Artificial humic substances as sustainable carriers for manganese: Development of a novel bio-based microfertilizer

Document Type : Research Paper


1 Max Planck Institute of Colloids and Interfaces, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany.

2 Leibniz Institute for Agricultural Engineering and Bio-economy e.V. (ATB), Max-Eyth- Allee 100, 14469 Potsdam, Germany.


This study presents a new strategy for the production of sustainable manganese fertilizer based on artificial humic substances (AHS). AHS with different manganese concentrations (0‒20%) were synthesized from poplar bark under alkaline conditions via hydrothermal treatment. For the 20% manganese formulation, the interaction of manganese with AHS resulted in reduced solubility (from 25.2% to 12.3% organic carbon) and average molecular weight of humic acids (from 11.6 to 3.9 KDa), indicating preferential binding of the high-molecular-weight fraction. The formulation with 5% of manganese achieved optimal manganese loading without compromising the AHS solubility (19.4%). Structural analyses showed only minor changes in AHS in the presence of manganese, indicating that the main structural fragments of the AHS were preserved. Structural, morphological, and spectroscopic characterizations confirmed the formation of amorphous manganese complexes within the AHS matrix, primarily in the plant-available Mn(II) oxidation state. Plant bioassays showed increased manganese uptake with the application of AHS containing 5% Mn compared to MnCl2 alone (64 mg/kg vs. 40 mg/kg in dry cucumber biomass). Interestingly, unmodified AHS at higher concentrations (50 mg/L) further enhanced manganese (67 mg/kg) and iron (up to 209 mg/kg) uptake, highlighting the potential role of AHS in facilitating metal transport.

Graphical Abstract

Artificial humic substances as sustainable carriers for manganese: Development of a novel bio-based microfertilizer


  • Sustainable manganese fertilizer with artificial humic substances (AHS) was produced.
  • Manganese could bind to a high-molecular-weight fraction of AHS.
  • The addition of manganese minimally could alter the structure of AHS.
  • Manganese in AHS was predominantly in amorphous Mn(II) bioavailable form.
  • Manganese-rich AHS increased manganese uptake by up to 64 mg/kg in dry cucumber biomass.


  1. Alejandro, S., Höller, S., Meier, B., Peiter, E., 2020. Manganese in plants: from acquisition to subcellular allocation. Front. Plant Sci. 11, 300.
  2. Alloway, B.J., 2008. Micronutrients and crop production: an introduction, in: Micronutrient Deficiencies in Global Crop Production. Springer. 1-39.
  3. Ampong, K., Thilakaranthna, M.S., Gorim, L.Y., 2022. Understanding the role of humic acids on crop performance and soil health. Front. Agron. 4, 848621.
  4. Andresen, E., Peiter, E., Küpper, H., 2018. Trace metal metabolism in plants. J. Exp. Bot. 69, 909-954.
  5. Boiteau, R.M., Shaw, J.B., Pasa-Tolic, L., Koppenaal, D.W., Jansson, J.K., 2018. Micronutrient metal speciation is controlled by competitive organic chelation in grassland soils. Soil Biol. Biochem. 120, 283-291.
  6. Broadley, M., Brown, P., Cakmak, I., Rengel, Z., Zhao, F., 2012. Chapter 7-function of nutrients: micronutrients, in: marschner’s mineral nutrition of higher plants. Elsevier, pp. 191-248.
  7. Chakraborty, M., Chakraborty, D., Mondal, P., Paul, R., 2021. Micronutrient deficiency stress in soils of India: tackling it to alleviate hidden hunger, in: Rakshit, A., Singh, S.K., Abhilash, P.C., Biswas, A. (Eds.), Soil Science: Fundamentals to Recent Advances. Springer Singapore, Singapore. 801-821.
  8. Chen, Y., 1996. Chapter 13-organic matter reactions involving micronutrients in soils and their effect on plants, in: Humic Substances in Terrestrial Ecosystems. Elsevier. 507-529.
  9. Cieschi, M.T., Polyakov, A.Y., Lebedev, V.A., Volkov, D.S., Pankratov, D.A., Veligzhanin, A.A., Perminova, I.V., Lucena, J.J., 2019. Eco-Friendly iron-humic nanofertilizers synthesis for the prevention of iron chlorosis in soybean (glycine max) grown in calcareous soil. Front. Plant Sci. 10, 413.
  10. Crawford, T.W., Stroehlein, J.L., Kuehl, R.O., 1989. Manganese and rates of growth and mineral accumulation in cucumber. J. Am. Soc. Hort. Sci. 114(2), 300-306.
  11. Dhaliwal, S.S., Sharma, V., Shukla, A.K., Verma, V., Kaur, M., Alsuhaibani, A.M., Gaber, A., Singh, P., Laing, A.M., Hossain, A., 2023. Minerals and chelated-based manganese fertilization influences the productivity, uptake, and mobilization of manganese in wheat (Triticum aestivum L.) in sandy loam soils. Front. Plant Sci. 14, 1163528.
  12. Dimkpa, C.O., Bindraban, P.S., 2016. Fortification of micronutrients for efficient agronomic production: a review. Agron. Sustainable Dev. 36, 7.
  13. Fang, S., Xue, J., Tang, L., 2007. Biomass production and carbon sequestration potential in poplar plantations with different management patterns. J. Environ. Manage. 85(3), 672-679.
  14. Fortier, J., Truax, B., Gagnon, D., Lambert, F., 2016. Potential for hybrid poplar riparian buffers to provide ecosystem services in three watersheds with contrasting agricultural land use. Forests. 7(2), 37.
  15. Gates-Rector, S., Blanton, T., 2019. The powder diffraction file: a quality materials characterization database. Powder Diffr. 34(4), 352-360.
  16. Gomollón-Bel, F., 2021. Breakthroughs for a circular, climate-neutral future. Chem. Int. 43(4), 13-20.
  17. Gupta, A.P., 2005. Micronutrient status and fertilizer use scenario in India. J. Trace Elem. Med. Biol. 18(4), 325-331.
  18. Hajiboland, R., 2012. Effect of Micronutrient Deficiencies on Plants Stress Responses, in: Ahmad, P., Prasad, M.N.V. (Eds.), Abiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability. Springer New York, New York, NY. 283-329.
  19. Hoagland, D.R., Arnon, D.I., 1950. The water-culture method for growing plants without soil. Circ. Calif. Agric. Exp. Stat. 347(2nd), 32.
  20. Jeong, C.Y., Park, C.W., Kim, J.G., Lim, S.K., 2007. Carboxylic content of humic acid determined by modeling, calcium acetate, and precipitation methods. Soil Sci. Soc. Am. J. 71(1), 86-94.
  21. Khoshru, B., Mitra, D., Nosratabad, A.F., Reyhanitabar, A., Mandal, L., Farda, B., Djebaili, R., Pellegrini, M., Guerra-Sierra, B.E., Senapati, A., Panneerselvam, P., Mohapatra, P.K.D., 2023. Enhancing manganese availability for plants through microbial potential: a sustainable approach for improving soil health and food security. bacteria. 2(3), 129-141.
  22. Li, P., Liu, C., Luo, Y., Shi, H., Li, Q., PinChu, C., Li, X., Yang, J., Fan, W., 2022. Oxalate in plants: metabolism, function, regulation, and application. J. Agric. Food Chem. 70(51), 16037-16049.
  23. Li, Y., Harir, M., Lucio, M., Kanawati, B., Smirnov, K., Flerus, R., Koch, B.P., Schmitt-Kopplin, P., Hertkorn, N., 2016. Proposed guidelines for solid phase extraction of suwannee river dissolved organic matter. Chem. 88(13), 6680-6688.
  24. López‐Rayo, S., Lucena, S., Lucena, J.J., 2014. Chemical properties and reactivity of manganese chelates and complexes in solution and soils. Z. Pflanzenernähr. Bodenk. 177(2), 189-198.
  25. Lumactud, R.A., Gorim, L.Y., Thilakarathna, M.S., 2022. Impacts of humic-based products on the microbial community structure and functions toward sustainable agriculture. Front. Sustainable Food Syst. 6, 977121.
  26. Lupoi, J.S., Singh, S., Parthasarathi, R., Simmons, B.A., Henry, R.J., 2015. Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. Renew. Sust. Energy Rev. 49, 871-906.
  27. MacCarthy, P., 2001. The principles of humic substances. Soil Sci. 166(11), 738-751.
  28. Nieder, R., Benbi, D.K., Reichl, F.X., 2018. Microelements and their role in human health, in: Soil Components and Human Health. Springer Netherlands, Dordrecht. 317-374.
  29. Norvell, W.A., Lindsay, W.L., 1969. Reactions of EDTA complexes of Fe, Zn, Mn, and Cu with soils. Soil Science Soc. Am. J. 33(1), 86-91.
  30. Rashed, M., Hoque, T., Jahangir, M., Hashem, M., 2021. Manganese as a micronutrient in agriculture: crop requirement and management. J. Environ. Sci. Nat. Resour. 12, 225-242.
  31. Rengel, Z., 2015. Availability of Mn, Zn and Fe in the rhizosphere. J. Soil Sci. Plant Nutr.15(2), 397-409.
  32. Reuter, D.J., Alston, A.M., McFarlane, J.D., 1988. Occurrence and Correction of Manganese Deficiency in Plants, in: Graham, R.D., Hannam, R.J., Uren, N.C. (Eds.), Manganese in Soils and Plants: Proceedings of the International Symposium on `Manganese in Soils and Plants’ Held at the Waite Agricultural Research Institute. The University of Adelaide, Glen Osmond, South Australia, August 22-26, 1988 as an Australian Bicentennial Event. Springer Netherlands, Dordrecht. 205-224.
  33. Saquee, F.S., Diakite, S., Kavhiza, N.J., Pakina, E., Zargar, M., 2023. The efficacy of micronutrient fertilizers on the yield formulation and quality of wheat grains. Agronomy. 13(2), 566.
  34. Schmidt, S.B., Husted, S., 2019. The Biochemical properties of manganese in plants. Plants 8(10), 381.
  35. Sorkina, T.A., Polyakov, A.Yu., Kulikova, N.A., Goldt, A.E., Philippova, O.I., Aseeva, A.A., Veligzhanin, A.A., Zubavichus, Y.V., Pankratov, D.A., Goodilin, E.A., Perminova, I.V., 2014. Nature-inspired soluble iron-rich humic compounds: new look at the structure and properties. J. Soils Sediments. 14, 261-268.
  36. Thongboonkerd, V., Semangoen, T., Chutipongtanate, S., 2006. Factors determining types and morphologies of calcium oxalate crystals: molar concentrations, buffering, pH, stirring and temperature. Chim. Acta. 367(1-2), 120-131.
  37. Tkachenko, V., Marzban, N., Vogl, S., Filonenko, S., Antonietti, M., 2023. Chemical insights into the base-tuned hydrothermal treatment of side stream biomasses. Sustainable Energy Fuels. 7(3), 769-777.
  38. Vangeel, T., Neiva, D.M., Quilhó, T., Costa, R.A., Sousa, V., Sels, B.F., Pereira, H., 2023. Tree bark characterization envisioning an integrated use in a biorefinery. Biomass Convers. Biorefin. 13, 2029-2043.
  39. Yang, F., Antonietti, M., 2020. Artificial Humic Acids: sustainable materials against Climate Change. Adv. Sci.7(5), 1902992.
  40. Yang, F., Fu, Q., Antonietti, M., 2023. Anthropogenic, carbon-reinforced soil as a living engineered material. Chem. 123(5), 2420-2435.
  41. Zanin, L., Tomasi, N., Cesco, S., Varanini, Z., Pinton, R., 2019. Humic substances contribute to plant iron nutrition acting as chelators and biostimulants. Front. Plant Sci. 10, 675.