Urban waste upcycling to a recyclable solid acid catalyst for converting levulinic acid platform molecules into high-value products

Document Type : Research Paper

Authors

1 Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia. Via Elce di Sotto, 8, 06124 Perugia, Italy.

2 Dipartimento di Ingegneria, Università degli Studi di Perugia Via G. Duranti 93, 06125, Perugia, Italy.

Abstract

The conversion of levulinic acid (LA) into alkyl levulinates is highly significant due to the wide range of applications for these products, including their use as fuel additives, solvents, and fragrances. In order to meet the growing need for environmentally friendly chemical production, this study takes a circular economy approach by upcycling a common urban waste, i.e., pine needles, to synthesize a robust heterogeneous acid catalyst, subsequently used to efficiently upgrade LA into levulinates. By utilizing a single-step procedure under mild operating conditions, the resulting PiNe–SO3H catalyst demonstrated good performances and flexibility in synthesizing diverse bio-derived levulinates. In fact, the catalyst showed an exceptionally broad range of applicability, resulting in isolated yields ranging from  ̴ 46% to  ̴ 93%, which is an unprecedented achievement. The catalyst's ability to be reused was tested, revealing remarkable performance for up to 10 consecutive cycles with negligible loss in efficiency. Additionally, a significant focus was directed towards developing a method that minimizes waste during the isolation process. This involved optimizing reaction conditions and rationalizing work-up procedures, resulting in low Environmental factor (E-factor) values ranging from 1.2 to 8.9. To comprehensively assess the overall environmental sustainability of the process, various additional green metrics were calculated, and the Ecoscale tool was employed as well. Furthermore, mechanistic investigations elucidated the favored reaction pathway, underscoring that, under the optimized conditions, the prevailing mechanism entails direct esterification, as opposed to the generation of a pseudo-ester intermediate.

Graphical Abstract

Urban waste upcycling to a recyclable solid acid catalyst for converting levulinic acid platform molecules into high-value products

Highlights

  • One-pot upcycling of urban waste pine needles into an efficient sulphonated catalyst achieved.
  • The favored reaction pathway in alkyl levulinates synthesis was investigated.
  • Good to excellent levulinates yields (46-93%) were obtained across a broad substrate range.
  • Remarkable catalyst durability over a span of 10 consecutive cycles was demonstrated.
  • Waste-minimized purification protocol through Amberlyst® A-21 pad was verified by green metrics.

Keywords


Copyright © 2023, Alpha Creation Enterprise.

  1. Aghbashlo, M., Hosseinzadeh-Bandbafha, H., Shahbeik, H., Tabatabaei, M., 2022. The role of sustainability assessment tools in realizing bioenergy and bioproduct systems. Biofuel Res. J. 9(3), 1697-1706.
  2. Al-Shaal, M.G., Ciptonugroho, W., Holzhäuser, F.J., Mensah, J.B., Hausoul, P.J.C., Palkovits, R., 2015. Catalytic upgrading of α-angelica lactone to levulinic acid esters under mild conditions over heterogeneous catalysts. Catal. Sci. Technol. 5(12), 5168-5173.
  3. Alarcon, R.T., Lamb, K.J., Bannach, G., North, M., 2021. Opportunities for the use of Brazilian biomass to produce renewable chemicals and materials. ChemSusChem. 14(1), 169-188.
  4. Andraos, J., 2012. Inclusion of environmental impact parameters in radial pentagon material efficiency metrics analysis: using benign indices as a step towards a complete assessment of "greenness" for chemical reactions and synthesis plans. Org. Process Res. Dev. 16(9), 1482-1506.
  5. Appaturi, J.N., Andas, J., Ma, Y.K., Lee Phoon, B., Muazu Batagarawa, S., Khoerunnisa, F., Hazwan Hussin, M., Ng, E.P., 2022. Recent advances in heterogeneous catalysts for the synthesis of alkyl levulinate biofuel additives from renewable levulinic acid: a comprehensive review. Fuel. 323, 124362.
  6. Awasthi, M.K., Sarsaiya, S., Patel, A., Juneja, A., Singh, R.P., Yan, B., Awasthi, S.K., Jain, A., Liu, T., Duan, Y., Pandey, A., Zhang, Z., Taherzadeh, M.J., 2020. Refining biomass residues for sustainable energy and bio-products: an assessment of technology, its importance, and strategic applications in circular bio-economy. Renew. Sust. Energy Rev. 127, 109876.
  7. Bashir, M.A., Wu, S., Zhu, J., Krosuri, A., Khan, M.U., Ndeddy Aka, R.J., 2022. Recent development of advanced processing technologies for biodiesel production: a critical review. Fuel Process. Technol. 227, 107120.
  8. Biddy, M.J., Davis, R., Humbird, D., Tao, L., Dowe, N., Guarnieri, M.T., Linger, J.G., Karp, E.M., Salvachúa, D., Vardon, D.R., Beckham, G.T., 2016. The techno-economic basis for coproduct manufacturing to enable hydrocarbon fuel production from lignocellulosic biomass. ACS Sustainable Chem. Eng. 4(6), 3196-3211.
  9. Bohre, A., Jadhao, P.R., Tripathi, K., Pant, K.K., Likozar, B., Saha, B., 2023. Chemical recycling processes of waste polyethylene terephthalate using solid catalysts. ChemSusChem.16(14), e202300142.
  10. Bouaid, A., El boulifi, N., Hahati, K., Martinez, M., Aracil, J., 2014. Biodiesel production from biobutanol. improvement of cold flow properties. Chem. Eng. J. 238, 234-241.
  11. Brandão, M., Heijungs, R., Cowie, A.L., 2022. On quantifying sources of uncertainty in the carbon footprint of biofuels: crop/feedstock, LCA modelling approach, land-use change, and GHG metrics. Biofuel Res. J. 9(2), 1608-1616.
  12. Campana, F., Kim, C., Marrocchi, A., Vaccaro, L., 2020a. Green solvent-processed organic electronic devices. Mater. Chem. C. 8(43), 15027-15047.
  13. Campana, F., Massaccesi, B.M., Santoro, S., Piermatti, O., Vaccaro, L., 2020b. Polarclean/water as a safe and recoverable medium for selective C2-arylation of indoles catalyzed by Pd/C. ACS Sustainable Chem. Eng. 8(44), 16441-16450.
  14. Chen, Z., Zeng, X., Wang, S., Cheng, A., Zhang, Y., 2022. Advanced carbon-based nanocatalysts and their application in catalytic conversion of renewable platform molecules. ChemSusChem. 15(11), e202200411.
  15. Ciptonugroho, W., Al-Shaal, M.G., Mensah, J.B., Palkovits, R., 2016. One pot synthesis of WOx/mesoporous-ZrO2 catalysts for the production of levulinic-acid esters. J. Catal. 340, 17-29.
  16. Correa, D.F., Beyer, H.L., Fargione, J.E., Hill, J.D., Possingham, H.P., Thomas-Hall, S.R., Schenk, P.M., 2019. Towards the implementation of sustainable biofuel production systems. Renew. Sust. Energy Rev. 107, 250-263.
  17. Dawodu, F.A., Ayodele, O., Xin, J., Zhang, S., Yan, D., 2014. Effective conversion of non-edible oil with high free fatty acid into biodiesel by sulphonated carbon catalyst. Appl. Energy. 114, 819-826.
  18. Di Menno Di Bucchianico, D., Wang, Y., Buvat, J.C., Pan, Y., Casson Moreno, V., Leveneur, S., 2022. Production of levulinic acid and alkyl levulinates: a process insight. Green Chem. 24(2), 614-646.
  19. Eftaxias, A., Passa, E.A., Michailidis, C., Daoutis, C., Kantartzis, A., Diamantis, V., 2022. Residual forest biomass in pinus stands: accumulation and biogas production potential. Energies. 15(14), 5233.
  20. Enumula, S.S., Gurram, V.R.B., Chada, R.R., Burri, D.R., Kamaraju, S.R.R., 2017. Clean synthesis of alkyl levulinates from levulinic acid over one pot synthesized WO3-SBA-16 catalyst. J. Mol. Catal. A: Chem. 426, 30-38.
  21. EU Circular Economy Action Plan.
  22. Ferlin, F., Valentini, F., Sciosci, D., Calamante, M., Petricci, E., Vaccaro, L., 2021. Biomass waste-derived Pd-PiNe catalyst for the continuous-flow copper-free sonogashira reaction in a CPME-Water azeotropic mixture. ACS Sustain. Chem. Eng. 9(36), 12196-12204.
  23. Gairola, Sandeep, Gairola, Somit, Sharma, H., Rakesh, P.K., 2019. Impact behavior of pine needle fiber/pistachio shell filler based epoxy composite. J. Phys. Conf. Ser. 1240(1), 012096.
  24. Gautam, P., Barman, S., Ali, A., 2022. A comparative study on the performance of acid catalysts in the synthesis of levulinate ester using biomass-derived levulinic acid: a review. Biofuels, Bioprod. Biorefin. 16(4), 1095-1115.
  25. Heda, J., Niphadkar, P., Bokade, V., 2019. Efficient synergetic combination of H-USY and SnO2 for direct conversion of glucose into ethyl levulinate (biofuel additive). Energy Fuels. 33(3), 2319-2327.
  26. Ho, D., Lee, J., Park, S., Park, Y., Cho, K., Campana, F., Lanari, D., Facchetti, A., Seo, S.Y., Kim, C., Marrocchi, A., Vaccaro, L., 2020. Green solvents for organic thin-film transistor processing. J. Mater. Chem. C. 8(17), 5786-5794.
  27. Hosseinzadeh-Bandbafha, H., Tabatabaei, M., Aghbashlo, M., Khanali, M., Demirbas, A., 2018. A comprehensive review on the environmental impacts of diesel/biodiesel additives. Energy Convers. Manage. 174, 579-614.
  28. Keijer, T., Bakker, V., Slootweg, J.C., 2019. Circular chemistry to enable a circular economy. Nat. Chem. 11(3), 190-195.
  29. Keshavarzi, M., Mohammadi, P., Rastegari, H., Lam, S.S., Abas, M.A., Chong, W.W.F., Hajiahmad, A., Peng, W., Aghbashlo, M., Tabatabaei, M., 2023. Investigation of ketal-acetin mixture synthesized from glycerol as a renewable additive for gasoline-ethanol fuel blend: physicochemical characterization and engine combustion, performance, and emission assessment. Fuel. 348, 128519.
  30. Kiehbadroudinezhad, M., Hosseinzadeh-Bandbafha, H., Varjani, S., Wang, Y., Peng, W., Pan, J., Aghbashlo, M., Tabatabaei, M., 2023. Marine shell-based biorefinery: a sustainable solution for aquaculture waste valorization. Renewable Energy. 206, 623-634.
  31. Kim, T., Assary, R.S., Marshall, C.L., Gosztola, D.J., Curtiss, L.A., Stair, P.C., 2011. Acid-catalyzed furfuryl alcohol polymerization: characterizations of molecular structure and thermodynamic properties. ChemCatChem. 3(9), 1451-1458.
  32. Kim, H., Choi, J., Park, J., Won, W., 2020. Production of a sustainable and renewable biomass-derived monomer: conceptual process design and techno-economic analysis. Green Chem. 22(20), 7070-7079.
  33. Krishnasamy, A., Bukkarapu, K.R., 2021. A comprehensive review of biodiesel property prediction models for combustion modeling studies. Fuel. 302, 121085.
  34. Kumar, S., Singh, E., Mishra, R., Kumar, A., Caucci, S., 2021. Utilization of plastic wastes for sustainable environmental management: a review. ChemSusChem. 14(19), 3985-4006.
  35. Kumari, N., Chhabra, T., Kumar, S., Krishnan, V., 2022. Nanoarchitectonics of sulfonated biochar from pine needles as catalyst for conversion of biomass derived chemicals to value added products. Catal. Commun. 168, 106467.
  36. Li, N., Jiang, S., Liu, Z.Y., Guan, X.X., Zheng, X.C., 2019a. Preparation and catalytic performance of loofah sponge-derived carbon sulfonic acid for the conversion of levulinic acid to ethyl levulinate. Catal. Commun. 121, 11-14.
  37. Li, N., Zhang, X.L., Zheng, X.C., Wang, G.H., Wang, X.Y., Zheng, G.P., 2019b. Efficient synthesis of ethyl levulinate fuel additives from levulinic acid catalyzed by sulfonated pine needle-derived carbon. Catal. Surv. from Asia. 23(3), 171-180.
  38. Liu, W.J., Jiang, H., Yu, H.Q., 2015. Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem. Rev. 115(22), 12251-12285.
  39. Liu, C., Zhang, K., Liu, Y., Wu, S., 2019. Esterification of levulinic acid into ethyl levulinate catalyzed by sulfonated bagasse-carbonized solid acid. 14(1), 2186-2196.
  40. Liu, D., Li, X., Ma, J., Li, M., Ren, F., Zhou, L., 2021. Metal-organic framework modified pine needle-derived N, O-doped magnetic porous carbon embedded with Au nanoparticles for adsorption and catalytic degradation of tetracycline. J. Clean. Prod. 278, 123575.
  41. Liu, J., Tao, B., 2022. Fractionation of fatty acid methyl esters via urea inclusion and its application to improve the low-temperature performance of biodiesel. Biofuel Res. J. 9(2), 1617-1629.
  42. Lluna-Galán, C., Izquierdo-Aranda, L., Adam, R., Cabrero-Antonino, J.R., 2021. Catalytic reductive alcohol etherifications with carbonyl-based compounds or CO2 and related transformations for the synthesis of ether derivatives. ChemSusChem. 14(18), 3744-3784.
  43. Lomba, L., Zuriaga, E., Giner, B., 2019. Solvents derived from biomass and their potential as green solvents. Curr. Opin. Green Sustainable Chem. 18, 51-56.
  44. Mandal, S., Bhattacharya, T.K., Verma, A.K., Haydary, J., 2018. Optimization of process parameters for bio-oil synthesis from pine needles (Pinus roxburghii) using response surface methodology. Chem. Pap. 72(3), 603-616.
  45. Marcel, R., Durillon, T., Djakovitch, L., Fache, F., Rataboul, F., 2019. First Example of the Use of Biosourced Alkyl Levulinates as Solvents for Synthetic Chemistry: application to the heterogeneously catalyzed heck coupling. 4(12), 3329-3333.
  46. Marrocchi, A., Trombettoni, V., Campana, F., Passagrilli, V., Nazari, A., Bracciale, M.P., Santarelli, M.L., Vaccaro, L., 2022. Glycerol valorization: development of selective protocols for acetals production through tailor-made macroreticular acid resins. Catal. Today, 113876.
  47. Martínez Aguilar, M., Duret, X., Ghislain, T., Minh, D.P., Nzihou, A., Lavoie, J.M., 2020. A simple process for the production of fuel additives using residual lignocellulosic biomass. Fuel. 264, 116702.
  48. Mishra, R.K., Mohanty, K., 2022. Pyrolysis of low-value waste sawdust over low-cost catalysts: physicochemical characterization of pyrolytic oil and value-added biochar. Biofuel Res. J. 9(4), 1736-1749.
  49. Moon, H., Innocenti, A., Liu, H., Zhang, H., Weil, M., Zarrabeitia, M., Passerini, S., 2023. Bio-Waste-Derived hard carbon anodes through a sustainable and cost-effective synthesis process for sodium-ion batteries. ChemSusChem. 16(1), e202201713.
  50. Nascimento, Í.V. do, Fregolente, L.G., Pereira, A.P. de A., Nascimento, C.D.V. do, Mota, J.C.A., Ferreira, O.P., Sousa, H.H. de F., Silva, D.G.G. da, Simões, L.R., Souza Filho, A.G., Costa, M.C.G., 2023. Biochar as a carbonaceous material to enhance soil quality in drylands ecosystems: a review. Environ. Res. 233, 116489.
  51. Nurek, T., Gendek, A., Roman, K., Dąbrowska, M., 2019. The effect of temperature and moisture on the chosen parameters of briquettes made of shredded logging residues. Biomass Bioenergy. 130, 105368.
  52. Okolie, J.A., Nanda, S., Dalai, A.K., Kozinski, J.A., 2021. Chemistry and Specialty Industrial Applications of Lignocellulosic Biomass. Waste Biomass Valorization. 12(5), 2145-2169.
  53. Oliveira, B.L., Teixeira Da Silva, V., 2014. Sulfonated carbon nanotubes as catalysts for the conversion of levulinic acid into ethyl levulinate. Catal. Today. 234, 257-263.
  54. Pandey, D., Daverey, A., Dutta, K., Yata, V.K., Arunachalam, K., 2022. Valorization of waste pine needle biomass into biosorbents for the removal of methylene blue dye from water: kinetics, equilibrium and thermodynamics study. Environ. Technol. Innovation. 25, 102200.
  55. Peixoto, A.F., Ramos, R., Moreira, M.M., Soares, O.S.G.P., Ribeiro, L.S., Pereira, M.F.R., Delerue-Matos, C., Freire, C., 2021. Production of ethyl levulinate fuel bioadditive from 5-hydroxymethylfurfural over sulfonic acid functionalized biochar catalysts. 303, 121227.
  56. Perez, F.M., Gatti, M.N., Nichio, N.N., Pompeo, F., 2022. Bio-additives from glycerol acetylation with acetic acid: chemical equilibrium model. Results Eng. 15, 100502.
  57. Quilter, H.C., Hutchby, M., Davidson, M.G., Jones, M.D., 2017. Polymerisation of a terpene-derived lactone: a bio-based alternative to ϵ-caprolactone. Polym. Chem. 8(5), 833-837.
  58. Raj, T., Chandrasekhar, K., Naresh Kumar, A., Kim, S.H., 2022. Lignocellulosic biomass as renewable feedstock for biodegradable and recyclable plastics production: a sustainable approach. Renew. Sust. Energy Rev. 158, 112130.
  59. Rana, A.K., Guleria, S., Gupta, V.K., Thakur, V.K., 2023. Cellulosic pine needles-based biorefinery for a circular bioeconomy. Bioresour. Technol. 367, 128255.
  60. Sevilla, M., Díez, N., Fuertes, A.B., 2021. More Sustainable Chemical Activation Strategies for the Production of Porous Carbons. ChemSusChem. 14(1), 94-117.
  61. Shahbeik, H., Peng, W., Kazemi Shariat Panahi, H., Dehhaghi, M., Guillemin, G.J., et. al., 2022. Synthesis of liquid biofuels from biomass by hydrothermal gasification: a critical review. Renew. Sustain. Energy Rev. 167, 112833.
  62. Sheldon, R.A., 2019. The greening of solvents: towards sustainable organic synthesis. Curr. Opin. Green Sustainable Chem. 18, 13-19.
  63. Singh, P., Sharma, N.K., Utilization of sludge co-digested with pine needles for the generation of biogas. Int. J. Adv. Res. Eng. Technol. (IJARET). 12(4), 159-170.
  64. Slathia, P.S., Raina, N., Kiran, A., Kour, R., Bhagat, D., Sharma, P., 2020. Dilute acid pretreatment of pine needles of Pinus roxburghii by response surface methodology for bioethanol production by separate hydrolysis and fermentation. Biomass Convers. Biorefinery. 10(1), 95-106.
  65. Smith, R.L., Waddell, W.J., Cohen, S.M., Feron, V.J., Marnett, L.J., et al., 2009. GRAS 24: the 24th publication by the FEMA Expert Panel presents safety and usage data on 236 new generally recognized as safe flavor-ing ingredients. Food Technol. 63(6), 46-105.
  66. Stadler, B.M., Wulf, C., Werner, T., Tin, S., De Vries, J.G., 2019. Catalytic approaches to monomers for polymers based on renewables. ACS Catal. 9(9), 8012-8067.
  67. Trombettoni, V., Lanari, D., Prinsen, P., Luque, R., Marrocchi, A., Vaccaro, L., 2018a. Recent advances in sulfonated resin catalysts for efficient biodiesel and bio-derived additives production. Energy Combust. Sci. 65, 136-162.
  68. Trombettoni, V., Sciosci, D., Bracciale, M.P., Campana, F., Santarelli, M.L., Marrocchi, A., Vaccaro, L., 2018b. Boosting biomass valorisation. synergistic design of continuous flow reactors and water-tolerant polystyrene acid catalysts for a non-stop production of esters. Green Chem. 20(14), 3222-3231.
  69. Unlu, D., Boz, N., Ilgen, O., Hilmioglu, N., 2018. Improvement of fuel properties of biodiesel with bioadditive ethyl levulinate. Open Chem. 16(1), 647-652.
  70. Uzunlu, N., Pongrácz, P., Kollár, L., Takács, A., 2023. alkyl levulinates and 2-methyltetrahydrofuran: possible biomass-based solvents in palladium-catalyzed aminocarbonylation. 28(1), 442.
  71. Valentini, F., Kozell, V., Petrucci, C., Marrocchi, A., Gu, Y., Gelman, D., Vaccaro, L., 2019. Formic acid, a biomass-derived source of energy and hydrogen for biomass upgrading. Energy Environ. Sci. 12(9), 2646-2664.
  72. Valentini, F., Marrocchi, A., Vaccaro, L., 2022. Liquid organic hydrogen carriers (LOHCs) as H-source for bio-derived fuels and additives production. Adv. Energy Mater. 12(13), 2103362.
  73. Valentini, F., Brufani, G., Rossini, G., Campana, F., Lanari, D., Vaccaro, L., 2023. POLITAG-M-F as heterogeneous organocatalyst for the waste-minimized synthesis of β-Azido carbonyl compounds in batch and under flow conditions. ACS Sustainable Chem. Eng. 11(7), 3074-3084.
  74. Van Aken, K., Strekowski, L., Patiny, L., 2006. EcoScale, a semi-quantitative tool to select an organic preparation based on economical and ecological parameters. Beilstein J. Org. Chem. 2(3), 1-7.
  75. Vijay Kumar, M., Veeresh Babu, A., Ravi Kumar, P., 2018. The impacts on combustion, performance and emissions of biodiesel by using additives in direct injection diesel engine. Alexandria Eng. J. 57(1), 509-516.
  76. Wang, J., Xia, A., Deng, Z., Huang, Y., Zhu, Xianqing, Zhu, Xun, Liao, Q., 2022. Intensifying biofuel production using a novel bionic flow-induced peristaltic reactor: biodiesel production as a case study. Biofuel Res. J. 9(4), 1721-1735.
  77. Winnacker, M., 2018. Pinenes: abundant and renewable building blocks for a variety of sustainable polymers. Angew. Chem. Int. Ed. 57(44), 14362-14371.
  78. Winnacker, M., Sag, J., 2018. Sustainable terpene-based polyamides via anionic polymerization of a pinene-derived lactam. Chem. Commun. 54(7), 841-844.
  79. Zainol, M.M., Amin, N.A.S., Asmadi, M., 2017. Effects of thermal treatment on carbon cryogel preparation for catalytic esterification of levulinic acid to ethyl levulinate. Fuel Process. Technol. 167, 431-441.
  80. Zainol, M.M., Amin, N.A.S., Asmadi, M., 2019a. Kinetics and thermodynamic analysis of levulinic acid esterification using lignin-furfural carbon cryogel catalyst. Renewable Energy. 130, 547-557.
  81. Zainol, M.M., Amin, N.A.S., Asmadi, M., Ramli, N.A.S., 2019b. Esterification of levulinic acid to ethyl levulinate using liquefied oil palm frond-based carbon cryogel catalyst. Bioenergy Res. 12(2), 359-369.
  82. Zainol, M.M., Asmadi, M., Iskandar, P., Wan Ahmad, W.A.N., Amin, N.A.S., Hoe, T.T., 2021. Ethyl levulinate synthesis from biomass derivative chemicals using iron doped sulfonated carbon cryogel catalyst. J. Clean. Prod. 281, 124686.
  83. Zhou, S., Wu, L., Bai, J., Lei, M., Long, M., Huang, K., 2022. Catalytic esterification of levulinic acid into the biofuel n-butyl levulinate over nanosized TiO2 Nanomaterials. 12(21), 3870.
  84. Zhu, J., Yin, G., 2021. Catalytic transformation of the furfural platform into bifunctionalized monomers for polymer synthesis. ACS Catal. 11(15), 10058-10083.