem. 12, 123-134.
  2. Arribas, M.A., Martı́nez, A., 2001. Simultaneous isomerization of n-heptane and saturation of benzene over Pt/Beta catalysts: the influence of zeolite crystal size on product selectivity and sulfur resistance. Catal. Today. 65(2-4), 117-122.
  3. Choudhary, V.R., Kinage, A.K., Choudhary, T.V, 1997. Low-temperature nonoxidative activation of methane over H-Galloaluminosilicate (MFI) Zeolite. Science. 275(5304), 1286-1288.
  4. Ding, W., Meitzner, G.D., Iglesia, E., 2002. The effects of silanation of external acid sites on the structure and catalytic behavior of Mo/H-ZSM5. J. Catal. 206(1), 14-22.
  5. Doukeh, R., Bombos, D., Bombos, M., Oprescu, E.E., Dumitrascu, G., Vasilievici, G., Calin, C., 2021. Catalytic hydrotreating of bio-oil and evaluation of main noxious emissions of gaseous phase. Sci. Rep. 11(1), 6176.
  6. Dry, M.E., 2002. The fischer-tropsch process: 1950-2000. Catal. Today. 71(3-4), 227-241.
  7. Ellouh, M., Qureshi, Z.S., Aitani, A., Akhtar, M.N., Jin, Y., Koseoglu, O., Alasiri, H., 2020. Light paraffinic naphtha to BTX aromatics over metal-modified Pt/ZSM-5. ChemistrySelect. 5(44), 13807-13813.
  8. Fan, Y., Bao, X., Shi, G., Wei, W., Xu, J., 2004. Olefin reduction of FCC gasoline via hydroisomerization aromatization over modified HMOR/HZSM-5/Hβ composite carriers. Appl. Catal., A. 275(1-2), 61-71.
  9. Gabrienko, A.A., Arzumanov, S.S., Toktarev, A.V., Danilova, I.G., Prosvirin, I.P., Kriventsov, V.V., Zaikovskii, V.I., Freude, D., Stepanov, A.G., 2017. Different efficiency of Zn2+ and ZnO species for methane activation on Zn-modified zeolite. ACS Catal. 7(3), 1818-1830.
  10. Gandarias, I., Arias, P.L., 2013. Hydrotreating Catalytic Processes for Oxygen Removal in the Upgrading of Bio-Oils and Bio-Chemicals, in: Fang, Z. (Ed.), . IntechOpen, Rijeka, pp. 327-356.
  11. Garba, M.D., Usman, M., Khan, S., Shehzad, F., Galadima, A., Ehsan, M.F., Ghanem, A.S., Humayun, M., 2021. CO2 towards fuels: a review of catalytic conversion of carbon dioxide to hydrocarbons. J. Environ. Chem. Eng. 9(2), 104756.
  12. Ghosh, P., Hickey, K., Jaffe, S.B., 2006. Development of a detailed gasoline composition-based octane model. Ind. Eng. Chem. Res. 45(1), 337-345.
  13. Gunawardena, D.A., Fernando, S.D., 2017. Catalytic conversion of glucose micropyrolysis vapors in methane-using isotope labeling to reveal reaction pathways. Energy Technol. 5(5), 708-714.
  14. He, P., Song, H., 2017. Catalytic Natural Gas Utilization on Unconventional Oil Upgrading, in: Al-Megren, H.A., Altamimi, R.H. (Eds.), Advances in Natural Gas Emerging Technologies. IntechOpen, Rijeka.
  15. He, P., Song, H., 2014. Catalytic conversion of biomass by natural gas for oil quality upgrading. Ind. Eng. Chem. Res. 53(41), 15862-15870.
  16. Jarvis, J., Wong, A., He, P., Li, Q., Song, H., 2018. Catalytic aromatization of naphtha under methane environment: effect of surface acidity and metal modification of HZSM-5. Fuel. 223, 211-221.
  17. Jin, D., Zhu, B., Hou, Z., Fei, J., Lou, H., Zheng, X., 2007. Dimethyl ether synthesis via methanol and syngas over rare earth metals modified zeolite Y and dual Cu-Mn-Zn catalysts. Fuel. 86(17-18), 2707-2713.
  18. Kerr, R.A., 2010. Natural gas from shale bursts onto the scene. Science. 328(5986), 1624-1626.
  19. Kosinov, N., Uslamin, E.A., Meng, L., Parastaev, A., Liu, Y., Hensen, E.J.M., 2019. Reversible nature of coke formation on Mo/ZSM-5 methane dehydroaromatization catalysts. Angew. Chemie Int. Ed. 58(21), 7068-7072.
  20. Kotrel, S., Knözinger, H., Gates, B.C., 2000. The Haag-Dessau mechanism of protolytic cracking of alkanes. Microporous Mesoporous Mater. 35-36, 11-20.
  21. Li, P., Zhang, W., Han, X., Bao, X., 2010. Conversion of methanol to hydrocarbons over Phosphorus-modified ZSM-5/ZSM-11 intergrowth zeolites. Catal. Letters 134, 124-130.
  22. Luzgin, M.V, Gabrienko, A.A., Rogov, V.A., Toktarev, A.V, Parmon, V.N., Stepanov, A.G., 2010. The “alkyl” and “carbenium” pathways of methane activation on Ga-modified zeolite BEA: 13C solid-state NMR and GC-MS study of methane aromatization in the presence of higher alkane. J. Phys. Chem. C. 114(49), 21555-21561.
  23. Martín, M., 2016. Nonconventional Fossil Energy Sources: Shale Gas and Methane Hydrates BT -Alternative Energy Sources and Technologies: Process Design and Operation, in: Martín, M. (Ed.), Springer International Publishing, Cham, pp. 3-16.
  24. Mimura, N., Okamoto, M., Yamashita, H., Oyama, S.T., Murata, K., 2006. Oxidative dehydrogenation of ethane over Cr/ZSM-5 catalysts using CO2 as an oxidant. J. Phys. Chem. B. 110(43), 21764-21770.
  25. Oni, A.O., Anaya, K., Giwa, T., Di Lullo, G., Kumar, A., 2022. Comparative assessment of blue hydrogen from steam methane reforming, autothermal reforming, and natural gas decomposition technologies for natural gas-producing regions. Energy Convers. Manage. 254, 115245.
  26. Ortiz-Bravo, C.A., Chagas, C.A., Toniolo, F.S., 2021. Oxidative coupling of methane (OCM): an overview of the challenges and opportunities for developing new technologies. J. Nat. Gas Sci. Eng. 96, 104254.
  27. Pang, S.H., Medlin, J.W., 2011. Adsorption and reaction of furfural and furfuryl alcohol on Pd(111): unique reaction pathways for multifunctional reagents. ACS Catal. 1(10), 1272-1283.
  28. Peng, H., Wang, A., He, P., Harrhy, J., Meng, S., Song, H., 2019. Solvent-free catalytic conversion of xylose with methane to aromatics over Zn-Cr modified zeolite catalyst. Fuel. 253, 988-996.
  29. Peng, H., Wang, A., He, P., Meng, S., Song, H., 2020. One-pot direct conversion of bamboo to aromatics under methane. Fuel. 267, 117196.
  30. Qu, L., Jiang, X., Zhang, Z., Zhang, X., Song, G., Wang, H., Yuan, Y., Chang, Y., 2021. A review of hydrodeoxygenation of bio-oil: model compounds, catalysts, and equipment. Green Chem. 23(23), 9348-9376.
  31. Razdan, N.K., Kumar, A., Foley, B.L., Bhan, A., 2020. Influence of ethylene and acetylene on the rate and reversibility of methane dehydroaromatization on Mo/H-ZSM-5 catalysts. J. Catal. 381, 261-270.
  32. Rogers, K.A., Zheng, Y., 2016. Selective deoxygenation of biomass-derived bio-oils within hydrogen-modest environments: a review and new insights. ChemSusChem. 9(14), 1750-1772.
  33. Sanchez, D.L., Nelson, J.H., Johnston, J., Mileva, A., Kammen, D.M., 2015. Biomass enables the transition to a carbon-negative power system across western North America. Nat. Clim. Change. 5(3), 230-234.
  34. Sandaka, B.P., Kumar, J., 2023. Alternative vehicular fuels for environmental decarbonization: a critical review of challenges in using electricity, hydrogen, and biofuels as a sustainable vehicular fuel. Chem. Eng. J. Adv. 14, 100442.
  35. Saxena, S.K., Viswanadham, N., Garg, M.O., 2013. Cracking and isomerization functionalities of bi-metallic zeolites for naphtha value upgradation. Fuel. 107, 432-438.
  36. Sircar, S., Golden, T.C., 2000. Purification of hydrogen by pressure swing adsorption. Sep. Sci. Technol. 35(5), 667-687.
  37. Sitthisa, S., Resasco, D.E., 2011. Hydrodeoxygenation of furfural over supported metal catalysts: a comparative study of Cu, Pd and Ni. Catal. Lett. 141, 784-791.
  38. Song, H., Jarvis, J., Meng, S., Xu, H., Li, Z., Li, W., 2022. Biomass Valorization Under Methane Environment BT-Methane Activation and Utilization in the Petrochemical and Biofuel Industries, in: Song, H., Jarvis, J., Meng, S., Xu, H., Li, Z., Li, W. (Eds.), . Springer International Publishing, Cham, pp. 163-193.
  39. Srivastava, R.K., Shetti, N.P., Reddy, K.R., Kwon, E.E., Nadagouda, M.N., Aminabhavi, T.M., 2021. Biomass utilization and production of biofuels from carbon neutral materials. Environ. Pollut. 276, 116731.
  40. Sun, J., Karim, A.M., Zhang, H., Kovarik, L., Li, X.S., Hensley, A.J., McEwen, J.S., Wang, Y., 2013. Carbon-supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol. J. Catal. 306, 47-57.
  41. Shun, T.A.N., ZHANG, Z., Jianping, S.U.N., Qingwen, W.A.N.G., 2013. Recent progress of catalytic pyrolysis of biomass by HZSM-5. Chin. J. Catal. 34(4), 641-650.
  42. UNFCC, 2015. Adoption of the paris agreement, conference of the parties on its twenty-first session.
  43. Wang, A., Austin, D., He, P., Mao, X., Zeng, H., Song, H., 2018a. Direct catalytic co-conversion of cellulose and methane to renewable petrochemicals. Catal. Sci. Technol. 8(21), 5632-5645.
  44. Wang, A., Austin, D., Qian, H., Zeng, H., Song, H., 2018b. Catalytic valorization of furfural under methane environment. ACS Sustainable Chem. Eng. 6(7), 8891-8903.
  45. Wang, A., Austin, D., He, P., Ha, M., Michaelis, V.K., Liu, L., Qian, H., Zeng, H., Song, H., 2019a. Mechanistic Investigation on Catalytic Deoxygenation of Phenol as a Model Compound of Biocrude Under Methane. ACS Sustainable Chem. Eng. 7(1), 1512-1523.
  46. Wang, A., Austin, D., Song, H., 2019b. Investigations of thermochemical upgrading of biomass and its model compounds: opportunities for methane utilization. Fuel. 246, 443-453.
  47. Wang, Y., Akbarzadeh, A., Chong, L., Du, J., Tahir, N., Awasthi, M.K., 2022. Catalytic pyrolysis of lignocellulosic biomass for bio-oil production: a review. Chemosphere. 297, 134181.
  48. Wei, J., Ge, Q., Yao, R., Wen, Z., Fang, C., Guo, L., Xu, H., Sun, J., 2017. Directly converting CO2 into a gasoline fuel. Nat. Commun. 8(1), 15174.
  49. Welsby, D., Price, J., Pye, S., Ekins, P., 2021. Unextractable fossil fuels in a 1.5 °C world. Nature. 597(7875), 230-234.
  50. Wilhelm, D.J., Simbeck, D.R., Karp, A.D., Dickenson, R.L., 2001. Syngas production for gas-to-liquids applications: technologies, issues and outlook. Fuel Process. Technol. 71(1-3), 139-148.
  51. Xu, Y., Bao, X., Lin, L., 2003. Direct conversion of methane under nonoxidative conditions. J. Catal. 216(1-2), 386-395.
  52. Yang, Y., Xu, X., He, H., Huo, D., Li, X., Dai, L., Si, C., 2023. The catalytic hydrodeoxygenation of bio-oil for upgradation from lignocellulosic biomass. Int. J. Biol. Macromol. 242, 124773.
  53. Yaripour, F., Baghaei, F., Schmidt, I., Perregaard, J., 2005. Synthesis of dimethyl ether from methanol over aluminium phosphate and silica-titania catalysts. Catal. Commun. 6(8), 542-549.
  54. Zhang, M., Hu, Y., Wang, H., Li, H., Han, X., Zeng, Y., Xu, C.C., 2021. A review of bio-oil upgrading by catalytic hydrotreatment: advances, challenges, and prospects. Mol. Catal. 504, 111438.