New trends in microbial lipid-based biorefinery for fermentative bioenergy production from lignocellulosic biomass

Document Type : Review Paper


Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.


Using oleaginous microbial lipid-based biorefinery from lignocellulosic biomass (LCB) to produce fermentative bioenergy (i.e., biodiesel) represents an innovative second-generation fuel production technology. These lipids are predominantly intracellular triglycerides that accumulate through the metabolism of sugars in fermentation following pretreatment and enzymatic hydrolysis of LCB. This review investigates the recent advances in the microbial lipid production from LCB, focusing on the factors influencing the lead microbial lipid producers, different pretreatment methods (i.e., physical, chemical, biological, and combined pretreatment), enzymatic hydrolysis approaches, novel bioprocessing strategies (i.e., microbes-specific and fermentation model specific), and engineering techniques of the oleaginous microbes (i.e., genetic and metabolic alterations). The study demonstrates that oleaginous yeasts can synthesize significantly higher quantities of lipids when incorporated into the system, known as separated hydrolysis and lipid production, following various combined pretreatment methods. Interestingly, CRISPR is found to be the most suitable way of engineering microbes genetically and metabolically for increased lipid synthesis. The study also explores economically viable strategies for fermentative lipid production, addressing associated challenges, and outlines future directions, including comprehensive techno-economic and life cycle assessments. This review offers invaluable insights into microbial lipid production from LCB, highlighting the potential for significant technological and environmental enhancements through ongoing research and development efforts. 

Graphical Abstract

New trends in microbial lipid-based biorefinery for fermentative bioenergy production from lignocellulosic biomass


  • Chemical factors, pretreatment, and enzymatic hydrolysis in lipid synthesis are studied. 
  • The cellular and molecular mechanisms of intracellular lipid metabolism are analyzed.
  • Novel fermentation strategies for increased lipid production are scrutinized.
  • Genetic and metabolic engineering for increased lipid biosynthesis is analyzed.
  • The routes of converting microbial lipids into novel fermentative products are discussed.


  1. Abdullah-Al-Mamun, M., Hasan, M.J., Azad, S.A., Uddin, M.G., Shahriyar, S., Mondal, K.J., 2016. Evaluation of potential probiotic characteristics of isolated lactic acid bacteria from goat milk. Br. Biotechnol. J. 14(2), 1-7.
  2. Achanta, L.B., Rae, C.D., 2017. β-Hydroxybutyrate in the brain: one molecule, multiple mechanisms. Neurochem. Res. 42, 35-49.
  3. Agrawal, R., Verma, A., Singhania, R.R., Varjani, S., Di Dong, C., Patel, A.K., 2021. Current understanding of the inhibition factors and their mechanism of action for the lignocellulosic biomass hydrolysis. Bioresour. Technol. 332, 125042.
  4. Al Azad, S., Abdullah-Al-Mamun, M., Mondal, K.J., Alim, S. and Rahmand, M.M., 2016. Range of various fungal infections to local and hybrid varieties of non-germinated lentil seed in Bangladesh. J. Biosci. Agric. Res. 9(01), 775-781.
  5. Al-Battashi, H.S., Annamalai, N., Sivakumar, N., Al-Bahry, S., Tripathi, B.N., Nguyen, Q.D., Gupta, V.K., 2019. Lignocellulosic biomass (LCB): a potential alternative biorefinery feedstock for polyhydroxyalkanoates production. Rev. Environ. Sci. Biotechnol. 18, 183-205.
  6. Ali, S.S., Elsamahy, T., Abdelkarim, E.A., Sobhy, M., Srinivasan, G.R., Madadi, M., Sun, J., 2024. 3-Life cycle assessment of bioenergy production from biomass residue. Renewable Energy-Water-Environ. Nexus. 81-112.
  7. Alves, E., Simoes, A., Domingues, M.R., 2021. Fruit seeds and their oils as promising sources of value-added lipids from agro-industrial byproducts: oil content, lipid composition, lipid analysis, biological activity and potential biotechnological applications. Crit. Rev. Food Sci. Nutr. 61(8), 1305-1339.
  8. Annamalai, N., Sivakumar, N., Oleskowicz-Popiel, P., 2018. Enhanced production of microbial lipids from waste office paper by the oleaginous yeast Cryptococcus curvatus. 217, 420-426.
  9. Anthony, W.E., Carr, R.R., DeLorenzo, D.M., Campbell, T.P., Shang, Z., Foston, M., Moon, T.S., Dantas, G., 2019. Development of Rhodococcus opacus as a chassis for lignin valorization and bioproduction of high-value compounds. Biotechnol. Biofuels. 12, 1-14.
  10. Aouida, M., Li, L., Mahjoub, A., Alshareef, S., Ali, Z., Piatek, A., Mahfouz, M.M., 2015. Transcription activator-like effector nucleases mediated metabolic engineering for enhanced fatty acids production in Saccharomyces cerevisiae. J. Biosci. Bioeng. 120(4), 364-371.
  11. Arhar, S., Gogg-Fassolter, G., Ogrizović, M., Pačnik, K., Schwaiger, K., Žganjar, M., Petrovič, U., Natter, K., 2021. Engineering of Saccharomyces cerevisiae for the accumulation of high amounts of triacylglycerol. Microb. Cell Fact. 20, 1-15.
  12. Arora, N., Patel, A., Mehtani, J., Pruthi, P.A., Pruthi, V., Poluri, K.M., 2019. Co-culturing of oleaginous microalgae and yeast: paradigm shift towards enhanced lipid productivity. Environ. Sci. Pollut. Res. 26, 16952-16973.
  13. Arous, F., Jaouani, A., Mechichi, T., 2019. Chapter 8-oleaginous microorganisms for simultaneous biodiesel production and wastewater treatment: a review. Microb. Wastewater Treat. 153-174.
  14. Ashokkumar, V., Flora, G., Venkatkarthick, R., SenthilKannan, K., Kuppam, C., Stephy, G.M., Kamyab, H., Chen, W.H., Thomas, J., Ngamcharussrivichai, C., 2022. Advanced technologies on the sustainable approaches for conversion of organic waste to valuable bioproducts: emerging circular bioeconomy perspective. Fuel. 324, 124313.
  15. Athenaki, M., Gardeli, C., Diamantopoulou, P., Tchakouteu, S.S., Sarris, D., Philippoussis, A., Papanikolaou, S., 2018. Lipids from yeasts and fungi: physiology, production and analytical considerations. J. Appl. Microbiol. 124(2), 336-367.
  16. Awad, D., Younes, S., Glemser, M., Wagner, F.M., Schenk, G., Mehlmer, N., Brueck, T., 2020. Towards high-throughput optimization of microbial lipid production: from strain development to process monitoring. Sustainable Energy Fuels. 4(12), 5958-5969.
  17. Azadbakht, N., Doosti, A., Jami, M.S., 2022. CRISPR/Cas9-mediated LINC00511 knockout strategies, increased apoptosis of breast cancer cells via suppressing antiapoptotic genes. Biol. Proced. Online. 24(1), 1-15.
  18. Bai, W., Anthony, W.E., Hartline, C.J., Wang, S., Wang, B., Ning, J., Hsu, F.F., Dantas, G., Zhang, F., 2022. Engineering diverse fatty acid compositions of phospholipids in Escherichia coli. Metab. Eng. 74, 11-23.
  19. Balan, V. ed., 2019. Microbial lipid production: methods and protocols. Humana Press.
  20. Bao, W., Li, Z., Wang, X., Gao, R., Zhou, X., Cheng, S., Men, Y., Zheng, L., 2021. Approaches to improve the lipid synthesis of oleaginous yeast Yarrowia lipolytica: a review. Renew. Sust. Energy Rev. 149, 111386.
  21. Basak, B., Kumar, R., Bharadwaj, A.S., Kim, T.H., Kim, J.R., Jang, M., Oh, S.E., Roh, H.S., Jeon, B.H., 2023. Advances in physicochemical pretreatment strategies for lignocellulose biomass and their effectiveness in bioconversion for biofuel production. Bioresour. Technol. 369, 128413.
  22. Biswas, P., Dey, D., Biswas, P.K., Rahaman, T.I., Saha, S., Parvez, A., Khan, D.A., Lily, N.J., Saha, K., Sohel, M., Hasan, M.M., 2022. A comprehensive analysis and anti-cancer activities of quercetin in ROS-mediated cancer and cancer stem cells. Int. J. Mol. Sci. 23(19), 11746.
  23. Blazeck, J., Hill, A., Liu, L., Knight, R., Miller, J., Pan, A., Otoupal, P., Alper, H.S., 2014. Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat. Commun. 5(1), 3131.
  24. Bradley, T., Maga, D., 2019. Life cycle analysis of producing microbial lipids and biodiesel: comparison with plant lipids. Microb. Lipid Prod. Methods Protoc. 195-214.
  25. Bressanin, J.M., Klein, B.C., Chagas, M.F., Watanabe, M.D.B., Sampaio, I.L.D.M., Bonomi, A., Morais, E.R.D., Cavalett, O., 2020. Techno-economic and environmental assessment of biomass gasification and Fischer-Tropsch synthesis integrated to sugarcane biorefineries. Energies. 13(17), 4576.
  26. Cai, H., Li, Y., Zhao, M., Fu, G., Lai, J., Feng, F., 2015. Immobilization, regiospecificity characterization and application of Aspergillus oryzae lipase in the enzymatic synthesis of the structured lipid 1, 3-dioleoyl-2-palmitoylglycerol. PLoS One. 10(7), 0133857.
  27. Caporusso, A., De Bari, I., Liu zzi, F., Albergo, R., Valerio, V., Viola, E., Pietrafesa, R., Siesto, G., Capece, A., 2023. Optimized conversion of wheat straw into single cell oils by Yarrowia lipolytica and Lipomyces tetrasporus and synthesis of advanced biofuels. Renewable Energy. 202, 184-195.
  28. Caporusso, A., Giuliano, A., Liuzzi, F., De Bari, I., 2022. Techno-economic analysis of a lignocellulosic biorefinery producing microbial oils by oleaginous yeasts. Chem. Eng. Trans. 92, 637-642.
  29. Capusoni, C., Rodighiero, V., Cucchetti, D., Galafassi, S., Bianchi, D., Franzosi, G., Compagno, C., 2017. Characterization of lipid accumulation and lipidome analysis in the oleaginous yeasts Rhodosporidium azoricum and Trichosporon oleaginosus. Bioresour. Technol., 238, 281-289.
  30. Carsanba, E., Papanikolaou, S., Erten, H., 2018. Production of oils and fats by oleaginous microorganisms with an emphasis given to the potential of the nonconventional yeast Yarrowia lipolytica. Crit. Rev. Biotechnol. 38(8), 1230-1243.
  31. Castanheiro, J.E., Vital, J., Fonseca, I.M., Ramos, A.M., 2020. Glycerol conversion into biofuel additives by acetalization with pentanal over heteropolyacids immobilized on zeolites. Catal. Today. 346, 76-80.
  32. Castro, A.R., Rocha, I., Alves, M.M., Pereira, M.A., 2016. Rhodococcus opacus B4: a promising bacterium for production of biofuels and biobased chemicals. Amb Express. 6(1), 1-11.
  33. Chandel, A.K., Forte, M.B., Gonçalves, I.S., Milessi, T.S., Arruda, P.V., Carvalho, W., Mussatto, S.I., 2021. Brazilian biorefineries from second generation biomass: critical insights from industry and future perspectives. Biofuels Bioprod. Bioref. 15(4), 1190-1208.
  34. Chang, L., Chen, H., Yang, B., Chen, H., Chen, W., 2023. Redistributing carbon flux by impairing saccharide synthesis to enhance lipid yield in oleaginous fungus Mortierella alpina. ACS Synth. Biol. 12(6), 1750-1760.
  35. Chen HZ, Liu ZH., 2017. Enzymatic hydrolysis of lignocellulosic biomass from low to high solids loading. Eng. Life Sci. 17(5), 489-99.
  36. Chen, G., Zhao, L., Qi, Y., 2015. Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: a critical review. Appl. Energy. 137, 282-291.
  37. Chen, J., Li, J., Zhang, X., Tyagi, R.D., Dong, W., 2018. Ultra-sonication application in biodiesel production from heterotrophic oleaginous microorganisms. Crit. Rev. Biotechnol. 38(6), 902-917.
  38. Chen, Z., Chen, L., Khoo, K.S., Gupta, V.K., Sharma, M., Show, P.L., Yap, P.S., 2023. Exploitation of lignocellulosic-based biomass biorefinery: a critical review of renewable bioresource, sustainability and economic views. Biotechnol. Adv. 69, 108265.
  39. Cordell, W.T., Avolio, G., Takors, R., Pfleger, B.F., 2023. Milligrams to kilograms: making microbes work at scale. Trends Biotechnol. 41(11), 1442-1457.
  40. Dellero, Y., Maës, C., Morabito, C., Schuler, M., Bournaud, C., Aiese Cigliano, R., Maréchal, E., Amato, A., Rébeillé, F., 2020. The zoospores of the thraustochytrid Aurantiochytrium limacinum: transcriptional reprogramming and lipid metabolism associated to their specific functions. Environ. Microbiol. 22(5), 1901-1916.
  41. Denardi-Souza, T., Massarolo, K.C., Tralamazza, S.M., Badiale-Furlong, E., 2018. Monitoring of fungal biomass changed by Rhizopus oryzae in relation to amino acid and essential fatty acids profile in soybean meal, wheat and rice. CyTA-J. Food. 16(1), 156-164.
  42. Deng, Z., Xia, A., Liao, Q., Zhu, X., Huang, Y., Fu, Q., 2019. Laccase pretreatment of wheat straw: effects of the physicochemical characteristics and the kinetics of enzymatic hydrolysis. Biotechnol. Biofuels. 12, 159.
  43. Dessie, W., Zhang, W., Xin, F., Dong, W., Zhang, M., Ma, J., Jiang, M., 2018. Succinic acid production from fruit and vegetable wastes hydrolyzed by on-site enzyme mixtures through solid state fermentation. Bioresour. Technol. 247, 1177-1180.
  44. Dhamodharan, K., Ahlawat, S., Kaushal, M., Rajendran, K., 2020. 25-Economics and cost analysis of waste biorefineries. Refining Biomass Residues for Sustainable Energy and Bioproducts. Academic Press. 545-565.
  45. Di Fidio, N., Dragoni, F., Antonetti, C., De Bari, I., Galletti, A.M.R., Ragaglini, G., 2020. From paper mill waste to single cell oil: enzymatic hydrolysis to sugars and their fermentation into microbial oil by the yeast Lipomyces starkeyi. Bioresour. Technol. 315, 123790.
  46. Diamantopoulou, P., Stoforos, N.G., Xenopoulos, E., Sarris, D., Psarianos, D., Philippoussis, A., Papanikolaou, S., 2020. Lipid production by Cryptococcus curvatus growing on commercial xylose and subsequent valorization of fermentation waste-waters for the production of edible and medicinal mushrooms. Biochem. Eng. J. 162, 107706.
  47. Donini, E., Firrincieli, A., Cappelletti, M., 2021. Systems biology and metabolic engineering of Rhodococcus for bioconversion and biosynthesis processes. Folia Microbiol. 66(5), 701-713.
  48. Dourou, M., Aggeli, D., Papanikolaou, S., Aggelis, G., 2018. Critical steps in carbon metabolism affecting lipid accumulation and their regulation in oleaginous microorganisms. Appl. Microbiol. Biotechnol. 102, 2509-2523.
  49. Dzurendova, S., Zimmermann, B., Kohler, A., Tafintseva, V., Slany, O., Certik, M. and Shapaval, V., 2020. Microcultivation and FTIR spectroscopy-based screening revealed a nutrient-induced co-production of high-value metabolites in oleaginous Mucoromycota fungi. PloS one. 15(6), p.e0234870.
  50. Ebadian, M., van Dyk, S., McMillan, J.D., Saddler, J., 2020. Biofuels policies that have encouraged their production and use: an international perspective. Energy Policy. 147, 111906.
  51. Elfeky, N., Elmahmoudy, M., Zhang, Y., Guo, J., Bao, Y., 2019. Lipid and carotenoid production by Rhodotorula glutinis with a combined cultivation mode of nitrogen, sulfur, and aluminium stress. Appl. Sci. 9(12), 2444.
  52. Fang, L., Fan, J., Luo, S., Chen, Y., Wang, C., Cao, Y., Song, H., 2021. Genome-scale target identification in Escherichia coli for high-titer production of free fatty acids. Nat. Commun. 12(1), 4976.
  53. Fang, W., Zhang, P., Zhang, X., Zhu, X., van Lier, J.B., Spanjers, H., 2018. White rot fungi pretreatment to advance volatile fatty acid production from solid-state fermentation of solid digestate: efficiency and mechanisms. Energy. 162, 534-541.
  54. Fathy, W., Essawy, E., Tawfik, E., Khedr, M., Abdelhameed, M.S., Hammouda, O., Elsayed, K., 2021. Recombinant overexpression of the Escherichia coli acetyl‐CoA carboxylase gene in Synechocystis boosts lipid production. J. Basic Microbiol. 61(4), 330-338.
  55. Fazili, A.B.A., Shah, A.M., Zan, X., Naz, T., Nosheen, S., Nazir, Y., Ullah, S., Zhang, H., Song, Y., 2022. Mucor circinelloides: a model organism for oleaginous fungi and its potential applications in bioactive lipid production. Microb. Cell Fact. 21(1), 1-19.
  56. Friedlander, J., Tsakraklides, V., Kamineni, A., Greenhagen, E.H., Consiglio, A.L., MacEwen, K., Crabtree, D.V., Afshar, J., Nugent, R.L., Hamilton, M.A., Joe Shaw, A., 2016. Engineering of a high lipid producing Yarrowia lipolytica Biotechnol. Biofuels. 9, 77.
  57. Gálvez-Martos, J.L., Greses, S., Magdalena, J.A., Iribarren, D., Tomás-Pejó, E., González-Fernández, C., 2021. Life cycle assessment of volatile fatty acids production from protein-and carbohydrate-rich organic wastes. Bioresour. Technol. 321, 124528.
  58. Garcia-Ochoa, F., Vergara, P., Wojtusik, M., Gutiérrez, S., Santos, V.E., Ladero, M., Villar, J.C., 2021. Multi-feedstock lignocellulosic biorefineries based on biological processes: an overview. Ind. Crops Prod. 172, 114062.
  59. Girardi Piva, G., Casalta, E., Legras, J.L., Tesnière, C., Sablayrolles, J.M., Ferreira, D., Ortiz-Julien, A., Galeote, V., Mouret, J.R., 2022. Characterization and role of sterols in Saccharomyces cerevisiae during white wine alcoholic fermentation. Fermentation. 8(2), 90.
  60. Gönen, Ç., Deveci, E.Ü., Akter Önal, N., 2021. Evaluation of biomass pretreatment to optimize process factors for different organic acids via Box-Behnken RSM method. J. Mater. Cycles Waste Manage. 23(5), 2016-2027.
  61. Gouda, M.K., Omar, S.H., Aouad, L.M., 2008. Single cell oil production by Gordonia DG using agro-industrial wastes. World J. Microbiol. Biotechnol. 24, 1703-1711.
  62. Guo, M., Cheng, S., Chen, G., Chen, J., 2019. Improvement of lipid production in oleaginous yeast Rhodosporidium toruloides by ultraviolet mutagenesis. Life Sci. 19(8), 548-556.
  63. Haldar, D., Shabbirahmed, A.M., Mahanty, B., 2023. Multivariate regression and artificial neural network modelling of sugar yields from acid pretreatment and enzymatic hydrolysis of lignocellulosic biomass. Bioresour. Technol. 370, 128519.
  64. Hao, G., Chen, H., Gu, Z., Zhang, H., Chen, W., Chen, Y.Q., 2015. Metabolic engineering of Mortierella alpina for arachidonic acid production with glycerol as carbon source. Microb. Cell Fact. 14(1), 205.
  65. Hernández, M.A., Comba, S., Arabolaza, A., Gramajo, H., Alvarez, H.M., 2015. Overexpression of a phosphatidic acid phosphatase type 2 leads to an increase in triacylglycerol production in oleaginous Rhodococcus Appl. Microbiol. Biotechnol. 99, 2191-2207.
  66. Hodge, D.B., Karim, M.N., Schell, D.J., McMillan, J.D., 2008. Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocellulose. Bioresour. Technol. 99(18), 8940-8948.
  67. Hosseinzadeh-Bandbafha, H., Tabatabaei, M., Aghbashlo, M., Hoang, A.T., Yang, Y., Salehi Jouzani, G., 2020. Life cycle analysis for biodiesel production from oleaginous fungi. Fungi Fuel Biotechnol. 199-225.
  68. Hu, Q., Huang, D., Li, A., Hu, Z., Gao, Z., Yang, Y., Wang, C., 2021. Transcriptome-based analysis of the effects of salicylic acid and high light on lipid and astaxanthin accumulation in Haematococcus pluvialis. Biotechnol. Biofuels. 14(1), 82.
  69. Hu, X.C., Ren, L.J., Chen, S.L., Zhang, L., Ji, X.J., Huang, H., 2015. The roles of different salts and a novel osmotic pressure control strategy for improvement of DHA production by Schizochytrium Bioprocess Biosyst. Eng. 38, 2129-2136.
  70. Jagadevan, S., Banerjee, A., Banerjee, C., Guria, C., Tiwari, R., Baweja, M., Shukla, P., 2018. Recent developments in synthetic biology and metabolic engineering in microalgae towards biofuel production. Biotechnol. Biofuels. 11, 185.
  71. Jeucken, A., Molenaar, M.R., van de Lest, C.H., Jansen, J.W., Helms, J.B., Brouwers, J.F., 2019. A comprehensive functional characterization of Escherichia coli lipid genes. Cell reports. 27(5), 1597-1606.
  72. Ji, X.J., Ledesma-Amaro, R., 2020. Microbial lipid biotechnology to produce polyunsaturated fatty acids. Trends Biotechnol. 38(8), 832-834.
  73. Jiao, X., Lyu, L., Zhang, Y., Huang, Q., Zhou, R., Wang, S., Wang, S., Zhang, S., Zhao, Z.K., 2021. Reduction of lipid-accumulation of oleaginous yeast Rhodosporidium toruloides through CRISPR/Cas9-mediated inactivation of lipid droplet structural proteins. FEMS Microbiol. Lett. 368(16), fnab111.
  74. Jin, M., Slininger, P.J., Dien, B.S., Waghmode, S., Moser, B.R., Orjuela, A., da Costa Sousa, L., Balan, V., 2015. Microbial lipid-based lignocellulosic biorefinery: feasibility and challenges. Trends Biotechnol. 33(1), 43-54.
  75. Jones, A.D., Boundy-Mills, K.L., Barla, G.F., Kumar, S., Ubanwa, B., Balan, V., 2019. Microbial lipid alternatives to plant lipids. Microb. Lipid Prod. Methods Protoc. 1-32.
  76. Joo, J., Lee, S.J., Yoo, H.Y., Kim, Y., Jang, M., Lee, J., Han, S.O., Kim, S.W., Park, C., 2016. Improved fermentation of lignocellulosic hydrolysates to 2, 3-butanediol through investigation of effects of inhibitory compounds by Enterobacter aerogenes. Chem. Eng. J. 306, 916-924.
  77. Jothibasu, K., Dhar, D.W., Rakesh, S., 2021. Recent developments in microalgal genome editing for enhancing lipid accumulation and biofuel recovery. Biomass Bioenergy. 150, 106093.
  78. Kalyani, D.C., Zamanzadeh, M., Müller, G., Horn, S.J., 2017. Biofuel production from birch wood by combining high solid loading simultaneous saccharification and fermentation and anaerobic digestion. Appl. Energy. 193, 210-219.
  79. Karayannis, D., Papanikolaou, S., Vatistas, C., Paris, C., Chevalot, I., 2023. Yeast lipid produced through glycerol conversions and its use for enzymatic synthesis of amino acid-based biosurfactants. Int. J. Mol. Sci. 24(1), 714.
  80. Khan, M.I., Shin, J.H., Kim, J.D., 2018. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. 17(1), 1-21.
  81. Kim, H.M., Chae, T.U., Choi, S.Y., Kim, W.J., Lee, S.Y., 2019a. Engineering of an oleaginous bacterium for the production of fatty acids and fuels. Nat. Chem. Biol. 15(7), 721-729.
  82. Kim, J.W., Lee, Y.G., Kim, S.J., Jin, Y.S., Seo, J.H., 2019b. Deletion of glycerol-3-phosphate dehydrogenase genes improved 2, 3-butanediol production by reducing glycerol production in pyruvate decarboxylase-deficient Saccharomyces cerevisiae. J. Biotechnol. 304, 31-37.
  83. Konzock, O., Zaghen, S., Norbeck, J., 2021. Tolerance of Yarrowia lipolytica to inhibitors commonly found in lignocellulosic hydrolysates. BMC Microbiol. 21(1), 1-10.
  84. Koppram, R., Tomás-Pejó, E., Xiros, C., Olsson, L., 2014. Lignocellulosic ethanol production at high-gravity: challenges and perspectives. Trends Biotechnol. 32(1), 46-53.
  85. Kumar, L.R., Kaur, R., Yellapu, S.K., Zhang, X., Tyagi, R.D., 2019. Chapter 27-Biodiesel production from oleaginous microorganisms with wastes as raw materials. In Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels (Second Edition). 661-690.
  86. Kumar, R., Kim, T.H., Basak, B., Patil, S.M., Kim, H.H., Ahn, Y., Yadav, K.K., Cabral-Pinto, M.M., Jeon, B.H., 2022. Emerging approaches in lignocellulosic biomass pretreatment and anaerobic bioprocesses for sustainable biofuels production. J. Cleaner Prod. 333, 130180.
  87. Laddha, H., Pawar, P.R., Prakash, G., 2021. Bioconversion of waste acid oil to docosahexaenoic acid by integration of “ex novo’’ and “de novo’’ fermentation in Aurantiochytrium limacinum. Bioresour. Technol. 332, 125062.
  88. Law, A.W.S., Rincón, F.R., van de Vossenberg, J., Al Saffar, Z., Welles, L., Rene, E.R., Vazquez, C.L., 2023. Volatile fatty acid production from food waste: the effect of retention time and lipid content. Bioresour. Technol. 367, 128298.
  89. Le, R.K., Wells Jr, T., Das, P., Meng, X., Stoklosa, R.J., Bhalla, A., Hodge, D.B., Yuan, J.S., Ragauskas, A.J., 2017. Conversion of corn stover alkaline pre-treatment waste streams into biodiesel via Rhodococci. RSC Adv. 7(7), 4108-4115.
  90. Ledesma-Amaro, R., Lazar, Z., Rakicka, M., Guo, Z., Fouchard, F., Crutz-Le Coq, A.M., Nicaud, J.M., 2016. Metabolic engineering of Yarrowia lipolytica to produce chemicals and fuels from xylose. Metab. Eng. 38, 115-124.
  91. Li, W., Wu, H., Li, M., San, K.Y., 2018. Effect of NADPH availability on free fatty acid production in Escherichia coli. Biotechnol. Bioeng. 115(2), 444-452.
  92. Liu, H., Marsafari, M., Wang, F., Deng, L., Xu, P., 2019. Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica. Metab. Eng. 56, 60-68.
  93. Liu, H., Xiao, H., Yin, B., Zu, Y., Liu, H., Fu, B., Ma, H., 2016. Enhanced volatile fatty acid production by a modified biological pretreatment in anaerobic fermentation of waste activated sludge. Chem. Eng. J. 284, 194-201.
  94. Liu, H.J., Liu, D.H., Zhong, J.J., 2003. Novel fermentation strategy for enhancing glycerol production by Candidakrusei. Biotechnol. Prog. 19(5), 1615-1619.
  95. Liu, J., Liu, M., Pan, Y., Shi, Y., Hu, H., 2022. Metabolic engineering of the oleaginous alga Nannochloropsis for enriching eicosapentaenoic acid in triacylglycerol by combined pulling and pushing strategies. Metab. Eng. 69, 163-174.
  96. Liu, X., Yin, Y., Wu, J., Liu, Z., 2014. Structure and mechanism of an intramembrane liponucleotide synthetase central for phospholipid biosynthesis. Nat. Commun. 5(1), 4244.
  97. Liu, X., Zhang, Y., Liu, H., Jiao, X., Zhang, Q., Zhang, S., Zhao, Z.K., 2019. RNA interference in the oleaginous yeast Rhodosporidium toruloides. FEMS Yeast Res. 19(3), foz031.
  98. Llamas, M., Magdalena, J.A., González‐Fernández, C., Tomás‐Pejó, E., 2020. Volatile fatty acids as novel building blocks for oil‐based chemistry via oleaginous yeast fermentation. Biotechnol. Bioeng. 117(1), 238-250.
  99. Longati, A.A., Campani, G., Furlan, F.F., de Campos Giordano, R., Miranda, E.A., 2022. Microbial oil and biodiesel production in an integrated sugarcane biorefinery: techno-economic and life cycle assessment. J. Cleaner Prod. 379, 134487.
  100. Lopes, H.J.S., Bonturi, N., Kerkhoven, E.J., Miranda, E.A., Lahtvee, P.J., 2020. C/N ratio and carbon source-dependent lipid production profiling in Rhodotorula toruloides. Appl. Microbiol. Biotechnol. 104, 2639-2649.
  101. Lozada, N.J.H., Simmons, T.R., Xu, K., Jindra, M.A., Pfleger, B.F., 2020. Production of 1-octanol in Escherichia coli by a high flux thioesterase route. Metab. Eng. 61, 352-359.
  102. Lu, L., Shen, X., Sun, X., Yan, Y., Wang, J., Yuan, Q., 2022. CRISPR-based metabolic engineering in non-model microorganisms. Curr. Opin. Biotechnol. 75, 102698.
  103. Lu, Y., Wang, Y., Xu, G., Chu, J., Zhuang, Y., Zhang, S., 2010. Influence of high solid concentration on enzymatic hydrolysis and fermentation of steam-exploded corn stover biomass. Appl. Biochem. Biotechnol. 160, 360-369.
  104. Lupette, J., Maréchal, E., 2020. The puzzling conservation and diversification of lipid droplets from bacteria to eukaryotes. Symbiosis: Cellular, Molecular, Medical and Evolutionary Aspects. 281-334.
  105. Madadi, M., Elsayed, M., Song, G., Bakr, M.M., Qin, Y., Sun, F., Abomohra, A., 2023a. Holistic lignocellulosic biorefinery approach for dual production of bioethanol and xylonic acid coupled with efficient dye removal. Renew. Sust. Energy Rev. 185, 113605.
  106. Madadi, M., Song, G., Gupta, V.K., Aghbashloh, M., Sun, C., Sun, F., Tabatabaei, M., 2023b. Non-catalytic proteins as promising detoxifiers in lignocellulosic biomass pretreatment: unveiling the mechanism for enhanced enzymatic hydrolysis. Green Chem. 25(18), 7141-7156.
  107. Madadi, M., Song, G., Karimi, K., Zhu, D., Elsayed, M., Sun, F., Abomohra, A., 2022a. One-step lignocellulose fractionation using acid/pentanol pretreatment for enhanced fermentable sugar and reactive lignin production with efficient pentanol retrievability. Bioresour. Technol. 359, 127503.
  108. Madadi, M., Song, G., Sun, F., Sun, C., Xia, C., Zhang, E., Karimi, K., Tu, M., 2022c. Positive role of non-catalytic proteins on mitigating inhibitory effects of lignin and enhancing cellulase activity in enzymatic hydrolysis: application, mechanism, and prospective. Environ. Res. 114291.
  109. Madadi, M., Wang, Y., Zhang, R., Hu, Z., Gao, H., Zhan, D., Yu, H., Yang, Q., Wang, Y., Tu, Y., Xia, T., 2022b. Integrating mild chemical pretreatments with endogenous protein supplement for complete biomass saccharification to maximize bioethanol production by enhancing cellulases adsorption in novel bioenergy Amaranthus. Ind. Crops Prod. 177, 114471.
  110. Madadi, M., Zhao, K., Wang, Y., Wang, Y., Tang, S.W., Xia, T., Jin, N., Xu, Z., Li, G., Qi, Z., Peng, L., 2021. Modified lignocellulose and rich starch for complete saccharification to maximize bioethanol in distinct polyploidy potato straw. Carbohydr. Polym. 265, 118070.
  111. Mahajan, D., Sengupta, S., Sen, S., 2019. Strategies to improve microbial lipid production: optimization techniques. Biocatal. Agric. Biotechnol. 22, 101321.
  112. Mahmood, Z., Singh, L.K., 2023. Rhodococcus opacus high-cell-density batch cultivation with a bagasse hydrolysate for possible triacylglycerol synthesis. Biomed. Biotechnol. Res. J. 7(2), 209-217.
  113. Mahmud, S., Haider, A.R., Shahriar, S.T., Salehin, S., Hasan, A.M., Johansson, M.T., 2022. Bioethanol and biodiesel blended fuels-feasibility analysis of biofuel feedstocks in Bangladesh. Energy Rep. 8, 1741-1756.
  114. Maleki, N., Eiteman, M.A., 2017. Recent progress in the microbial production of pyruvic acid. Fermentation. 3(1), 8.
  115. Manghwar, H., Li, B., Ding, X., Hussain, A., Lindsey, K., Zhang, X., Jin, S., 2020. CRISPR/Cas systems in genome editing: methodologies and tools for sgRNA design, off‐target evaluation, and strategies to mitigate off‐target effects. Adv. Sci. 7(6), 1902312.
  116. Marella, E.R., Holkenbrink, C., Siewers, V., Borodina, I., 2018. Engineering microbial fatty acid metabolism for biofuels and biochemicals. Curr. Opin. Biotechnol. 50, 39-46.
  117. Marić, B., Pavlić, B., Čolović, D., Abramović, B., Zeković, Z., Bodroža-Solarov, M., Ilić, N., Teslić, N., 2020. Recovery of high-content ω–3 fatty acid oil from raspberry (Rubus idaeus) seeds: chemical composition and functional quality. LWT. 130, 109627.
  118. Matsumoto, T., Aw ai, K., 2020. Adaptations in chloroplast membrane lipid synthesis from synthesis in ancestral cyanobacterial endosymbionts. Biochem. Biophys. Res. Commun. 528(3), 473-477.
  119. Maurya, D.P., Singla, A., Negi, S., 2015. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech. 5, 597-609.
  120. Maza, D.D., Viñarta, S.C., Su, Y., Guillamón, J.M., Aybar, M.J., 2020. Growth and lipid production of Rhodotorula glutinis R4, in comparison to other oleaginous yeasts. J. Biotechnol. 310, 21-31.
  121. Mondal, S., Halder, S.K., Mondal, K.C., 2023. State-of-art engineering approaches for ameliorated production of microbial lipid. Syst. Microbiol. Biomanuf. 4, 20-38.
  122. Morshed, A.H., Al Azad, S., Mia, M.A.R., Uddin, M.F., Ema, T.I., Yeasin, R.B., Srishti, S.A., Sarker, P., Aurthi, R.Y., Jamil, F., Samia, N.S.N., 2023. Oncoinformatic screening of the gene clusters involved in the HER2-positive breast cancer formation along with the in silico pharmacodynamic profiling of selective long-chain omega-3 fatty acids as the metastatic antagonists. Mol. Divers. 27(6), 2651-2672.
  123. Nair, A.S., Sivakumar, N., 2022. Biodiesel production by oleaginous bacteria Rhodococcus opacus PD630 using waste paper hydrolysate. Biomass Convers. Biorefin. 13, 15827-15836.
  124. Nakhate, S.P., Gupta, R.K., Poddar, B.J., Singh, A.K., Tikariha, H., Pandit, P.D., Khardenavis, A.A., Purohit, H.J., 2021. Influence of lignin level of raw material on anaerobic digestion process in reorganization and performance of microbial community. Int. J. Environ. Sci. Technol. 19, 1819-1836.
  125. Nanda, S., Reddy, S.N., Mitra, S.K., Kozinski, J.A., 2016. The progressive routes for carbon capture and sequestration. Energy Sci. Eng. 4(2), 99-122.
  126. Nosheen, S., Naz, T., Yang, J., Hussain, S.A., Fazili, A.B.A., Nazir, Y., Li, S., Mohamed, H., Yang, W., Mustafa, K., Song, Y., 2021. Role of Snf-β in lipid accumulation in the high lipid‐producing fungus Mucor circinelloides Microb. Cell Fact. 20(1), 1-11.
  127. Novy, V., Brunner, B., Nidetzky, B., 2018. L-Lactic acid production from glucose and xylose with engineered strains of Saccharomyces cerevisiae: aeration and carbon source influence yields and productivities. Microb. Cell Fact. 17(1), 1-11.
  128. Osorio-González, C.S., Saini, R., Hegde, K., Brar, S.K., Lefebvre, A., Ramirez, A.A., 2023. Carbon/Nitrogen ratio as a tool to enhance the lipid production in Rhodosporidium toruloides-1588 using C5 and C6 wood hydrolysates. J. Clean. Prod. 384, 135687.
  129. Ostermann, A.I., Koch, E., Rund, K.M., Kutzner, L., Mainka, M., Schebb, N.H., 2020. Targeting esterified oxylipins by LC-MS-Effect of sample preparation on oxylipin pattern. Prostaglandins Other Lipid Mediat. 146, 106384.
  130. Park, G.W., Kim, I., Jung, K., Seo, C., Han, J.I., Chang, H.N., Kim, Y.C., 2015. Enhancement of volatile fatty acids production from rice straw via anaerobic digestion with chemical pretreatment. Bioprocess Biosyst. Eng. 38, 1623-1627.
  131. Park, Y.K., Ledesma-Amaro, R., 2023. What makes Yarrowia lipolytica well suited for industry?. Trends Biotechnol. 41(2), 242-254.
  132. Parsons, S., Abeln, F., McManus, M.C., Chuck, C.J., 2019. Techno‐economic analysis (TEA) of microbial oil production from waste resources as part of a biorefinery concept: assessment at multiple scales under uncertainty. J. Chem. Technol. Biotechnol. 94(3), 701-711.
  133. Pascoli, D.U., Aui, A., Frank, J., Therasme, O., Dixon, K., Gustafson, R., Kelly, B., Volk, T.A., Wright, M.M., 2022. The US bioeconomy at the intersection of technology, policy, and education. Biofuels Bioprod. Biorefin. 16(1), 9-26.
  134. Patel, A., Karageorgou, D., Rova, E., Katapodis, P., Rova, U., Christakopoulos, P., Matsakas, L., 2020. An overview of potential oleaginous microorganisms and their role in biodiesel and omega-3 fatty acid-based industries. Microorganisms. 8(3), 434.
  135. Paul, P.K., Al Azad, S., Rahman, M.H., Farjana, M., Uddin, M.R., Dey, D., Mahmud, S., Ema, T.I., Biswas, P., Anjum, M., Akhi, O.J., 2022. Catabolic profiling of selective enzymes in the saccharification of non-food lignocellulose parts of biomass into functional edible sugars and bioenergy: an in silico bioprospecting. J. Adv. Vet. Anim. Res. 9(1), 19-32.
  136. Pavoncello, V., Barras, F., Bouveret, E., 2022. Degradation of exogenous fatty acids in Escherichia coli. Biomolecules. 12(8), 1019.
  137. Peng, K., Wang, M., Dong, J., 2017. Event-triggered fault detection framework based on subspace identification method for the networked control systems. Neurocomputing. 239, 257-267.
  138. Pereira, H., Azevedo, F., Domingues, L., Johansson, B., 2022. Expression of Yarrowia lipolytica acetyl-CoA carboxylase in Saccharomyces cerevisiae and its effect on in-vivo accumulation of Malonyl-CoA. Comput. Struct. Biotechnol. J. 20, 779-787.
  139. Phromphithak, S., Onsree, T., Tippayawong, N., 2021. Machine learning prediction of cellulose-rich materials from biomass pretreatment with ionic liquid solvents. Bioresour. Technol. 323, 124642.
  140. Poddar, B.J., Nakhate, S.P., Gupta, R.K., Chavan, A.R., Singh, A.K., Khardenavis, A.A., Purohit, H.J., 2022. A comprehensive review on the pretreatment of lignocellulosic wastes for improved biogas production by anaerobic digestion. Int. J. Environ. Sci. Technol. 19, 3429-3456.
  141. Prasad, R.K., Chatterjee, S., Mazumder, P.B., Gupta, S.K., Sharma, S., Vairale, M.G., Datta, S., Dwivedi, S.K., Gupta, D.K., 2019. Bioethanol production from waste lignocelluloses: a review on microbial degradation potential. Chemosphere. 231, 588-606.
  142. Qadeer, S., Khalid, A., Mahmood, S., Anjum, M., Ahmad, Z., 2017. Utilizing oleaginous bacteria and fungi for cleaner energy production. J. Cleaner Prod. 168, 917-928.
  143. Qi, F., Shen, P., Hu, R., Xue, T., Jiang, X., Qin, L., Chen, Y., Huang, J., 2020. Carotenoids and lipid production from Rhodosporidium toruloides cultured in tea waste hydrolysate. Biotechnol. Biofuels. 13(1), 1-12.
  144. Qian, X., Gorte, O., Chen, L., Zhang, W., Dong, W., Ma, J., Xin, F., Jiang, M., Ochsenreither, K., 2020. Continuous self-provided fermentation for microbial lipids production from acetate by using oleaginous yeasts Cryptococcus podzolicus and Trichosporon porosum. Renewable Energy. 146, 737-743.
  145. Qiao, K., Abidi, S.H.I., Liu, H., Zhang, H., Chakraborty, S., Watson, N., Ajikumar, P.K., Stephanopoulos, G., 2015. Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica. Metab. Eng. 29, 56-65.
  146. Qiao, K., Wasylenko, T.M., Zhou, K., Xu, P., Stephanopoulos, G., 2017. Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nat. Biotechnol. 35(2), pp.173-177.
  147. Qiao, Q., Shi, J., Shao, Q., 2021. The multiscale solvation effect on the reactivity of β-O-4 of lignin dimers in deep eutectic solvents. Phys. Chem. Chem. Phys. 23(45), 25699-25705.
  148. Rafeeq, H., Afsheen, N., Rafique, S., Arshad, A., Intisar, M., Hussain, A., Bilal, M., Iqbal, H.M., 2023. Genetically engineered microorganisms for environmental remediation. Chemosphere. 310, 136751.
  149. Rahman, M.H., Al Azad, S., Uddin, M.F., Farzana, M., Sharmeen, I.A., Kabbo, K.S., Jabin, A., Rahman, A., Jamil, F., Srishti, S.A., Riya, F.H., 2023. WGS-based screening of the co-chaperone protein DjlA-induced curved DNA binding protein A (CbpA) from a new multidrug-resistant zoonotic mastitis-causing Klebsiella pneumoniae strain: a novel molecular target of selective flavonoids. Mol. Divers. 1-22.
  150. Rahman, Z., Sung, B.H., Nawab, J., Siddiqui, M.F., Ali, A., Geraldi, A., Kim, S.C., 2019. Enhanced production of fatty acid ethyl ester with engineered fabHDG operon in Escherichia coli. Microorganisms. 7(11), 552.
  151. Ramos, L.P., da Silva, L., Ballem, A.C., Pitarelo, A.P., Chiarello, L.M., Silveira, M.H.L., 2015. Enzymatic hydrolysis of steam-exploded sugarcane bagasse using high total solids and low enzyme loadings. Bioresour. Technol. 175, 195-202.
  152. Rezania, S., Oryani, B., Cho, J., Talaiekhozani, A., Sabbagh, F., Hashemi, B., Rupani, P.F., Mohammadi, A.A., 2020. Different pretreatment technologies of lignocellulosic biomass for bioethanol production: an overview. Energy. 199, 117457.
  153. Riecan, M., Paluchova, V., Lopes, M., Brejchova, K., Kuda, O., 2022. Branched and linear fatty acid esters of hydroxy fatty acids (FAHFA) relevant to human health. Pharmacol. Ther. 231, 107972.
  154. Robles-Iglesias, R., Naveira-Pazos, C., Fernández-Blanco, C., Veiga, M.C., Kennes, C., 2023. Factors affecting the optimisation and scale-up of lipid accumulation in oleaginous yeasts for sustainable biofuels production. Renew. Sust. Energy Rev. 171, 113043.
  155. Rodriguez, C., Alaswad, A., Benyounis, K.Y., Olabi, A.G., 2017. Pretreatment techniques used in biogas production from grass. Renew. Sustain. Energy Rev. 68, 1193-1204.
  156. Röttig, A., Zurek, P.J., Steinbüchel, A., 2015. Assessment of bacterial acyltransferases for an efficient lipid production in metabolically engineered strains of E. coli. Metab. Eng. 32, 195-206.
  157. Rouches, E., Zhou, S., Steyer, J.P., Carrère, H., 2016. White-Rot Fungi pretreatment of lignocellulosic biomass for anaerobic digestion: impact of glucose supplementation. Process Biochem. 51(11), 1784-1792.
  158. Rusli, N.D., Azmi, M.A., Mat, K., Hasnita, C.H., Wan-Zahari, M., Azhar, K., Zamri-Saad, M., Hassim, H.A., 2019. The effect of physical and biological pre-treatments of oil palm fronds on in vitro ruminal degradability. Pertanika J. Trop. Agric. Sci. 42(2).
  159. Saha, R., Mukhopadhyay, M., 2021. Prospect of metabolic engineering in enhanced microbial lipid production: review. Biomass Conv. Biorefin. 13(17), 15335-15356.
  160. Saini, R.K., Prasad, P., Sreedhar, R.V., Akhilender Naidu, K., Shang, X., Keum, Y.S., 2021. Omega- 3 polyunsaturated fatty acids (PUFAs): emerging plant and microbial sources, oxidative stability, bioavailability, and health benefits-a review. Antioxidants. 10(10), 1627.
  161. Samavi, M., Rakshit, S.K., 2022. Chapter 16- Value-added products from microbial lipid. Biomass, Biofuels, Biochem. Elsevier. 331-347.
  162. Shanmugam, S., Ngo, H.H., Wu, Y.R., 2020. Advanced CRISPR/Cas-based genome editing tools for microbial biofuels production: a review. Renewable Energy. 149, 1107-1119.
  163. Shapiro, A.J., O'Dea, R.M., Li, S.C., Ajah, J.C., Bass, G.F., Epps III, T.H., 2023. Engineering innovations, challenges, and opportunities for lignocellulosic biorefineries: leveraging biobased polymer production. Annu. Rev. Chem. Biomol. Eng. 14, 109-140.
  164. Sharma, T., Dasgupta, D., Singh, J., Bhaskar, T., Ghosh, D., 2020. Yeast lipid-based biofuels and oleochemicals from lignocellulosic biomass: life cycle impact assessment. Sustainable Energy Fuels. 4(1), 387-398.
  165. Shields-Menard, S.A., Amirsadeghi, M., French, W.T., Boopathy, R., 2018. A review on microbial lipids as a potential biofuel. Bioresour. Technol. 259, 451-460.
  166. Sidana, A., Yadav, S.K., 2022. Recent developments in lignocellulosic biomass pretreatment with a focus on eco-friendly, non-conventional methods. J. Clean. Prod. 335, 130286.
  167. Sitepu, I.R., Garay, L.A., Enriquez, L., Fry, R., Butler, J.H., Lopez, J.M., Kanti, A., Faulina, S.A., Nugroho, A.J., Simmons, B.A., Singer, S.W., 2017. 1-Ethyl-3-methylimidazolium tolerance and intracellular lipid accumulation of 38 oleaginous yeast species. Appl. Microbiol. Biotechnol. 101, 8621-8631.
  168. Soccol, C.R., Colonia, B.S.O., de Melo Pereira, G.V., Mamani, L.D.G., Karp, S.G., Soccol, V.T., de Oliveira Penha, R., Neto, C.J.D., de Carvalho, J.C., 2022. Bioprospecting lipid-producing microorganisms: from metagenomic-assisted isolation techniques to industrial application and innovations. Bioresour. Technol. 346, 126455.
  169. Son, S.H., Park, G., Lim, J., Son, C.Y., Oh, S.S., Lee, J.Y., 2022. Chain flexibility of medicinal lipids determines their selective partitioning into lipid droplets. Nat. Commun. 13(1), 3612.
  170. Song, G., Madadi, M., Meng, X., Sun, C., Aghbashlo, M., Sun, F., Ragauskas, A.J., Tabatabaei, M., Ashori, A., 2024a. Double in-situ lignin modification in surfactant-assisted glycerol organosolv pretreatment of sugarcane bagasse towards efficient enzymatic hydrolysis. Chem. Eng. J. 481, 148713.
  171. Song, G., Sun, C., Madadi, M., Dou, S., Yan, J., Huan, H., Aghbashlo, M., Tabatabaei, M., Sun, F., Ashori, A., 2024b. Dual assistance of surfactants in glycerol organosolv pretreatment and enzymatic hydrolysis of lignocellulosic biomass for bioethanol production. Bioresour. Technol. 395, 130358.
  172. Song, X., Yu, H., Zhu, K., 2016. Improving alkane synthesis in Escherichia coli via metabolic engineering. Appl. Microbiol. Biotechnol. 100, 757-767.
  173. Sparsø, F.V., 2014. Propylene glycol fatty acid esters. Emulsifiers Food Technol. 231-250.
  174. Srinivasan, N., Thangavelu, K., Sekar, A., Sanjeev, B., Uthandi, S., 2021. Aspergillus caespitosus ASEF14, an oleaginous fungus as a potential candidate for biodiesel production using sago processing wastewater (SWW). Microb. Cell Fact. 20(1), 1-23.
  175. Subramaniam, M., Sarip, S., Fatah, A.Y.A., Kaidi, H.M., 2021. Palm Oil-based Fatty Acid Methyl Ester (FAME) Biodiesel to Meet High Blending Rates in Malaysia. Alinteri J. Agric. Sci. 36(1), 550-557.
  176. Sun, C., Meng, X., Sun, F., Zhang, J., Tu, M., Chang, J.S., Reungsang, A., Xia, A., Ragauskas, A.J., 2023a. Advances and perspectives on mass transfer and enzymatic hydrolysis in the enzyme-mediated lignocellulosic biorefinery: a review. Biotechnol. Adv. 62, 108059.
  177. Sun, H., Gao, Z., Zhang, L., Wang, X., Gao, M., Wang, Q., 2023b. A comprehensive review on microbial lipid production from wastes: research updates and tendencies. Environ. Sci. Pollut. Res. 30, 79654-79675.
  178. Sun, F., Gu, Z., Zhou, Q., Sun, H., Luo, J., Liu, Z., Guo, S., Ren, H., Zhang, Z., Strong, P.J., 2021. Highly efficient microbial lipid synthesis from co-fermentation of enzymatic hydrolysate of sugarcane bagasse by a Trichosporon dermatis Ind. Crops Prod. 171, 113975.
  179. Sundarsingh, T.J.A., Ameen, F., Ranjitha, J., Raghavan, S., Shankar, V., 2024. Engineering microbes for sustainable biofuel production and extraction of lipids-current research and future perspectives. Fuel. 355, 129532.
  180. Syed, R.U., Moni, S.S., Alfaisal, R.H., Alrashidi, R.H., Alrashidi, N.F., Wadeed, K.M., Alshammary, F.N., Habib, A.M., Alharbi, F.M., ur Rehman, Z., Alam, M.S., 2022. Spectral characterization of the bioactive principles and antibacterial properties of cold methanolic extract of Olea europaea from the Hail region of Saudi Arabia. Arab. J. Chem. 15(8), 104006.
  181. Tamano, K., Bruno, K.S., Koike, H., Ishii, T., Miura, A., Umemura, M., Culley, D.E., Baker, S.E., Machida, M., 2015. Increased production of free fatty acids in Aspergillus oryzae by disruption of a predicted acyl-CoA synthetase gene. Appl. Microbiol. Biotechnol. 99, 3103-3113.
  182. Tan, K.W.M., Lee, Y.K., 2017. Expression of the heterologous Dunaliella tertiolecta fatty acyl-ACP thioesterase leads to increased lipid production in Chlamydomonas reinhardtii. Biotechnol. 247, 60-67.
  183. Tang, X.L., Xue, Y.P., 2019. Genetic engineering approaches used to increase lipid production and alter lipid profile in microbes. Microb. Lipid Prod.: Methods Protoc. 141-150.
  184. Tanimura, A., Sugita, T., Endoh, R., Ohkuma, M., Kishino, S., Ogawa, J., Shima, J., Takashima, M., 2018. Lipid production via simultaneous conversion of glucose and xylose by a novel yeast, Cystobasidium iriomotense. PloS one. 13(9), e0202164.
  185. Tao, H., Guo, D., Zhang, Y., Deng, Z., Liu, T., 2015. Metabolic engineering of microbes for branched-chain biodiesel production with low-temperature property. Biotechnol. Biofuels. 8(1), 1-11.
  186. Uthandi, S., Kaliyaperumal, A., Srinivasan, N., Thangavelu, K., Muniraj, I.K., Zhan, X., Gathergood, N., Gupta, V.K., 2022. Microbial biodiesel production from lignocellulosic biomass: new insights and future challenges. Crit. Rev. Environ. Sci. Technol. 52(12), 2197-2225.
  187. Varghese, V.K., Poddar, B.J., Shah, M.P., Purohit, H.J., Khardenavis, A.A., 2022. A comprehensive review on current status and future perspectives of microbial volatile fatty acids production as platform chemicals. Sci. Total Environ. 815, 152500.
  188. Vasaki, M., Sithan, M., Ravindran, G., Paramasivan, B., Ekambaram, G., Karri, R.R., 2022. Biodiesel production from lignocellulosic biomass using Yarrowia lipolytica. Energy Convers. Manage.:X. 13, 100167.
  189. Velidandi, A., Gandam, P.K., Chinta, M.L., Konakanchi, S., Bhavanam, A.R., Baadhe, R.R., Sharma, M., Gaffey, J., Nguyen, Q.D., Gupta, V.K., 2023. State-of-the-art and future directions of machine learning for biomass characterization and for sustainable biorefinery. J. Energy Chem. 81, 42-63.
  190. Vrablik, T.L., Petyuk, V.A., Larson, E.M., Smith, R.D., Watts, J.L., 2015. Lipidomic and proteomic analysis of Caenorhabditis elegans lipid droplets and identification of ACS-4 as a lipid droplet-associated protein. (BBA) - Mol. Cell Biol. Lipids. 1851(10), 1337-1345.
  191. Wang, B., Wang, Z., Chen, T., Zhao, X., 2020. Development of novel bioreactor control systems based on smart sensors and actuators. Front. Bioeng. Biotechnol. 8, 7.
  192. Wang, D., Thakker, C., Liu, P., Bennett, G.N., San, K.Y., 2015. Efficient production of free fatty acids from soybean meal carbohydrates. Biotechnol. Bioeng. 112(11), 2324-2333.
  193. Wang, S., Li, Y., Wen, X., Fang, Z., Zheng, X., Di, J., Li, H., Li, C., Fang, J., 2022. Experimental and theoretical study on the catalytic degradation of lignin by temperature-responsive deep eutectic solvents. Ind. Crops Prod. 177, 114430.
  194. Wang, S., Tao, X., Zhang, G., Zhang, P., Wang, H., Ye, J., Li, F., Zhang, Q., Nabi, M., 2019. Benefit of solid-liquid separation on volatile fatty acid production from grass clipping with ultrasound-calcium hydroxide pretreatment. Bioresour. Technol. 274, 97-104.
  195. Wang, W., Zhu, B., Xu, Y., Li, B., Xu, H., 2022. Mechanism study of ternary deep eutectic solvents with protonic acid for lignin fractionation. Bioresour. Technol. 363, 127887.
  196. Wang, Z., Zhou, L., Lu, M., Zhang, Y., Perveen, S., Zhou, H., Wen, Z., Xu, Z., Jin, M., 2021. Adaptive laboratory evolution of Yarrowia lipolytica improves ferulic acid tolerance. Appl. Microbiol. Biotechnol. 105, 1745-1758.
  197. Wei, Z., Zeng, G., Huang, F., Kosa, M., Sun, Q., Meng, X., Huang, D., Ragauskas, A.J., 2015. Microbial lipid production by oleaginous Rhodococci cultured in lignocellulosic autohydrolysates. Appl. Microbiol. Biotechnol. 99, 7369-7377.
  198. Wierzchowska, K., Zieniuk, B., Nowak, D., Fabiszewska, A., 2021. Phosphorus and nitrogen limitation as a part of the strategy to stimulate microbial lipid biosynthesis. Appl. Sci. 11(24), 11819.
  199. Wu, J., Zhang, X., Xia, X., Dong, M., 2017. A systematic optimization of medium chain fatty acid biosynthesis via the reverse beta-oxidation cycle in Escherichia coli. Metab. Eng. 41, 115-124.
  200. Wu, Q.L., Guo, W.Q., Bao, X., Zheng, H.S., Yin, R.L., Feng, X.C., Luo, H.C., Ren, N.Q., 2017. Enhanced volatile fatty acid production from excess sludge by combined free nitrous acid and rhamnolipid treatment. Bioresour. Technol. 224, 727-732.
  201. Xavier, M.C.A., Coradini, A.L.V., Deckmann, A.C., Franco, T.T., 2017. Lipid production from hemicellulose hydrolysate and acetic acid by Lipomyces starkeyi and the ability of yeast to metabolize inhibitors. Biochem. Eng. J. 118, 11-19.
  202. Xie, S., Sun, S., Lin, F., Li, M., Pu, Y., Cheng, Y., Xu, B., Liu, Z., da Costa Sousa, L., Dale, B.E., Ragauskas, A.J., 2019. Mechanism‐guided design of highly efficient protein secretion and lipid conversion for biomanufacturing and biorefining. Adv. Sci. 6(13), 1801980.
  203. Xie, X., Madadi, M., Al Azad, S., Qiao, Y., Elsayed, M., Aghbashlo, M., Tabatabaei, M., 2024. Unraveling the mechanisms underlying lignin and xylan dissolution in recyclable biphasic catalytic systems. Fuel. 363, 130890.
  204. Xu, C., Fan, J., Shanklin, J., 2020. Metabolic and functional connections between cytoplasmic and chloroplast triacylglycerol storage. Prog. Lipid Res. 80, 101069.
  205. Xu, J., Zhao, X., Du, W., Liu, D., 2017. Bioconversion of glycerol into lipids by Rhodosporidium toruloides in a two‐stage process and characterization of lipid properties. Eng. Life Sci. 17(3), 303-313.
  206. Xue, S.J., Chi, Z., Zhang, Y., Li, Y.F., Liu, G.L., Jiang, H., Hu, Z., Chi, Z.M., 2018. Fatty acids from oleaginous yeasts and yeast-like fungi and their potential applications. Crit. Rev. Biotechnol. 38(7), 1049-1060.
  207. Yang, J., Lee, S., Choi, I., Shin, J., Han, W.H., Hong, M.H., Kang, H.C., Kim, Y.W., 2019. Effect of fatty acid-based anionic surfactants on the emulsion properties of self-emulsifying poly (ethylene-co-acrylic acid) waxes. J. Ind. Eng. Chem. 71, 393-401.
  208. Yao, Q., Chen, H., Wang, S., Tang, X., Gu, Z., Zhang, H., Chen, W., Chen, Y.Q., 2019. An efficient strategy for screening polyunsaturated fatty acid-producing oleaginous filamentous fungi from soil. J. Microbiol. Methods. 158, 80-85.
  209. Yarazari, S.B., Jayaraj, M., 2022. GC-MS analysis of bioactive compounds of flower extracts of Calycopteris floribunda: a multi potent medicinal plant. Appl. Biochem. Biotechnol. 194(11), 5083-5099.
  210. Yu, L., Bule, M., Ma, J., Zhao, Q., Frear, C., Chen, S., 2014. Enhancing volatile fatty acid (VFA) and bio-methane production from lawn grass with pretreatment. Bioresour. Technol. 162, 243-249.
  211. Yu, Q., Liu, R., Li, K., Ma, R., 2019. A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China. Renew. Sust. Energy Rev. 107, 51-58.
  212. Yu, Y., Liu, S., Zhang, Y., Lu, M., Sha, Y., Zhai, R., Xu, Z., Jin, M., 2022. A novel fermentation strategy for efficient xylose utilization and microbial lipid production in lignocellulosic hydrolysate. Bioresour. Technol. 361, 127624.
  213. Zabed, H.M., Akter, S., Yun, J., Zhang, G., Awad, F.N., Qi, X., Sahu, J.N., 2019. Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production. Renew. Sust. Energy Rev. 105, 105-128.
  214. Zeng, S.Y., Liu, H.H., Shi, T.Q., Song, P., Ren, L.J., Huang, H., Ji, X.J., 2018. Recent advances in metabolic engineering of Yarrowia lipolytica for lipid overproduction. Eur. J. Lipid Sci. Technol. 120(3), 1700352.
  215. Zhang, S., He, Y., Sen, B., Wang, G., 2020. Reactive oxygen species and their applications toward enhanced lipid accumulation in oleaginous microorganisms. Bioresour. Technol. 307, 123234.
  216. Zhang, Y., Pan, Y., Ding, W., Hu, H., Liu, J., 2021. Lipid production is more than doubled by manipulating a diacylglycerol acyltransferase in algae. GCB Bioenergy. 13(1), 185-200.
  217. Zhang, Y., Teah, H.Y., Xu, F., Zhou, T., Guo, Z., Jiang, L., 2023. Selective saccharification of crude glycerol pretreated sugarcane bagasse via fast pyrolysis: reaction kinetics and life cycle assessment. Bioresour. Technol. 382, 129166.
  218. Zhao, H., Lv, M., Liu, Z., Zhang, M., Wang, Y., Ju, X., Song, Z., Ren, L., Jia, B., Qiao, M., Liu, X., 2021. High-yield oleaginous fungi and high-value microbial lipid resources from Mucoromycota. BioEnergy Res. 14, 1196-1206.
  219. Zheng, Y., Zhao, J., Xu, F., Li, Y., 2014. Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog. Energy Combust. Sci. 42, 35-53.
  220. Zhou, L., Xu, Z., Wen, Z., Lu, M., Wang, Z., Zhang, Y., Zhou, H., Jin, M., 2021. Combined adaptive evolution and transcriptomic profiles reveal aromatic aldehydes tolerance mechanisms in Yarrowia lipolytica. Bioresour. Technol. 329, 124910.
  221. Zhuang, Q., Qi, Q., 2019. Engineering the pathway in Escherichia coli for the synthesis of medium-chain-length polyhydroxyalkanoates consisting of both even-and odd-chain monomers. Microb. Cell Fact. 18, 1-13.