• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Biofuel Research Journal
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 5 (2018)
Volume Volume 4 (2017)
Volume Volume 3 (2016)
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 2 (2015)
Volume Volume 1 (2014)
Pourzare, K., Mansourpanah, Y., Farhadi, S. (2016). Advanced nanocomposite membranes for fuel cell applications: a comprehensive review. Biofuel Research Journal, 3(4), 496-513. doi: 10.18331/BRJ2016.3.4.4
Kolsoum Pourzare; Yaghoub Mansourpanah; Saeed Farhadi. "Advanced nanocomposite membranes for fuel cell applications: a comprehensive review". Biofuel Research Journal, 3, 4, 2016, 496-513. doi: 10.18331/BRJ2016.3.4.4
Pourzare, K., Mansourpanah, Y., Farhadi, S. (2016). 'Advanced nanocomposite membranes for fuel cell applications: a comprehensive review', Biofuel Research Journal, 3(4), pp. 496-513. doi: 10.18331/BRJ2016.3.4.4
Pourzare, K., Mansourpanah, Y., Farhadi, S. Advanced nanocomposite membranes for fuel cell applications: a comprehensive review. Biofuel Research Journal, 2016; 3(4): 496-513. doi: 10.18331/BRJ2016.3.4.4

Advanced nanocomposite membranes for fuel cell applications: a comprehensive review

Article 4, Volume 3, Issue 4, Autumn 2016, Page 496-513  XML PDF (18.65 MB)
Document Type: Review Paper
DOI: 10.18331/BRJ2016.3.4.4
Authors
Kolsoum Pourzare1; Yaghoub Mansourpanah email 1, 2; Saeed Farhadi1
1Membrane Research Laboratory, Lorestan University, Khorramabad, P.O. Box 68137-17133, Iran.
2Membrane Separation Technology (MST) Group, Biofuel Research Team (BRTeam), Karaj, Iran.
Abstract
Combination of inorganic fillers into organic polymer membranes (organic–inorganic hybrid membranes) has drawn a significant deal of attention over the last few decades. This is because of the incorporated influence of the organic and inorganic phases towards proton conductivity and membrane stability, in addition to cost decline, improved water retention property, and also suppressing fuel crossover by increasing the transport pathway tortuousness. The preparation methods of the composite membranes and the intrinsic characteristics of the used particles as filler, such as size, type, surface acidity, shape, and their interactions with the polymer matrix can significantly affect the properties of the resultant matrix. The membranes currently used in proton exchange membrane fuel cells (PEMFCs) are perfluorinated polymers containing sulfonic acid, such as Nafion®. Although these membranes possess superior properties, such as high proton conductivity and acceptable chemical, mechanical, and thermal stability, they suffer from several disadvantages such as water management, CO poisoning, and fuel crossover. Organic-inorganic nanocomposite PEMs offer excellent potentials for overcoming these shortcomings in order to achieve improved FC performance. Various inorganic fillers for the fabrication of composite membranes have been comprehensively reviewed in the present article. Moreover, the properties of polymer composites containing different nanoparticles have been thoroughly discussed.

Graphical Abstract

Advanced nanocomposite membranes for fuel cell applications: a comprehensive review

Highlights
  • Nanocomposite proton exchange membranes based on different fillers have been comprehensively discussed.
  • Analytical methods used for proton exchange membranes properties have been reviewed.
  • Properties of polymer composites based on a variety of nanoparticles have been scrutinized.
Keywords
Organic-inorganic nanocomposite; Proton Exchange Membrane; Inorganic fillers; Fuel Cell
References
[1] Ahmad, H., Kamarudin, S.K., Hasran, U.A., Daud, W.R.W., 2010. Overview of hybrid membranes for direct-methanol fuel-cell applications. Int. J. Hydrogen Energy. 35(5), 2160-2175.

[2] Alberti, G.  Casciola, M., 2003. Composite membranes for medium-temperature PEM fuel cells. Annu. Rev. Mater. Res. 33(1),129-154.

[3] Alberti, G., Casciola, M., Capitani, D., Donnadio, A., Narducci, R., Pica, M., Sganappa, M., 2007. Novel Nafion-zirconium phosphate nanocomposite membranes with enhanced stability of proton conductivity at medium temperature and high relative humidity. Electrochim. Acta. 52(28), 8125-8132.

[4] Amirinejad, M., Madaeni, S.S., Lee, K.S., Ko, U., Rafiee, E., Lee, J.S., 2012. Sulfonated poly(arylene ether)/heteropolyacids nanocomposite membranes for proton exchange membrane fuel cells. Electrochim. Acta. 62, 227-233.

[5] Amirinejad, M., Madaeni, S.S., Rafiee, E., Amirinejad, S., 2011. Cesium hydrogen salt of heteropolyacids/Nafion nanocomposite membranes for proton exchange membrane fuel cells. J. Membr. Sci. 377(1-2), 89-98.

[6] Amjadi, M., Rowshanzamir, S., Peighambardoust, S.J., Hosseini, M.G., Eikani, M.H., 2010. Investigation of physical properties and cell performance of Nafion/TiO2 nanocomposite membranes for high temperature PEM fuel cells. Int. J. Hydrogen Energy. 35(17), 9252-9260.

[7] An, L., Zhao, T.S., Wu, Q.X., Zeng, L., 2012. Comparison of different types of membrane in alkaline direct ethanol fuel cells. Int. J. Hydrogen Energy. 37(19), 14536-14542.

[8] Asgari, M.S., Nikazar, M., Molla-Abbasi, P., Hasani-Sadrabadi, M.M., 2013. Nafion®/histidine functionalized carbon nanotube: High-performance fuel cell membranes. Int. J. Hydrogen Energy. 38(14), 5894-5902.

[9] Aslan, A.  Bozkurt, A., 2014. Nanocomposite membranes based on sulfonated polysulfone and sulfated nano-titania/NMPA for proton exchange membrane fuel cells. Solid State Ionics. 255, 89-95.

[10] Auimviriyavat, J., Changkhamchom, S., Sirivat, A., 2011. Development of poly (ether ether ketone) (Peek) with inorganic filler for direct methanol fuel cells (DMFCS). Ind. Eng. Chem. Res. 50(22), 12527-12533.

[11] Authayanun, S., Im-orb, K., Arpornwichanop, A., 2015. A review of the development of high temperature proton exchange membrane fuel cells. Chin. J. Catal. 36(4), 473-483.

[12] Awang, N., Ismail, A.F., Jaafar, J., Matsuura, T., Junoh, H., Othman, M.H.D., Rahman, M.A., 2015. Functionalization of polymeric materials as a high performance membrane for direct methanol fuel cell: a review. React. Funct. Polym. 86, 248-258.

[13] Badwal, S.P.S., Giddey, S., Kulkarni, A., Goel, J., Basu, S., 2015. Direct ethanol fuel cells for transport and stationary applications-a comprehensive review. Appl. Energy. 145, 80-103.

[14] Bauer, F., Willert-Porada, M., 2004. Microstructural characterization of Zr-phosphate-Nafion® membranes for direct methanol fuel cell (DMFC) applications. J. Membr. Sci. 233(1-2), 141-149.

[15] Bayer, T., Bishop, S.R., Nishihara, M., Sasaki, K., Lyth, S.M., 2014. Characterization of a graphene oxide membrane fuel cell. J. Power Sources. 272, 239-247.

[16] Beydaghi, H., Javanbakht, M., Bagheri, A., Salarizadeh, P., Ghafarian-Zahmatkesh, H., Kashefi, S., Kowsari, E., 2015. Novel nanocomposite membranes based on blended sulfonated poly (ether ether ketone)/poly (vinyl alcohol) containing sulfonated graphene oxide/Fe3O4 nanosheets for DMFC applications. RSC Adv. 5(90), 74054-74064.

[17] Beydaghi, H., Javanbakht, M., 2015. Aligned nanocomposite membranes containing sulfonated graphene oxide with superior ionic conductivity for direct methanol fuel cell application. Ind. Eng. Chem. Res. 54(28) 7028-7037.

[18] Bose, S., Kuila, T., Nguyen, T.X.H., Kim, N.H., Lau, K.T., Lee, J.H., 2011. Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges. Prog. Polym. Sci. 36(6), 813-843.

[19] Brijmohan, S.B., Shaw, M.T., 2007. Magnetic ion-exchange nanoparticles and their application in proton exchange membranes. J. Membr. Sci. 303(1-2), 64-71.

[20] Bounor-Legaré, V., Cassagnau, P., 2014. In situ synthesis of organic–inorganic hybrids or nanocomposites from sol-gel chemistry in molten polymers. Prog. Polym. Sci. 39(8), 1473-1497.

[21] Bureekaew, S., Horike, S., Higuchi, M., Mizuno, M., Kawamura, T., Tanaka, D., Yanai, N., Kitagawa, S.,2009. One-dimensional imidazole aggregate in aluminium porous coordination polymers with high proton conductivity. Nat. Mater. 8(10), 831-836.

[22] Buquet, C.L., Fatyeyeva, K., Poncin-Epaillard, F., Schaetzel, P., Dargent, E., Langevin, D., Nguyen, Q.T., Marais, S., 2010. New hybrid membranes for fuel cells: plasma treated laponite based sulfonated polysulfone. J. Membr. Sci. 351(1-2), 1-10.

[23] Carrette, L., Friedrich, K.L., Stimming, U., 2001. Fuel cells-fundamentals and applications. Fuel cells. 1(1), 5-39.

[24] Chandan, A., Hattenberger, M., El-Kharouf, A., Du, S., Dhir, A., Self, V., Pollet, B.G., Ingram, A., Bujalski, W., 2013. High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)-a review. J. Power Sources. 231, 264-278.

[25] Chang, C.M., Liu, Y.L., Lee, Y.M. 2011. Polybenzimidazole membranes modified with polyelectrolyte-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells. J. Mater. Chem. 21(20), 7480-7486.

[26] Chen, Z., Holmberg, B., Li, W., Wang, X., Deng, W., Munoz, R., Yan, Y., 2006. Nafion/zeolite nanocomposite membrane by in situ crystallization for a direct methanol fuel cell. Chem. Mater. 18(24), 5669-5675.

[27] Chen, Z., Li, S., Yan, Y., 2005. Synthesis of template-free zeolite nanocrystals by reverse microemulsion-microwave method. Chem. Mater. 17(9), 2262-2266.

[28] Chien, H.C., Tsai, L.D., Huang, C.P., Kang, C.Y., Lin, J.N., Chang, F.C., 2013. Sulfonated graphene oxide/Nafion composite membranes for high-performance direct methanol fuel cells. Int. J. hydrogen energy. 38(31), 13792-13801.

[29] Choi, J., Kim, D.H., Kim, H.K., Shin, C., Kim, S.C., 2008. Polymer blend membranes of sulfonated poly (arylene ether ketone) for direct methanol fuel cell. J. Membr. Sci. 310(1), 384-392.

[30] Chomoucka, J., Drbohlavova, J., Huska, D., Adam, V., Kizek, R., Hubalek, J., 2010. Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res. 62(2), 144-149.

[31] Cozzi, D., de Bonis, C., D'Epifanio, A., Mecheri, B., Tavares, A.C., Licoccia, S., 2014. Organically functionalized titanium oxide/Nafion composite proton exchange membranes for fuel cells applications. J. Power Sources. 248, 1127-1132.

[32] Cui, L., Geng, Q., Gong, C., Liu, H., Zheng, G., Wang, G., Liu, Q., Wen, S., 2015. Novel sulfonated poly (ether ether ketone)/silica coated carbon nanotubes high‐performance composite membranes for direct methanol fuel cell. Polym. Adv. Technol. 26(5), 457-464.

[33] Das, S., Kumar, P., Dutta, K., Kundu, P.P., 2014. Partial sulfonation of PVdF-co-HFP: a preliminary study and characterization for application in direct methanol fuel cell. Appl. Energy. 113, 169-177.

[34] Decher, G., Eckle, M., Schmitt, J., Struth, B., 1998. Layer-by-layer assembled multicomposite films. Curr. Opin. colloid interface sci. 3(1), 32-39.

[35] Decher, G., 1997. Fuzzy nanoassemblies: toward layered polymeric multicomposites. science. 277(5330), 1232-1237.

[36] Devrim, Y., Albostan, A., 2015. Enhancement of PEM fuel cell performance at higher temperatures and lower humidities by high performance membrane electrode assembly based on Nafion/zeolite membrane. Int. J. Hydrogen Energy. 40(44), 15328-15335.

[37] Di, Z., Xie, Q., Li, H., Mao, D., Li, M., Zhou, D., Li, L., 2015. Novel composite proton-exchange membrane based on proton-conductive glass powders and sulfonated poly (ether ether ketone). J. Power Sources. 273, 688-696.

[38] Duan, C., Wei, M., Guo, D., He, C., Meng, Q., 2009. Crystal structures and properties of large protonated water clusters encapsulated by metal-organic frameworks. J. Am. Chem. Soc. 132(10), 3321-3330.

[39] Dupuis, A.C., 2011. Proton exchange membranes for fuel cells operated at medium temperatures: materials and experimental techniques. Prog. Mater. Sci. 56(3), 289-327.

[40] Dutta, K., Das, S., Kundu, P.P., 2015. Partially sulfonated polyaniline induced high ion-exchange capacity and selectivity of Nafion membrane for application in direct methanol fuel cells. J. Membr. Sci. 473, 94-101.

[41] Dyer, A., 1988. An introduction to zeolite molecular sieves. John Wiley & Sons, Chichester, ISBN 0471919810.

[42] Erkartal, M., Usta, H., Citir, M., Sen, U., 2016. Proton conducting poly (vinyl alcohol) (PVA)/poly (2-acrylamido-2-methylpropane sulfonic acid) (PAMPS)/zeolitic imidazolate framework (ZIF) ternary composite membrane. J. Membr. Sci. 499, 156-163.

[43] Escudero-Cid, R., Montiel, M., Sotomayor, L., Loureiro, B., Fatás, E., Ocón, P., 2015. Evaluation of polyaniline-Nafion® composite membranes for direct methanol fuel cells durability tests. Int. J. Hydrogen Energy. 40(25), 8182-8192.

[44] Farhat, T.R. Hammond, P.T., 2006. Engineering ionic and electronic conductivity in polymer catalytic electrodes using the layer-by-layer technique. Chem. mater. 18(1), 41-49.

[45] Farrukh, A., Ashraf, F., Kaltbeitzel, A., Ling, X., Wagner, M., Duran, H., Ghaffar, A., ur Rehman, H., Parekh, S.H., Domke, K.F., Yameen, B., 2015. Polymer brush functionalized SiO2 nanoparticle based Nafion nanocomposites: a novel avenue to low-humidity proton conducting membranes. Polym. Chem. 6(31), 5782-5789.

[46] Feng, K., Tang, B., Wu, P., 2014. Sulfonated graphene oxide-silica for highly selective Nafion-based proton exchange membranes. J. Mater. Chem. A. 2(38), 16083-16092.

[47] Gandhi, K., Dixit, B.K., Dixit, D.K., 2012. Effect of addition of zirconium tungstate, lead tungstate and titanium dioxide on the proton conductivity of polystyrene porous membrane. Int. J. Hydrogen Energy. 37(4), 3922-3930.

[48] Gang, M., He, G., Li, Z., Cao, K., Li, Z., Yin, Y., Wu, H., Jiang, Z., 2016. Graphitic carbon nitride nanosheets/sulfonated poly (ether ether ketone) nanocomposite membrane for direct methanol fuel cell application. J. Membr. Sci. 507, 1-11.

[49] Gil, M., Ji, X., Li, X., Na, H., Hampsey, J.E.  Lu, Y., 2004. Direct synthesis of sulfonated aromatic poly (ether ether ketone) proton exchange membranes for fuel cell applications. J. membr. sci. 234(1-2), 75-81.

[50] Gögebakan, Z., Yücel, H., Culfaz, A., 2007. Crystallization field and rate study for the synthesis of Ferrierite. Ind. Eng. Chem. Res. 46(7), 2006-2012.

[51] Hasanabadi, N., Ghaffarian, S.R., Hasani-Sadrabadi, M.M., 2011. Magnetic field aligned nanocomposite proton exchange membranes based on sulfonated poly (ether sulfone) and Fe2O3 nanoparticles for direct methanol fuel cell application. Int. J. hydrogen energy, 2011. 36(23), 15323-15332.

[52] Hasanabadi, N., Ghaffarian, S.R., Hasani-Sadrabadi, M.M., 2013. Nafion-based magnetically aligned nanocomposite proton exchange membranes for direct methanol fuel cells. Solid State Ionics. 232, 58-67.

[53] Hasani-Sadrabadi, M.M., Dashtimoghadam, E., Majedi, F.S., Kabiri, K., Mokarram, N., Solati-Hashjin, M. and Moaddel, H., 2010. Novel high-performance nanohybrid polyelectrolyte membranes based on bio-functionalized montmorillonite for fuel cell applications. Chem. Commun. 46(35), 6500-6502.

[54] Hasani-Sadrabadi, M.M., Dashtimoghadam, E., Majedi, F.S., Moaddel, H., Bertsch, A., Renaud, P., 2013. Superacid-doped polybenzimidazole-decorated carbon nanotubes: a novel high-performance proton exchange nanocomposite membrane. Nanoscale. 5(23), 11710-11717.

[55] Hasani-Sadrabadi, M.M., Majedi, F.S., Coullerez, G., Dashtimoghadam, E., VanDersarl, J.J., Bertsch, A., Moaddel, H., Jacob, K.I., Renaud, P., 2014a. Magnetically aligned nanodomains: application in high-performance ion conductive membranes. ACS Appl. Mater. Interfaces. 6(10), 7099-7107.

[56] Hasani-Sadrabadi, M.M., Dashtimoghadam, E., Nasseri, R., Karkhaneh, A., Majedi, F.S., Mokarram, N., Renaud, P., Jacob, K.I., 2014b. Cellulose nanowhiskers to regulate the microstructure of perfluorosulfonate ionomers for high-performance fuel cells. J. Mater. Chem. A. 2(29), 11334-11340.

[57] Hasani-Sadrabadi, M.M., Dashtimoghadam, E., Majedi, F.S., VanDersarl, J.J., Bertsch, A., Renaud, P., Jacob, K.I., 2016. Ionic nanopeapods: next-generation proton conducting membranes based on phosphotungstic acid filled carbon nanotube. Nano Energy. 23, 114-121.

[58] He, G., He, X., Wang, X., Chang, C., Zhao, J., Li, Z., Wu, H., Jiang, Z., 2016. A highly proton-conducting, methanol-blocking Nafion composite membrane enabled by surface-coating crosslinked sulfonated graphene oxide. Chem. Commun.52(10), 2173-2176.

[59] He, S., Jia, H., Lin, Y., Qian, H., Lin, J., 2015. Effect of clay modification on the structure and properties of sulfonated poly (ether ether ketone)/clay nanocomposites. Polym. Compos. 37(9), 2632-2638.

[60] He, Y., Wang, J., Zhang, H., Zhang, T., Zhang, B., Cao, S., Liu, J., 2014. Polydopamine-modified graphene oxide nanocomposite membrane for proton exchange membrane fuel cell under anhydrous conditions. J. Mater. Chem. A. 2(25), 9548-9558.

[61] Hickner, M.A., Ghassemi, H., Kim, Y.S., Einsla, B.R., McGrath, J.E., 2004. Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev. 104(10), 4587-4612.

[62] Holmberg, B.A., Hwang, S.J., Davis, M.E., Yan, Y., 2005. Synthesis and proton conductivity of sulfonic acid functionalized zeolite BEA nanocrystals. Microporous Mesoporous Mater. 80(1-3), 347-356.

[63] Hooshyari, K., Javanbakht, M., Shabanikia, A. and Enhessari, M., 2015. Fabrication BaZrO3/PBI-based nanocomposite as a new proton conducting membrane for high temperature proton exchange membrane fuel cells. J. Power Sources. 276, 62-72.

[64] Hooshyari, K., Javanbakht, M., Naji, L., Enhessari, M., 2014. Nanocomposite proton exchange membranes based on Nafion containing Fe2TiO5 nanoparticles in water and alcohol environments for PEMFC. J. Membr. Sci. 454, 74-81.

[65] Hudiono, Y., Choi, S., Shu, S., Koros, W.J., Tsapatsis, M., Nair, S., 2009. Porous layered oxide/Nafion® nanocomposite membranes for direct methanol fuel cell applications. Microporous Mesoporous Mater. 118(1-3), 427-434.

[66] Hurd, J.A., Vaidhyanathan, R., Thangadurai, V., Ratcliffe, C.I., Moudrakovski, I.L., Shimizu, G.K., 2009. Anhydrous proton conduction at 150C in a crystalline metal-organic framework. Nat. Chem. 1(9), 705-710.

[67] Jaafar, J., Ismail, A.F., Matsuura, T., 2009. Preparation and barrier properties of SPEEK/Cloisite 15A®/TAP nanocomposite membrane for DMFC application. J. Membr. Sci. 345(1), 119-127.

[68] Jacobson, M.Z., Colella, W.G., Golden, D.M., 2005. Cleaning the air and improving health with hydrogen fuel-cell vehicles. Science. 308(5730), 1901-1905.

[69] Jalani, N.H., Dunn, K., Datta, R., 2005. Synthesis and characterization of Nafion®-MO2 (M=Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells. Electrochim. Acta. 51(3), 553-560.

[70] Jana, K.K., Charan, C., Shahi, V.K., Mitra, K., Ray, B., Rana, D., Maiti, P., 2015. Functionalized poly (vinylidene fluoride) nanohybrid for superior fuel cell membrane. J. Membr. Sci. 481, 124-136.

[71] Jiang, S.P., Liu, Z., Tian, Z.Q., 2006. Layer‐by‐layer self‐assembly of composite polyelectrolyte-Nafion membranes for direct methanol fuel cells. Adv. Mater. 18(8), 1068-1072.

[72] Jones, C.W., Tsuji, K., Davis, M.E., 1998. Organic-functionalized molecular sieves as shape-selective catalysts. Nature. 393(6680), 52-54.

[73] Jun, Y., Zarrin, H., Fowler, M., Chen, Z., 2011. Functionalized titania nanotube composite membranes for high temperature proton exchange membrane fuel cells. Int. J. Hydrogen Energy. 36(10), 6073-6081.

[74] Jung, U.H., Park, K.T., Park, E.H., Kim, S.H., 2006. Improvement of low-humidity performance of PEMFC by addition of hydrophilic SiO2 particles to catalyst layer. J. power sources. 159(1), 529-532.

[75] Kango, S., Kalia, S., Celli, A., Njuguna, J., Habibi, Y., Kumar, R., 2013. Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites-a review. Prog. Polym. Sci. 38(8), 1232-1261.

[76] Kannan, R., Aher, P.P., Palaniselvam, T., Kurungot, S., Kharul, U.K., Pillai, V.K., 2010. Artificially designed membranes using phosphonated multiwall carbon nanotube-polybenzimidazole composites for polymer electrolyte fuel cells.  J. Phys. Chem. Lett. 1(14), 2109-2113.

[77] Kannan, R., Kagalwala, H.N., Chaudhari, H.D., Kharul, U.K., Kurungot, S., Pillai, V.K., 2011. Improved performance of phosphonated carbon nanotube-polybenzimidazole composite membranes in proton exchange membrane fuel cells. J. Mater. Chem. 21(20), 7223-7231.

[78] Ketpang, K., Lee, K., Shanmugam, S., 2014. Facile synthesis of porous metal oxide nanotubes and modified Nafion composite membranes for polymer electrolyte fuel cells operated under low relative humidity. ACS Appl. Mater. interfaces. 6(19), 16734-16744.

[79] Kim, D.J., Jo, M.J., Nam, S.Y., 2015. A review of polymer-nanocomposite electrolyte membranes for fuel cell application. J. Ind. Eng. Chem. 21, 36-52.

[80] Kim, D.W., Choi, H.S., Lee, C., Blumstein, A., Kang, Y., 2004. Investigation on methanol permeability of Nafion modified by self-assembled clay-nanocomposite multilayers. Electrochim. Acta. 50(2-3), 659-662.

[81] Kim, J.Y., Mulmi, S., Lee, C.H., Park, H.B., Chung, Y.S., Lee, Y.M., 2006. Preparation of organic-inorganic nanocomposite membrane using a reactive polymeric dispersant and compatibilizer: proton and methanol transport with respect to nano-phase separated structure. J. membr. sci. 283(1-2), 172-181.

[82] Kim, Y., Ketpang, K., Jaritphun, S., Park, J.S., Shanmugam, S., 2015. A polyoxometalate coupled graphene oxide-Nafion composite membrane for fuel cells operating at low relative humidity. J. Mater. Chem. A. 3(15), 8148-8155.

[83] Kraytsberg, A., Ein-Eli, Y., 2014. Review of advanced materials for proton exchange membrane fuel cells. Energy Fuels. 28(12), 7303-7330.

[84] Kumar, G.G., Uthirakumar, P., Nahm, K.S., Elizabeth, R.N., 2009. Fabrication and electro chemical properties of poly vinyl alcohol/para toluene sulfonic acid membranes for the applications of DMFC. Solid State Ionics. 180(2), 282-287.

[85] Kumar, R., Mamlouk, M., Scott, K., 2014. Sulfonated polyether ether ketone-sulfonated graphene oxide composite membranes for polymer electrolyte fuel cells. RSC Adv. 4(2), 617-623.

[86] Kornatowski, J., 2005. Expressiveness of adsorption measurements for characterization of zeolitic materials-a review. Adsorption. 11(3), 275-293.

[87] Kourasi, M., Wills, R.G.A., Shah, A.A., Walsh, F.C., 2014. Heteropolyacids for fuel cell applications. Electrochim. Acta. 127, 454-466.

[88] Laberty-Robert, C., Valle, K., Pereira, F., Sanchez, C., 2011. Design and properties of functional hybrid organic-inorganic membranes for fuel cells. Chem. Soc. Rev. 40(2), 961-1005.

[89] Laurent, S., Dutz, S., Häfeli, U.O., Mahmoudi, M., 2011. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv. Colloid Interface Sci. 166(1-2), 8-23.

[90] Libby, B., Smyrl, W.H., Cussler, E.L., 2003. Polymer‐zeolite composite membranes for direct methanol fuel cells. AIChE J. 49(4), 991-1001.

[91] Li, S.L., Xu, Q., 2013. Metal-organic frameworks as platforms for clean energy. Energy Environ. Sci. 6(6), 1656-1683.

[92] Li, T., Yang, Y., 2009. A novel inorganic/organic composite membrane tailored by various organic silane coupling agents for use in direct methanol fuel cells. J. Power Sources. 187(2), 332-340.

[93] Li, Q., Zhang, H., Tu, Z., Yu, J., Xiong, C., Pan, M., 2012. Impregnation of amine-tailored titanate nanotubes in polymer electrolyte membranes. J. Membr. Sci. 423-424, 284-292.

[94] Liu, K.L., Lee, H.C., Wang, B.Y., Lue, S.J., Lu, C.Y., Tsai, L.D., Fang, J., Chao, C.Y., 2015. Sulfonated poly (styrene-block-(ethylene-ran-butylene)-block-styrene (SSEBS)-zirconium phosphate (ZrP) composite membranes for direct methanol fuel cells. J. Membr. Sci. 495, 110-120.

[95] Livage, J., 2004. Basic principles of sol-gel chemistry, in Sol-Gel Technologies for Glass Producers and Users.  Springer US, pp. 3-14.

[96] Li, Y., Jin, R., Fang, X., Yang, Y., Yang, M., Liu, X., Xing, Y., Song, S., 2016. In situ loading of Ag2WO4 on ultrathin g-C3N4 nanosheets with highly enhanced photocatalytic performance. J. Hazard. Mater. 313, 219-228.

[97] Li, Y., He, G., Wang, S., Yu, S., Pan, F., Wu, H., Jiang, Z., 2013. Recent advances in the fabrication of advanced composite membranes. J. Mater. Chem. A. 1(35), 10058-10077.

[98] Li, Z., He, G., Zhao, Y., Cao, Y., Wu, H., Li, Y., Jiang, Z., 2014. Enhanced proton conductivity of proton exchange membranes by incorporating sulfonated metal-organic frameworks. J. Power Sources. 262, 372-379.

[99] Liang, X., Zhang, F., Feng, W., Zou, X., Zhao, C., Na, H., Liu, C., Sun, F., Zhu, G., 2013. From metal-organic framework (MOF) to MOF-polymer composite membrane: enhancement of low-humidity proton conductivity. Chem. Sci. 4(3), 983-992.

[100] Luan, Y., Zhang, H., Zhang, Y., Li, L., Li, H., Liu, Y., 2008. Study on structural evolution of perfluorosulfonic ionomer from concentrated DMF-based solution to membranes. J. Membr. Sci. 319(1-2), 91-101.

[101] Lue, S.J., Pai, Y.L., Shih, C.M., Wu, M.C., Lai, S.M., 2015. Novel bilayer well-aligned Nafion/graphene oxide composite membranes prepared using spin coating method for direct liquid fuel cells. J. Membr. Sci. 493, 212-223.

[102] Mahreni, A., Mohamad, A.B., Kadhum, A.A.H., Daud, W.R.W., Iyuke, S.E., 2009. Nafion/silicon oxide/phosphotungstic acid nanocomposite membrane with enhanced proton conductivity. J. Membr. Sci. 327(1-2), 32-40.

[103] Maleki, A., Ghamari, N., Kamalzare, M., 2014. Chitosan-supported Fe3O4 nanoparticles: a magnetically recyclable heterogeneous nanocatalyst for the syntheses of multifunctional benzimidazoles and benzodiazepines. RSC Adv. 4(19), 9416-9423.

[104] Malers, J.L., Sweikart, M.A., Horan, J.L., Turner, J.A., Herring, A.M., 2007. Studies of heteropoly acid/polyvinylidenedifluoride-hexafluoroproylene composite membranes and implication for the use of heteropoly acids as the proton conducting component in a fuel cell membrane. J. Power Sources. 172(1), 83-88.

[105] Marx, S., van der Gryp, P., Neomagus, H., Everson, R., Keizer, K., 2002. Pervaporation separation of methanol from methanol/tert-amyl methyl ether mixtures with a commercial membrane. J. Membr. sci. 209(2), 353-362.

[106] Matos, B.R., Santiago, E.I., Fonseca, F.C., Linardi, M., Lavayen, V., Lacerda, R.G., Ladeira, L.O., Ferlauto, A.S., 2007. Nafion-titanate nanotube composite membranes for PEMFC operating at high temperature. J. Electrochem. Soc. 154(12), B1358-B1361.

[107] Mishra, A.K., Bose, S., Kuila, T., Kim, N.H., Lee, J.H., 2012. Silicate-based polymer-nanocomposite membranes for polymer electrolyte membrane fuel cells. Prog. Polym. Sci. 37(6), 842-869.

[108] Narayanamoorthy, B., Datta, K.K.R., Eswaramoorthy, M., Balaji, S., 2012. Improved oxygen reduction reaction catalyzed by pt/clay/Nafion nanocomposite for PEM fuel cells. ACS Appl. Mater. Interfaces. 4(7), 3620-3626.

[109] Neelakandan, S., Rana, D., Matsuura, T., Muthumeenal, A., Kanagaraj, P., Nagendran, A., 2014. Fabrication and electrochemical properties of surface modified sulfonated poly (vinylidenefluoride-co-hexafluoropropylene) membranes for DMFC application. Solid State Ionics. 268, 35-41.

[110] Ng, E.P., Mintova, S., 2008. Nanoporous materials with enhanced hydrophilicity and high water sorption capacity. Microporous Mesoporous Mater. 114(1-3), 1-26.

[111] Ohkoshi, S.I., Nakagawa, K., Tomono, K., Imoto, K., Tsunobuchi, Y., Tokoro, H., 2010. High proton conductivity in prussian blue analogues and the interference effect by magnetic ordering. J. Am. Chem. Soc. 132(19), 6620-6621.

[112] Oren, Y., Freger, V., Linder, C., 2004. Highly conductive ordered heterogeneous ion-exchange membranes. J. Membr. Sci. 239(1),17-26.

[113] Ossiander, T., Heinzl, C., Gleich, S., Schönberger, F., Völk, P., Welsch, M., Scheu, C., 2014. Influence of the size and shape of silica nanoparticles on the properties and degradation of a PBI-based high temperature polymer electrolyte membrane. J. Membr. Sci. 454, 12-19.

[114] Park, K.T., Jung, U.H., Choi, D.W., Chun, K., Lee, H.M., Kim, S.H., 2008. ZrO2-SiO2/Nafion® composite membrane for polymer electrolyte membrane fuel cells operation at high temperature and low humidity. J. power sources. 177(2), 247-253.

[115] Peighambardoust, S., Rowshanzamir, S., Amjadi, M., 2010. Review of the proton exchange membranes for fuel cell applications. Int. J. Hydrogen Energy. 35(17), 9349-9384.

[116] Pica, M., Donnadio, A., Casciola, M., Cojocaru, P., Merlo, L., 2012. Short side chain perfluorosulfonic acid membranes and their composites with nanosized zirconium phosphate: hydration, mechanical properties and proton conductivity. J. Mater. Chem. 22(47), 24902-24908.

[117] Pomogailo, A.D., 2005. Polymer sol-gel synthesis of hybrid nanocomposites. Colloid J. 67(6), 658-677.

[118] Ramani, V., Kunz, H.R., Fenton, J.M., 2005. Stabilized composite membranes and membrane electrode assemblies for elevated temperature/low relative humidity PEFC operation. J. Power Sources. 152, 182-188.

[119] Ramani, V., Kunz, H.R., Fenton, J.M., 2005. Stabilized heteropolyacid/Nafion® composite membranes for elevated temperature/low relative humidity PEFC operation. Electrochim. Acta. 50(5), 1181-1187.

[120] Ramaswamy, P., Wong, N.E., Shimizu, G.K., 2014. MOFs as proton conductors-challenges and opportunities. Chem. Soc. Rev. 43(16), 5913-5932.

[121] Ren, S., Sun, G., Li, C., Song, S., Xin, Q., Yang, X., 2006. Sulfated zirconia-Nafion composite membranes for higher temperature direct methanol fuel cells. J. Power Sources. 157(2), 724-726.

[122] Ren, Y., Chia, G.H., Gao, Z., 2013. Metal-organic frameworks in fuel cell technologies. Nano Today. 8(6), 577-597.

[123] Rikukawa, M. Sanui, K., 2000. Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog.  Polym. Sci. 25(10), 1463-1502.

[124] Sacca, A., Gatto, I., Carbone, A., Pedicini, R., Passalacqua, E., 2006. ZrO2-Nafion composite membranes for polymer electrolyte fuel cells (PEFCs) at intermediate temperature. J. Power Sources. 163(1), 47-51.

[125] Saccà, A., Carbone, A., Pedicini, R., Marrony, M., Barrera, R., Elomaa, M., Passalacqua, E., 2008. Phosphotungstic acid supported on a nanopowdered ZrO2 as a filler in Nafion‐based membranes for polymer electrolyte fuel cells. Fuel Cells. 8(3‐4), 225-235.

[126] Safari, J. Javadian, L., 2014. Chitosan decorated Fe3O4 nanoparticles as a magnetic catalyst in the synthesis of phenytoin derivatives. RSC Adv. 4(90), 48973-48979.

[127] Sakamoto, M., Nohara, S., Miyatake, K., Uchida, M., Watanabe, M., Uchida, H., 2014. Effects of incorporation of SiO2 nanoparticles into sulfonated polyimide electrolyte membranes on fuel cell performance under low humidity conditions. Electrochim. Acta. 137, 213-218.

[128] Sasikala, S., Meenakshi, S., Bhat, S.D., Sahu, A.K., 2014. Functionalized Bentonite clay-sPEEK based composite membranes for direct methanol fuel cells. Electrochim. Acta. 135, 232-241.

[129] Sgreccia, E., Chailan, J.F., Khadhraoui, M., Di Vona, M.L., Knauth, P., 2010. Mechanical properties of proton-conducting sulfonated aromatic polymer membranes: stress-strain tests and dynamical analysis. J. Power Sources. 195(23), 7770-7775.

[130] Shabanikia, A., Javanbakht, M., Amoli, H.S., Hooshyari, K., Enhessari, M., 2015. Polybenzimidazole/strontium cerate nanocomposites with enhanced proton conductivity for proton exchange membrane fuel cells operating at high temperature. Electrochim. Acta. 154, 370-378.

[131] Shahi, V.K., 2007. Highly charged proton-exchange membrane: sulfonated poly (ether sulfone)-silica polyelectrolyte composite membranes for fuel cells. Solid State Ionics. 177(39-40), 3395-3404.

[132] Sharaf, O.Z. Orhan, M.F., 2014. An overview of fuel cell technology: fundamentals and applications. Renew. Sust. Energy Rev. 32, 810-853.

[133] Shinde, S., Sami, A., Lee, J.H.,2015. Electrocatalytic hydrogen evolution using graphitic carbon nitride coupled with nanoporous graphene co-doped by S and Se. J. Mater. Chem. A. 3(24), 12810-12819.

[134] Silva, R.F., De Francesco, M., Pozio, A., 2004. Tangential and normal conductivities of Nafion® membranes used in polymer electrolyte fuel cells. J. Power Sources. 134(1), 18-26.

[135] Simari, C., Potsi, G., Policicchio, A., Perrotta, I., Nicotera, I., 2016. Clay-Carbon nanotubes hybrid materials for nanocomposite membranes: advantages of branched structure for proton transport under low humidity conditions in PEMFCs. J. Phys. Chem. C. 120(5), 2574-2584.

[136] Smitha, B., Sridhar, S., Khan, A.A., 2003. Synthesis and characterization of proton conducting polymer membranes for fuel cells. J. Membr. Sci. 225(1-2), 63-76.

[137] Steele, B.C., Heinzel, A., 2001. Materials for fuel-cell technologies. Nature. 414, 345-352.

[138] Sun, C., Lee, J.S., Zhang, M., 2008. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Delivery Rev. 60(11), 1252-1265.

[139] Tang, J., Yuan, W., Wang, J., Tang, J., Li, H., Zhang, Y., 2012. Perfluorosulfonate ionomer membranes with improved through-plane proton conductivity fabricated under magnetic field. J. Membr. Sci. 423-424, 267-274.

[140] Thomassin, J.M., Kollar, J., Caldarella, G., Germain, A., Jérôme, R., Detrembleur, C., 2007. Beneficial effect of carbon nanotubes on the performances of Nafion membranes in fuel cell applications. J. Membr. Sci. 303(1-2), 252-257.

[141] Tricoli, V., Nannetti, F., 2003. Zeolite-Nafion composites as ion conducting membrane materials. Electrochim. Acta. 48(18), 2625-2633.

[142] Tripathi, B.P.  Shahi, V.K., 2011. Organic-inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Prog. Polym. Sci. 36(7), 945-979.

[143] Truffier-Boutry, D., De Geyer, A., Guetaz, L., Diat, O., Gebel, G., 2007. Structural study of zirconium phosphate-Nafion hybrid membranes for high-temperature proton exchange membrane fuel cell applications. Macromolecules. 40(23), 8259-8264.

[144] Tsai, C.H., Wang, C.C., Chang, C.Y., Lin, C.H., Chen-Yang, Y.W., 2014. Enhancing performance of Nafion®-based PEMFC by 1-D channel metal-organic frameworks as PEM filler. Int. J. Hydrogen Energy. 39(28), 15696-15705.

[145] Wang, Y.J., Kim, D., 2007. Crystallinity, morphology, mechanical properties and conductivity study of in situ formed PVdF/LiClO4/TiO2 nanocomposite polymer electrolytes. Electrochim. Acta. 52(9), 3181-3189.

[146] Wang, Y., Chen, K.S., Mishler, J., Cho, S.C., Adroher, X.C., 2011. A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl. Energy. 88(4), 981-1007.

[147] Wang, H., Huang, L., Holmberg, B.A., Yan, Y., 2002. Nanostructured zeolite 4A molecular sieving air separation membranes. Chem. Commun. (16), 1708-1709.

[148] Wang, H., Holmberg, B.A. Yan, Y., 2003. Synthesis of template-free zeolite nanocrystals by using in situ thermoreversible polymer hydrogels. J. Am. Chem. Soc. 125(33), 9928-9929.

[149] Wang, L.S., Lai, A.N., Lin, C.X., Zhang, Q.G., Zhu, A.M., Liu, Q.L., 2015. Orderly sandwich-shaped graphene oxide/Nafion composite membranes for direct methanol fuel cells. J. Membr. Sci. 492, 58-66.

[150] Wen, P., Gong, P., Sun, J., Wang, J., Yang, S., 2015. Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density. J. Mater. Chem. A. 3(26), 13874-13883.

[151] Won, J., Park, H.H., Kim, Y.J., Choi, S.W., Ha, H.Y., Oh, I.H., Kim, H.S., Kang, Y.S., Ihn, K.J., 2003. Fixation of nanosized proton transport channels in membranes. Macromolecules. 36(9), 3228-3234.

[152] Wu, B., Lin, X., Ge, L., Wu, L., Xu, T., 2013. A novel route for preparing highly proton conductive membrane materials with metal-organic frameworks. Chem. Commun. 49(2), 143-145.

[153] Wu, H., Cao, Y., Shen, X., Li, Z., Xu, T., Jiang, Z., 2014. Preparation and performance of different amino acids functionalized titania-embedded sulfonated poly (ether ether ketone) hybrid membranes for direct methanol fuel cells. J. Membr. Sci. 463, 134-144.

[154] Wu, H., Cao, Y., Li, Z., He, G., Jiang, Z., 2015. Novel sulfonated poly (ether ether ketone)/phosphonic acid-functionalized titania nanohybrid membrane by an in situ method for direct methanol fuel cells. J. Power Sources. 273, 544-553.

[155] Xi, J., Wu, Z., Qiu, X., Chen, L., 2007. Nafion/SiO2 hybrid membrane for vanadium redox flow battery. J. Power Sources. 166(2), 531-536.

[156] Xu, T., Wu, D., Wu, L., 2008. Poly (2,6-dimethyl-1,4-phenylene oxide) (PPO)-a versatile starting polymer for proton conductive membranes (PCMs). Prog. Polym. Sci. 33(9), 894-915.

[157] Xu, J., Li, Y., Peng, S., Lu, G., Li, S., 2013. Eosin Y-sensitized graphitic carbon nitride fabricated by heating urea for visible light photocatalytic hydrogen evolution: the effect of the pyrolysis temperature of urea. Phys. Chem. Chem. Phys. 15(20), 7657-7665.

[158] Ye, D.H., Zhan, Z.G., 2013. A review on the sealing structures of membrane electrode assembly of proton exchange membrane fuel cells. J. Power Sources. 231, 285-292.

[159] Yen, C.Y., Liao, S.H., Lin, Y.F., Hung, C.H., Lin, Y.Y., Ma, C.C.M., 2006. Preparation and properties of high performance nanocomposite bipolar plate for fuel cell. J. Power Sources. 162(1), 309-315.

[160] Yoon, K.S., Choi, J.H., Hong, Y.T., Hong, S.K., Lee, S.Y., 2009. Control of nanoparticle dispersion in SPAES/SiO2 composite proton conductors and its influence on DMFC membrane performance. Electrochem. Commun. 11(7),1492-1495.

[161] Yuan, T., Pu, L., Huang, Q., Zhang, H., Li, X., Yang, H., 2014. An effective methanol-blocking membrane modified with graphene oxide nanosheets for passive direct methanol fuel cells. Electrochim. Acta. 117, 393-397.

[162] Yu, D.M., Sung, I.H., Yoon, Y.J., Kim, T.H., Lee, J.Y., Hong, Y.T., 2013. Properties of sulfonated poly (arylene ether sulfone)/functionalized carbon nanotube composite membrane for high temperature PEMFCs. Fuel Cells. 13(5), 843-850.

[163] Yun, S., Im, H., Heo, Y., Kim, J., 2011. Crosslinked sulfonated poly (vinyl alcohol)/sulfonated multi-walled carbon nanotubes nanocomposite membranes for direct methanol fuel cells. J. Membr. Sci. 380(1-2),208-215.

[164] Yun, S., Heo, Y., Im, H., Kim, J., 2012. Sulfonated multiwalled carbon nanotube/sulfonated poly (ether sulfone) composite membrane with low methanol permeability for direct methanol fuel cells. J. Appl. Polym. Sci. 126(S2).

[165] Zhao, C., Lin, H., Cui, Z., Li, X., Na, H., Xing, W., 2009. Highly conductive, methanol resistant fuel cell membranes fabricated by layer-by-layer self-assembly of inorganic heteropolyacid. J. Power Sources. 194(1), 168-174.

[166] Zhang, H., Ma, C., Wang, J., Wang, X., Bai, H., Liu, J., 2014. Enhancement of proton conductivity of polymer electrolyte membrane enabled by sulfonated nanotubes. Int. J. Hydrogen Energy. 39(2), 974-986.

[167] Zhou, W., Xiao, J., Chen, Y., Zeng, R., Xiao, S., Nie, H., Li, F., Song, C., 2011. Sulfonated carbon nanotubes/sulfonated poly (ether sulfone ether ketone ketone) composites for polymer electrolyte membranes. Polym. Adv. Technol. 22(12), 1747-1752.

[168] Zhang, L., Chae, S.R., Hendren, Z., Park, J.S., Wiesner, M.R., 2012. Recent advances in proton exchange membranes for fuel cell applications. Chem. Eng. J. 204-206, 87-97.

[169] Zhang, X., 2007. Porous organic-inorganic hybrid electrolytes for high-temperature proton exchange membrane fuel cells. J. Electrochem. Soc. 154(3), B322-B326.

[170] Zakaria, Z., Kamarudin, S.K., Timmiati, S.N., 2016. Membranes for direct ethanol fuel cells: an overview. Appl. Energy. 163, 334-342.

[171] Zarrin, H., Higgins, D., Jun, Y., Chen, Z., Fowler, M., 2011. Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells. J. Phys. Chem. C. 115(42), 20774-20781.

[172] Zhai, Y., Zhang, H., Hu, J., Yi, B., 2006. Preparation and characterization of sulfated zirconia (SO42-/ZrO2)/Nafion composite membranes for PEMFC operation at high temperature/low humidity. J. Membr. Sci. 280(1-2), 148-155.

[173] Zheng, Y., Liu, J., Liang, J., Jaroniec, M., Qiao, S.Z., 2012. Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ. Sci. 5(5), 6717-6731.

[174] Zheng, H.  Mathe, M., 2011. Enhanced conductivity and stability of composite membranes based on poly (2,5-benzimidazole) and zirconium oxide nanoparticles for fuel cells. J. Power Sources. 196(3), 894-898.

[175] Zeng, R., Wang, Y., Wang, S., Shen, P.K., 2007. Homogeneous synthesis of PFSI/silica composite membranes for PEMFC operating at low humidity. Electrochim. Acta. 52(12), 3895-3900.

[176] Zimmerman, C.M., Singh, A., Koros, W.J., 1997. Tailoring mixed matrix composite membranes for gas separations. J. Membr. Sci. 137(1-2), 145-154.

 

Statistics
Article View: 3,472
PDF Download: 3,480
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by sinaweb.