Opportunities and challenges for n-alkane and n-alkene biosynthesis: A sustainable microbial biorefinery

Document Type : Review Paper

Authors

1 Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR, China.

2 Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, China.

3 State Key Laboratory of Tree Genetics and Breeding, the Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing 210037, China.

Abstract

Alkanes and alkenes are high-value platform chemicals that can be synthesized by microorganisms, utilizing organic residues from agri-food industries and municipalities, thereby offering an alternative opportunity in resource recovery. Current research and technological advancements for the biosynthesis of alkanes and alkenes are mainly impeded by low product titers, obstructing the bioprocess upscaling and large-scale applications. Thus, current scientific investigations aim to improve productivity by utilizing natural and engineered metabolic pathways in various microbial chassis to suppress competing metabolic pathways, coupled with bioprocess optimization. Additionally, to reduce costs, research is being conducted on utilizing inorganic carbon sources such as CO2 to promote the green synthesis of alkanes and alkenes. Therefore, this review critically discusses the opportunities and challenges in alkane and alkene biosynthesis, aiming to examine the current technological advancements. In this review, the limitations of five major metabolic pathways for alkane and alkene biosynthesis are thoroughly discussed, highlighting their shortcomings. Additionally, various techniques, including metabolic engineering, autotrophic metabolic pathways, and new non-biosynthetic routes, are investigated as potential methods to enhance product titers. Furthermore, this review offers valuable insights into the economic and environmental aspects of alkane and alkene biosynthesis while also presenting perspectives for future research directions.

Graphical Abstract

Opportunities and challenges for n-alkane and n-alkene biosynthesis: A sustainable microbial biorefinery

Highlights

  • Major fatty acid biosynthetic pathways were reviewed and discussed.
  • Alkanes and alkenes are valuable platform chemicals with diverse industrial applications and potential use in biofuels.
  • Key enzymes and competitive pathways in microbes impact the yield of n-alkane/n-alkene biosynthesis.
  • Genetic modification is crucial for large-scale n-alkane/n-alkene biosynthesis from CO2.
  • Detailed techno-economic analysis is necessary for mass production of n-alkane/n-alkene.

Keywords


Copyright © 2023, Alpha Creation Enterprise.

  1. Aamer Mehmood, M., Shahid, A., Malik, S., Wang, N., Rizwan Javed, M., Nabeel Haider, M., Verma, P., Umer Farooq Ashraf, M., Habib, N., Syafiuddin, A., Boopathy, R., 2021. Advances in developing metabolically engineered microbial platforms to produce fourth-generation biofuels and high-value biochemicals. Bioresour. Technol. 337, 125510.
  2. Abbasi, M., Pishvaee, M.S., Mohseni, S., 2021. Third-generation biofuel supply chain: a comprehensive review and future research directions. J. Clean. Prod. 323, 129100.
  3. Aghbashlo, M., Hosseinzadeh-Bandbafha, H., Shahbeik, H., Tabatabaei, M., 2022. The role of sustainability assessment tools in realizing bioenergy and bioproduct systems. Biofuel Res. J. 9(3), 1697-1706.
  4. Amer, M., Wojcik, E.Z., Sun, C., Hoeven, R., Hughes, J.M.X., Faulkner, M., Yunus, I.S., Tait, S., Johannissen, L.O., Hardman, S.J.O., Heyes, D.J., Chen, G.Q., Smith, M.H., Jones, P.R., Toogood, H.S., Scrutton, N.S., 2020. Low carbon strategies for sustainable bio-alkane gas production and renewable energy. Energy Environ. Sci. 13(6), 1818-1831.
  5. Andre, C., Kim, S.W., Yu, X.H., Shanklin, J., 2013. Fusing catalase to an alkane-producing enzyme maintains enzymatic activity by converting the inhibitory byproduct H2O2 to the cosubstrate O2. Proc. Natl. Acad. Sci. U S A. 110(8), 3191-3196.
  6. Basri, R.S., Rahman, R., Kamarudin, N.H.A., Ali, M.S.M., 2020. Cyanobacterial aldehyde deformylating oxygenase: structure, function, and potential in biofuels production. Int. J. Biol. Macromol. 164, 3155-3162.
  7. Bernard, A., Domergue, F., Pascal, S., Jetter, R., Renne, C., Faure, J.D., Haslam, R.P., Napier, J.A., Lessire, R., Joubes, J., 2012. Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. Plant Cell. 24(7), 3106-3118.
  8. Betts, L.M., Dappozze, F., Guillard, C., 2018. Understanding the photocatalytic degradation by P25 TiO2 of acetic acid and propionic acid in the pursuit of alkane production. Applied Catal., A. 554, 35-43.
  9. Bhatt, H., Davawala, M., Joshi, T., Shah, M., Unnarkat, A., 2023. Forecasting and mitigation of global environmental carbon dioxide emission using machine learning techniques. Clean. Chem. Eng. 5, 100095.
  10. Bhushan, S., Jayakrishnan, U., Shree, B., Bhatt, P., Eshkabilov, S., Simsek, H., 2023. Biological pretreatment for algal biomass feedstock for biofuel production. J. Environ. Chem. Eng. 11(3), 109870.
  11. Blazeck, J., Liu, L., Knight, R., Alper, H.S., 2013. Heterologous production of pentane in the oleaginous yeast Yarrowia lipolytica. J. Biotechnol. 165(3-4), 184-194.
  12. Bruder, S., Moldenhauer, E.J., Lemke, R.D., Ledesma-Amaro, R., Kabisch, J., 2019. Drop-in biofuel production using fatty acid photodecarboxylase from Chlorella variabilis in the oleaginous yeast Yarrowia lipolytica. Biotechnol. Biofuels. 12, 202.
  13. Buijs, N.A., Siewers, V., Nielsen, J., 2013. Advanced biofuel production by the yeast Saccharomyces cerevisiae. Curr. Opin. Chem. Biol. 17(3), 480-488.
  14. Cai, X., Zhang, Z., Ye, Y., Wang, D., Li, S., Wang, D., Zheng, Z., 2022. Conversion of higher fatty acids or higher fatty acid esters to long-chain alkanes by acid added metal catalyst under mild hydrothermal conditions. Biomass Bioenergy. 156, 106328.
  15. Cao, Y.X., Xiao, W.H., Zhang, J.L., Xie, Z.X., Ding, M.Z., Yuan, Y.J., 2016. Heterologous biosynthesis and manipulation of alkanes in Escherichia coli. Metab. Eng. 38, 19-28.
  16. Chen, B., Lee, D.Y., Chang, M.W., 2015. Combinatorial metabolic engineering of Saccharomyces cerevisiae for terminal alkene production. Metab. Eng. 31, 53-61.
  17. Chen, B., Lee, H.L., Heng, Y.C., Chua, N., Teo, W.S., Choi, W.J., Leong, S.S.J., Foo, J.L., Chang, M.W., 2018. Synthetic biology toolkits and applications in Saccharomyces cerevisiae. Biotechnol. Adv. 36(7), 1870-1881.
  18. Chen, C., Ibekwe‐SanJuan, F., Hou, J., 2010. The structure and dynamics of co‐citation clusters: a multiple‐perspective co‐citation analysis. J. Am. Soc. Inf. Sci. Technol. 61(7), 1386-1409.
  19. Chen, Y., Yin, M., Horsman, G.P., Shen, B., 2011. Improvement of the enediyne antitumor antibiotic C-1027 production by manipulating its biosynthetic pathway regulation in Streptomyces globisporus. J. Nat. Prod. 74(3), 420-424.
  20. Christenson, J.K., Richman, J.E., Jensen, M.R., Neufeld, J.Y., Wilmot, C.M., Wackett, L.P., 2017a. β-Lactone synthetase found in the olefin biosynthesis pathway. Biochemistry. 56(2), 348-351.
  21. Christenson, J.K., Robinson, S.L., Engel, T.A., Richman, J.E., Kim, A.N., Wackett, L.P., 2017b. OleB from bacterial hydrocarbon biosynthesis is a β-lactone decarboxylase that shares key features with haloalkane dehalogenases. Biochemistry. 56(40), 5278-5287.
  22. Crepin, L., Lombard, E., Guillouet, S.E., 2016. Metabolic engineering of Cupriavidus necator for heterotrophic and autotrophic alka(e)ne production. Metab. Eng. 37, 92-101.
  23. Cronjé, Y., Farzad, S., Mandegari, M., Görgens, J.F., 2023. A critical review of multiple alternative pathways for the production of a high-value bioproduct from sugarcane mill byproducts: the case of adipic acid. Biofuel Res. J. 10(03), 1933-1947.
  24. d'Ippolito, G., Landi, S., Esercizio, N., Lanzilli, M., Vastano, M., Dipasquale, L., Pradhan, N., Fontana, A., 2020. CO2-induced transcriptional reorganization: molecular basis of capnophillic lactic fermentation in Thermotoga neapolitana. Front. Microbiol. 11, 171.
  25. Fatma, Z., Hartman, H., Poolman, M.G., Fell, D.A., Srivastava, S., Shakeel, T., Yazdani, S.S., 2018. Model-assisted metabolic engineering of Escherichia coli for long chain alkane and alcohol production. Metab. Eng. 46, 1-12.
  26. Fedorov, A., Linke, D., 2022. Data analysis of CO2 hydrogenation catalysts for hydrocarbon production. J. CO2 61.
  27. Fenibo, E.O., Selvarajan, R., Abia, A.L.K., Matambo, T., 2023. Medium-chain alkane biodegradation and its link to some unifying attributes of alkB genes diversity. Sci. Total Environ. 877, 162951.
  28. Feyereisen, R., 2020. Origin and evolution of the CYP4G subfamily in insects, cytochrome P450 enzymes involved in cuticular hydrocarbon synthesis. Mol Phylogenet. Evol. 143, 106695.
  29. Fitzgerald, L.A., Ziemer, C., Lizewski, S.E., Ringeisen, B.R., Henry, K., Biffinger, J.C., 2010. Microbial treatment of swine fecal waste to generate long-chain linear alkanes after fast pyrolysis. J. Biotechnol. 150, 151.
  30. Foo, J.L., Rasouliha, B.H., Susanto, A.V., Leong, S.S.J., Chang, M.W., 2020. Engineering an alcohol-forming fatty Acyl-CoA reductase for aldehyde and hydrocarbon biosynthesis in Saccharomyces cerevisiae. Front. Bioeng. Biotechnol. 8, 585935.
  31. Foo, J.L., Susanto, A.V., Keasling, J.D., Leong, S.S., Chang, M.W., 2017. Whole-cell biocatalytic and de novo production of alkanes from free fatty acids in Saccharomyces cerevisiae. Biotechnol. Bioeng. 114(1), 232-237.
  32. Gea, S., Irvan, I., Wijaya, K., Nadia, A., Pulungan, A.N., Sihombing, J.L., Rahayu, R., 2022. Bio-oil hydrodeoxygenation over acid activated-zeolite with different Si/Al ratio. Biofuel Res. J. 9(2), 1630-1639.
  33. GhasemiKafrudi, E., Samiee, L., Mansourpour, Z., Rostami, T., 2022. Optimization of methanol production process from carbon dioxide hydrogenation in order to reduce recycle flow and energy consumption. J. Clean. Prod. 376.
  34. Gheewala, S.H., 2023. Life cycle assessment for sustainability assessment of biofuels and bioproducts. Biofuel Res. J. 10(1), 1810-1815.
  35. Gheewala, S.H., Jaroenkietkajorn, U., Nilsalab, P., Silalertruksa, T., Somkerd, T., Laosiripojana, N., 2022. Sustainability assessment of palm oil-based refinery systems for food, fuel, and chemicals. Biofuel Research Journal 9(4), 1750-1763.
  36. Gu, L., Wang, B., Kulkarni, A., Gehret, J.J., Lloyd, K.R., Gerwick, L., Gerwick, W.H., Wipf, P., Håkansson, K., Smith, J.L., Sherman, D.H., 2009. Polyketide decarboxylative chain termination preceded by O-sulfonation in curacin a biosynthesis. J. Am. Chem. Soc. 131(44), 16033-16035.
  37. Hsieh, C.H., Makris, T.M., 2016. Expanding the substrate scope and reactivity of cytochrome P450 OleT. Biochem. Biophys. Res. Commun. 476(4), 462-466.
  38. Huijbers, M.M.E., Zhang, W., Tonin, F., Hollmann, F., 2018. Light-driven enzymatic decarboxylation of fatty acids. Angew. Chem. Int. Ed. Engl. 57(41), 13648-13651.
  39. Jaroensuk, J., Intasian, P., Kiattisewee, C., Munkajohnpon, P., Chunthaboon, P., Buttranon, S., Trisrivirat, D., Wongnate, T., Maenpuen, S., Tinikul, R., Chaiyen, P., 2019. Addition of formate dehydrogenase increases the production of renewable alkane from an engineered metabolic pathway. J. Biol. Chem. 294(30), 11536-11548.
  40. Jaroensuk, J., Intasian, P., Wattanasuepsin, W., Akeratchatapan, N., Kesornpun, C., Kittipanukul, N., Chaiyen, P., 2020. Enzymatic reactions and pathway engineering for the production of renewable hydrocarbons. J. Biotechnol. 309, 1-19.
  41. Jin, H., Chen, L., Wang, J., Zhang, W., 2014. Engineering biofuel tolerance in non-native producing microorganisms. Biotechnol. Adv. 32(2), 541-548.
  42. Kang, M.K., Nielsen, J., 2017. Biobased production of alkanes and alkenes through metabolic engineering of microorganisms. J. Ind. Microbiol. Biotechnol. 44(4-5), 613-622.
  43. Kang, M.K., Zhou, Y.J., Buijs, N.A., Nielsen, J., 2017. Functional screening of aldehyde decarbonylases for long-chain alkane production by Saccharomyces cerevisiae. Microb. Cell Fact. 16(1), 74.
  44. Knoot, C.J., Pakrasi, H.B., 2019. Diverse hydrocarbon biosynthetic enzymes can substitute for olefin synthase in the cyanobacterium Synechococcus sp. PCC 7002. Sci. Rep 9(1), 1360.
  45. Lee, J.W., Niraula, N.P., Trinh, C.T., 2018. Harnessing a P450 fatty acid decarboxylase from Macrococcus caseolyticus for microbial biosynthesis of odd chain terminal alkenes. Metab. Eng. Commun. 7, e00076.
  46. Lehtinen, T., Virtanen, H., Santala, S., Santala, V., 2018. Production of alkanes from CO2 by engineered bacteria. Biotechnol. Biofuels. 11, 228.
  47. Li, J., Ma, Y., Liu, N., Eser, B.E., Guo, Z., Jensen, P.R., Stephanopoulos, G., 2020. Synthesis of high-titer alka(e)nes in Yarrowia lipolytica is enabled by a discovered mechanism. Nat. Commun. 11(1), 6198.
  48. Li, N., Chang, W.C., Warui, D.M., Booker, S.J., Krebs, C., Bollinger, J.M., Jr., 2012. Evidence for only oxygenative cleavage of aldehydes to alk(a/e)nes and formate by cyanobacterial aldehyde decarbonylases. Biochemistry. 51(40), 7908-7916.
  49. Lin, R., Deng, C., Zhang, W., Hollmann, F., Murphy, J.D., 2021. Production of bio-alkanes from biomass and CO2. Trends Biotechnol. 39(4), 370-380.
  50. Liu, K., Li, S., 2020. Biosynthesis of fatty acid-derived hydrocarbons: perspectives on enzymology and enzyme engineering. Curr. Opin. Biotechnol. 62, 7-14.
  51. Liu, Q., Wu, K., Cheng, Y., Lu, L., Xiao, E., Zhang, Y., Deng, Z., Liu, T., 2015. Engineering an iterative polyketide pathway in Escherichia coli results in single-form alkene and alkane overproduction. Metab. Eng. 28, 82-90.
  52. Liu, Y., Khusnutdinova, A., Chen, J., Crisante, D., Batyrova, K., Raj, K., Feigis, M., Shirzadi, E., Wang, X., Dorakhan, R., Wang, X., Stogios, P.J., Yakunin, A.F., Sargent, E.H., Mahadevan, R., 2022. Systems engineering of Escherichia coli for n-butane production. Metab. Eng. 74, 98-107.
  53. Liu, Y., Liu, W.Q., Huang, S., Xu, H., Lu, H., Wu, C., Li, J., 2023. Cell-free metabolic engineering enables selective biotransformation of fatty acids to value-added chemicals. Metab. Eng. Commun. 16, e00217.
  54. Lu, R., Shi, T.Q., Lin, L., Ledesma-Amaro, R., Ji, X.J., Huang, H., 2022. Advances in metabolic engineering of yeasts for the production of fatty acid-derived hydrocarbon fuels. Green Chem. Eng. 3(4), 298-303.
  55. Manley, O.M., Fan, R., Guo, Y., Makris, T.M., 2019. Oxidative decarboxylase UndA utilizes a dinuclear iron cofactor. J. Am. Chem. Soc. 141(22), 8684-8688.
  56. Mendez-Perez, D., Begemann, M.B., Pfleger, B.F., 2011. Modular synthase-encoding gene involved in alpha-olefin biosynthesis in Synechococcus sp. strain PCC 7002. Appl. Environ. Microbiol. 77(12), 4264-4267.
  57. Mokhtar, M., Sukmono, A., Setiapraja, H., Ma’ruf, M., Yubaidah, S., Haryono, I., Rochmanto, B., Soewono, R.T., Adhi Sukra, K.F., Thahar, A., Manurung, E., Wibowo, C.S., Widodo, S., Supriyadi, F., Abriyant, R.Y., Abriyant, R.Y., Suntoro, D., Faridha, F., Reksowardojo, I.K., 2023. Towards nationwide implementation of 40% biodiesel blend fuel in Indonesia: a comprehensive road test and laboratory evaluation. Biofuel Res. J. 10(03), 1876-1889.
  58. Monteiro, R.R.C., da Silva, S.S.O., Cavalcante, C.L., de Luna, F.M.T., Bolivar, J.M., Vieira, R.S., Fernandez-Lafuente, R., 2022. Biosynthesis of alkanes/alkenes from fatty acids or derivatives (triacylglycerols or fatty aldehydes). Biotechnol. Adv. 61, 108045.
  59. Okoro, V., Azimov, U., Munoz, J., 2022. Recent advances in production of bioenergy carrying molecules, microbial fuels, and fuel design-a review. Fuel. 316, 123330.
  60. Panich, J., Fong, B., Singer, S.W., 2021. Metabolic engineering of Cupriavidus necator H16 for sustainable biofuels from CO2. Trends Biotechnol. 39(4), 412-424.
  61. Patrikainen, P., Carbonell, V., Thiel, K., Aro, E.M., Kallio, P., 2017. Comparison of orthologous cyanobacterial aldehyde deformylating oxygenases in the production of volatile C3-C7 alkanes in engineered E. coli. Metab. Eng. Commun. 5, 9-18.
  62. Peirú, S., Gramajo, H., Menzella, H.G., 2009. Chapter 14 Design and synthesis of pathway genes for polyketide biosynthesis, Methods in Enzymology. Academic Press, pp. 319-337.
  63. Phulara, S.C., Chaurasia, D., Diwan, B., Chaturvedi, P., Gupta, P., 2018. In-situ isopentenol production from Bacillus subtilis through genetic and culture condition modulation. Process Biochem. 72, 47-54.
  64. Pradhan, N., d'Ippolito, G., Dipasquale, L., Esposito, G., Panico, A., Lens, P.N.L., Fontana, A., 2021. Kinetic modeling of hydrogen and L-lactic acid production by Thermotoga neapolitana via capnophilic lactic fermentation of starch. Bioresour. Technol. 332, 125127.
  65. Pradhan, N., Dipasquale, L., d'Ippolito, G., Panico, A., Lens, P.N., Esposito, G., Fontana, A., 2015. Hydrogen production by the thermophilic bacterium Thermotoga neapolitana. Int. J. Mol. Sci. 16(6), 12578-12600.
  66. Pradhan, N., Kumar, S., Selvasembian, R., Rawat, S., Gangwar, A., R, S., Kit Yuen, Y., Luo, L., Ayothiraman, S., Dattatraya Saratale, G., Mal, J., 2022. Emerging trends in the pretreatment of microalgal biomass and recovery of value-added products: a review. Bioresour. Technol. 369, 128395.
  67. Qiu, Y., Tittiger, C., Wicker-Thomas, C., Le Goff, G., Young, S., Wajnberg, E., Fricaux, T., Taquet, N., Blomquist, G.J., Feyereisen, R., 2012. An insect-specific P450 oxidative decarbonylase for cuticular hydrocarbon biosynthesis. Proc. Natl .Acad.Sci. 109(37), 14858-14863.
  68. Ragauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G., Cairney, J., Eckert, C.A., Frederick, W.J., Hallett, J.P., Leak, D.J., Liotta, C.L., Mielenz, J.R., Murphy, R., Templer, R., Tschaplinski, T., 2006. The path forward for biofuels and biomaterials. Science. 311(5760), 484-489.
  69. Rahmana, Z., Sung, B.H., Yi, J.Y., Bui le, M., Lee, J.H., Kim, S.C., 2014. Enhanced production of n-alkanes in Escherichia coli by spatial organization of biosynthetic pathway enzymes. J. Biotechnol. 192(Part A), 187-191.
  70. Rao, V., Vizuete, W., 2021. Chapter Three - Ozone: Good high, bad nigh, in: Rao, V., Vizuete, W. (Eds.), Particulates Matter. Elsevier, pp. 39-55.
  71. Reinhard, F.G.C., Lin, Y.T., Stanczak, A., de Visser, S.P., 2020. Bioengineering of cytochrome P450 OleTJE: how does substrate positioning affect the product distributions?. Molecules. 25(11), 2675.
  72. Rodriguez, G.M., Atsumi, S., 2014. Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli. Metab. Eng. 25, 227-237.
  73. Rude, M.A., Baron, T.S., Brubaker, S., Alibhai, M., Del Cardayre, S.B., Schirmer, A., 2011. Terminal olefin (1-alkene) biosynthesis by a novel p450 fatty acid decarboxylase from Jeotgalicoccus species. Appl. Environ. Microbiol. 77(5), 1718-1727.
  74. Rui, Z., Harris, N.C., Zhu, X., Huang, W., Zhang, W., 2015. Discovery of a family of desaturase-like enzymes for 1-alkene biosynthesis. ACS Catal. 5(12), 7091-7094.
  75. Sathesh-Prabu, C., Kim, D., Lee, S.K., 2020. Metabolic engineering of Escherichia coli for 2,3-butanediol production from cellulosic biomass by using glucose-inducible gene expression system. Bioresour. Technol. 309, 123361.
  76. Schweizer, E., Hofmann, J., 2004. Microbial type I fatty acid synthases (FAS): major players in a network of cellular FAS systems. Microbiol. Mol. Biol. Rev. 68(3), 501-517.
  77. Selvasembian, R., Mal, J., Rani, R., Sinha, R., Agrahari, R., Joshua, I., Santhiagu, A., Pradhan, N., 2022. Recent progress in microbial fuel cells for industrial effluent treatment and energy generation: fundamentals to scale-up application and challenges. Bioresour. Technol. 346, 126462.
  78. Shakeel, T., Gupta, M., Fatma, Z., Kumar, R., Kumar, R., Singh, R., Sharma, M., Jade, D., Gupta, D., Fatma, T., Yazdani, S.S., 2018. A consensus-guided approach yields a heat-stable alkane-producing enzyme and identifies residues promoting thermostability. J. Biol. Chem. 293(24), 9148-9161.
  79. Sheppard, M.J., Kunjapur, A.M., Prather, K.L.J., 2016. Modular and selective biosynthesis of gasoline-range alkanes. Metab. Eng. 33, 28-40.
  80. Sikkema, J., Bont, J.A.D., Poolman, B., 1995. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 59(2), 201-222.
  81. Sinha, M., Sørensen, A., Ahamed, A., Ahring, B.K., 2015. Production of hydrocarbons by Aspergillus carbonarius ITEM 5010. Fungal Biology. 119(4), 274-282.
  82. Song, X., Yu, H., Zhu, K., 2016. Improving alkane synthesis in Escherichia coli via metabolic engineering. Appl. Microbiol. Biotechnol. 100(2), 757-767.
  83. Sorigué, D., Légeret, B., Cuiné, S., Blangy, S., Moulin, S., Billon, E., Richaud, P., Brugière, S., Couté, Y., Nurizzo, D., Müller, P., Brettel, K., Pignol, D., Arnoux, P., Li-Beisson, Y., Peltier, G., Beisson, F., 2017. An algal photoenzyme converts fatty acids to hydrocarbons. Science. 357(6354), 903-907.
  84. Sriram, S., Wong, J.W.C., Pradhan, N., 2022. Recent advances in electro-fermentation technology: a novel approach towards balanced fermentation. Bioresour. Technol. 360, 127637.
  85. Sukovich, D.J., Seffernick, J.L., Richman, J.E., Gralnick, J.A., Wackett, L.P., 2010. Widespread head-to-head hydrocarbon biosynthesis in bacteria and role of OleA. Appl. Environ. Microbiol. 76(12), 3850-3862.
  86. Sun, H., Gao, T., Chen, X., Hitchings, M.D., Li, S., Chen, T., Zhang, H., An, L., Dyson, P., 2016. Complete genome sequence of a psychotrophic Arthrobacter strain A3 (CGMCC 1.8987), a novel long-chain hydrocarbons producer. J. Biotechnol. 222, 23-24.
  87. Tarafdar, A., Sirohi, R., Gaur, V.K., Kumar, S., Sharma, P., Varjani, S., Pandey, H.O., Sindhu, R., Madhavan, A., Rajasekharan, R., Sim, S.J., 2021. Engineering interventions in enzyme production: lab to industrial scale. Bioresour. Technol. 326, 124771.
  88. Wackett, L.P., Wilmot, C.M., 2015. Chapter 2-Hydrocarbon Biosynthesis in Microorganisms, in: Himmel, M.E. (Ed.) Direct microbial conversion of biomass to advanced biofuels. Elsevier, Amsterdam, pp. 13-31.
  89. Wang, J., Ledesma-Amaro, R., Wei, Y., Ji, B., Ji, X.J., 2020. Metabolic engineering for increased lipid accumulation in Yarrowia lipolytica-a review. Bioresour. Technol. 313, 123707.
  90. Wang, J., Xia, A., Deng, Z., Huang, Y., Zhu, X., Zhu, X., Liao, Q., 2022. Intensifying biofuel production using a novel bionic flow-induced peristaltic reactor: biodiesel production as a case study. Biofuel Res. J. 9(4), 1721-1735.
  91. Wang, J., Zhu, K., 2018. Microbial production of alka(e)ne biofuels. Curr. Opin. Biotechnol. 50, 11-18.
  92. Wang, M., Nie, K., Cao, H., Xu, H., Fang, Y., Tan, T., Baeyens, J., Liu, L., 2017. Biosynthesis of medium chain length alkanes for bio-aviation fuel by metabolic engineered Escherichia coli. Bioresour. Technol. 239, 542-545.
  93. Wang, W., Lu, X., 2013. Microbial synthesis of alka(e)nes. Front. Bioeng. Biotechnol. 1, 10.
  94. Warui, D.M., Pandelia, M.E., Rajakovich, L.J., Krebs, C., Bollinger, J.M., Jr., Booker, S.J., 2015. Efficient delivery of long-chain fatty aldehydes from the Nostoc punctiforme Acyl-Acyl carrier protein reductase to its cognate aldehyde-deformylating oxygenase. Biochemistry. 54(4), 1006-1015.
  95. Wasylenko, T.M., Ahn, W.S., Stephanopoulos, G., 2015. The oxidative pentose phosphate pathway is the primary source of NADPH for lipid overproduction from glucose in Yarrowia lipolytica. Metab. Eng. 30, 27-39.
  96. White, S.W., Zheng, J., Zhang, Y.M., Rock, 2005. The structural biology of type II fatty acid biosynthesis. Annu. Rev. Biochem. 74, 791-831.
  97. Xin, F.H., Zhang, Y., Xue, S.J., Chi, Z., Liu, G.L., Hu, Z., Chi, Z.M., 2017. Heavy oils (mainly alkanes) over-production from inulin by Aureobasidium melanogenum 9-1 and its transformant 88 carrying an inulinase gene. Renewable Energy. 105, 561-568.
  98. Xu, P., Qiao, K., Ahn, W.S., Stephanopoulos, G., 2016. Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proc. Natl. Acad. Sci. U.S.A. 113(39), 10848-10853.
  99. Xu, W., Chen, Y., Li, D., Wang, Z., Xu, J., Wu, Q., 2022. Rational design of fatty acid photodecarboxylase enables the efficient decarboxylation of medium- and short-chain fatty acids for the production of gasoline bio-alkanes. Mol. Catalysis. 524, 112261.
  100. Yan, H., Wang, Z., Wang, F., Tan, T., Liu, L., 2016. Biosynthesis of chain-specific alkanes by metabolic engineering in Escherichia coli. Eng. Life Sci. 16(1), 53-59.
  101. Yang, K., Li, F., Qiao, Y., Zhou, Q., Hu, Z., He, Y., Yan, Y., Xu, L., Madzak, C., Yan, J., 2018. Design of a New multienzyme complex synthesis system based on Yarrowia lipolytica simultaneously secreted and surface displayed fusion proteins for sustainable production of fatty acid-derived hydrocarbons. ACS Sustainable Chem. Eng. 6(12), 17035-17043.
  102. Yang, K., Qiao, Y., Li, F., Xu, Y., Yan, Y., Madzak, C., Yan, J., 2019. Subcellular engineering of lipase dependent pathways directed towards lipid related organelles for highly effectively compartmentalized biosynthesis of triacylglycerol derived products in Yarrowia lipolytica. Metab. Eng. 55, 231-238.
  103. Yao, X., Strathmann, T.J., Li, Y., Cronmiller, L.E., Ma, H., Zhang, J., 2021. Catalytic hydrothermal deoxygenation of lipids and fatty acids to diesel-like hydrocarbons: a review. Green Chem. 23(3), 1114-1129.
  104. Zhang, J., Van Lanen, S.G., Ju, J., Liu, W., Dorrestein, P.C., Li, W., Kelleher, N.L., Shen, B., 2008. A phosphopantetheinylating polyketide synthase producing a linear polyene to initiate enediyne antitumor antibiotic biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 105(5), 1460-1465.
  105. Zhang, W., Ma, M., Huijbers, M.M.E., Filonenko, G.A., Pidko, E.A., van Schie, M., de Boer, S., Burek, B.O., Bloh, J.Z., van Berkel, W.J.H., Smith, W.A., Hollmann, F., 2019. Hydrocarbon synthesis via photoenzymatic decarboxylation of carboxylic acids. J. Am. Chem. Soc. 141(7), 3116-3120.
  106. Zhang, X., Cheng, Z., Ma, L., Li, J., 2017. A study on accumulation of volatile organic compounds during ochratoxin a biosynthesis and characterization of the correlation in Aspergillus carbonarius isolated from grape and dried vine fruit. Food Chem. 227, 55-63.
  107. Zhou, C., Zhang, T., 2020. Photocatalytic alkane production from fatty acid decarboxylation over hydrogenated catalyst. Sci. Bull. 65(11), 870-871.
  108. Zhou, Y.J., Buijs, N.A., Zhu, Z., Qin, J., Siewers, V., Nielsen, J., 2016. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat. Commun. 7, 11709.
  109. Zhou, Y.J., Hu, Y., Zhu, Z., Siewers, V., Nielsen, J., 2018. Engineering 1-alkene biosynthesis and secretion by dynamic regulation in yeast. ACS Synth. Biol. 7(2), 584-590.
  110. Zhu, Z., Zhou, Y.J., Kang, M.K., Krivoruchko, A., Buijs, N.A., Nielsen, J., 2017. Enabling the synthesis of medium chain alkanes and 1-alkenes in yeast. Metab. Eng. 44, 81-88.