Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: a comprehensive review

Document Type: Review Paper


1 Microbial Biotechnology and Biosafety Dept., Agricultural Biotechnology Research Institute of Iran (ABRII), P.O. Box 31525-1897, Karaj, Iran.

2 Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden.


Recently, lignocellulosic biomass as the most abundant renewable resource has been widely considered for bioalcohols production. However, the complex structure of lignocelluloses requires a multi-step process which is costly and time consuming. Although, several bioprocessing approaches have been developed for pretreatment, saccharification and fermentation, bioalcohols production from lignocelluloses is still limited because of the economic infeasibility of these technologies. This cost constraint could be overcome by designing and constructing robust cellulolytic and bioalcohols producing microbes and by using them in a consolidated bioprocessing (CBP) system. This paper comprehensively reviews potentials, recent advances and challenges faced in CBP systems for efficient bioalcohols (ethanol and butanol) production from lignocellulosic and starchy biomass. The CBP strategies include using native single strains with cellulytic and alcohol production activities, microbial co-cultures containing both cellulytic and ethanologenic microorganisms, and genetic engineering of cellulytic microorganisms to be alcohol-producing or alcohol producing microorganisms to be cellulytic. Moreover, high-throughput techniques, such as metagenomics, metatranscriptomics, next generation sequencing and synthetic biology developed to explore novel microorganisms and powerful enzymes with high activity, thermostability and pH stability are also discussed. Currently, the CBP technology is in its infant stage, and ideal microorganisms and/or conditions at industrial scale are yet to be introduced. So, it is essential to bring into attention all barriers faced and take advantage of all the experiences gained to achieve a high-yield and low-cost CBP process.

Graphical Abstract

Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: a comprehensive review


Aeling, K.A., Salmon, K.A., Laplaza, J.M., Li,L., Headman, J.R., Hutagalung, A.H., Picataggio, S., 2012. Co-fermentation of xylose and cellobiose by an engineered S. cerevisiae. J. Ind. Microbiol. Biotechnol.39, 1597-1604.

Akinosho, H., Yee, K., Close, D., Ragauskas, A., 2014. The emergence of Clostridium thermocellum as a high utility candidate for consolidated bioprocessing applications. Front. Chem. 2:66. doi: 10.3389/fchem.2014.00066.

Ali, M.K., Rudolph, F.B., Bennett, G.N., 2004. Thermostable xylanase10B from Clostridium acetobutylicum ATCC824. J. Ind. Microbiol. Biotechnol. 31, 229-234.

Ali, S.S., Khan, M., Fagan, B., Mullins, E., Doohan, F.M., 2012. Exploiting the inter-strain divergence of Fusarium oxysporum for microbial bioprocessing of lignocellulose to bioethanol. AMB Express. 2(1), 1-9.

Ali, S.S., Khan, M., Mullins, E., Doohan, F.M., 2014. Identification of Fusarium oxysporum genes associated with lignocellulose bioconversion competency. Bioenergy Res. 7(1), 110-119.

Ali, S.S., Nugent, B., Mullins, E., Doohan, F.M., 2013. Insights from the fungus Fusarium oxysporum point to high affinity glucose transporters as targets for enhancing ethanol production from lignocellulose. PloS one, 8(1), e54701.

Alinia, R., Zabihi, S., Esmaeilzadeh, F., Kalajahi, F.J., 2010. Pretreatment of wheat straw by supercritical CO2 and its enzymatic hydrolysis for sugar production. Biosystems Eng. 107, 61-66.

Alper, H., Stephanopoulos, G., 2009. Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential?. Nat. Rev. Microbiol. 7(10), 715-723.

Alvira, P., Tomás‐Pejó, E., José Negro, M., 2011. Strategies of xylanase supplementation for an efficient saccharification and cofermentation process from pretreated wheat straw. Biotechnol. Progress. 27(4), 944-950.

Ameida, J.R.M., Modig, T., Petersson, A., Hahn-Hagerdal, B., Lidén, G., Gorwa-Grauslund, M.F., 2007. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Tech. Biotechnol. 82, 340-349.

Anasontzis, G.E., Christakopoulos, P., 2014. Challenges in ethanol production with Fusarium oxysporum through consolidated bioprocessing. Bioeng. 13, 43.

Anasontzis, G.E., Zerva, A., Stathopoulou, P.M., Haralampidis, K., Diallinas, G., Karagouni, A.D., Hatzinikolaou, D.G., 2011. Homologous overexpression of xylanase in Fusarium oxysporum increases ethanol productivity during consolidated bioprocessing (CBP) of lignocellulosics. J. Biotechnol. 152(1), 16-23.

Anbar, M., Gul, O., Lamed, R., Sezerman, U.O., Bayer, E.A., 2012. Improved thermostability of Clostridium thermocellum endoglucanase Cel8A by using consensus-guidedmutagenesis. Appl. Environ. Microbiol.78, 3458-3464.

Arai, T., Matsuoka, S., Cho, H.Y., Yukawa, H., Inui, M., Wong, S.L., Doi, R.H., 2007. Synthesis of Clostridium cellulovorans minicellulosomes by intercellular complementation. Proc. Natl. Acad. Sci. USA. 104,1456-1460.

Argyros, D.A., Tripathi, S.A., Barrett, T.F., Rogers, S.R., Feinberg, L.F., Olson, D.G., Caiazza, N.C., 2011. High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl. Environ. Microbiol. 77(23), 8288-8294.

Aruna, A., Nagavalli, M., Girijashankar, V., Rao, L.V., 2014. Direct bio-ethanol production by amylolytic yeast Candida albicans. Lett. Appl.  Microbiol. DOI: 10.1111/lam.12348.

Atsumi, S., Cann, A.F., Connor, M.R., Shen, C.R., Smith, K.M., Brynildsen, M.P., Liao, J.C., 2008a. Metabolic engineering of Escherichia coli for 1-butanol production. Metab. Eng. 10(6), 305-311.

Atsumi, S., Liao, J.C., 2008b. Metabolic engineering for advanced biofuels production from Escherichia coli. Curr. Opin. Biotechnol. 19(5), 414-419.

Bajwa, P.K., Phaenark, C., Grant, N., Zhang, X., Paice, M., Martin, V.J., Lee, H., 2011. Ethanol production from selected lignocellulosic hydrolysates by genome shuffled strains of Scheffersomyces stipitis. Bioresour. Technol. 102(21), 9965-9969.

Balat M, Balat H., 2009. Recent trends in global production and utilization of bioethanol fuel. Appl. Energ. 86, 2273-2282.

Ballesteros, M., Moreno, A.D., Olsson, L., Ibarra, D., Tomás-Pejó, E., 2013. Fed-batch SSCF using steam-exploded wheat straw at high dry matter consistencies and a xylose-fermenting Saccharomyces cerevisiae strain: effect of laccase supplementation. Biotechnol. Biofuels. 6(1), 160.

Balusu, R., Paduru, R.R., Kuravi, S. K., Seenayya, G., Reddy, G., 2005. Optimization of critical medium components using response surface methodology for ethanol production from cellulosic biomass by Clostridium thermocellum SS19. Process Biochem. 40, 3025-3030.

Bayer, E., Lamed, R., Himmel, M., 2007. The potential of cellulases and cellulosomes for cellulosic waste management. Curr. Opin. Biotechnol. 18, 237-245.

Becker, J., Boles, E., 2003. A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol. Appl. Environ. Microbiol. 69, 4144-4150.

Bélaich, J., Tardif, C., Bélaich, A., Gaudin, C., 1997. The cellulolytic system of Clostridium cellulolyticum. J. Biotechnol. 57, 3-14.

Bellido, C., Pinto, M. L., Coca, M., González-Benito, G., García-Cubero, M.T., 2014. Acetone–butanol–ethanol (ABE) production by Clostridium beijerinckii from wheat straw hydrolysates: Efficient use of penta and hexa carbohydrates. Bioresour. Technol. 167, 198-205.

Bhalla, A., Bansal, N., Kumar, S., Bischoff, K.M., Sani, R.K., 2013. Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresour. Technol. 128, 751-759.

Bhandiwad, A., Guseva, A., Lynd, L., 2013. Metabolic Engineering of Thermoanaerobacterium thermosaccharolyticum for increased n-butanol production. Adv. Microbiol. 3, 46.

Biofuels Digest, 2011. Abengoa secures biomass supply for Kansas cellulosic ethanol project. Available on (accessed on 5 February 2015).

Biswas, G.C.G., Ransom, C., Sticklen, M., 2006. Expression of biologically active Acidothermus cellulolyticus endoglucanase in transgenic maize plants. Plant Sci. 171, 617-623.

Bokinsky, G., Peralta-Yahya, P., George, A., Holmes, B., Steen, E., Dietrich, J., Lee, T., Tullman-Ercek, D., Voigt, C., Simmons, B., Keasling, J., 2011. Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc. Natl. Acad. Sci. USA. 108, 19949-19954.

Bolshakova, E., Ponomariev, A., Novikov, A., Svetlichnyi, V.A., Velikodvorskaya, G.A., 1994. Cloning and expression of genes coding for carbohydrate degrading enzymes of Anaerocellum thermophilum in Escherichia coli. Biochem. Biophys. Res. Commun. 202, 1076-1080.

Bomble, Y., 2014. Engineering more thermostable metabolic enzymes for improving CBP organisms. In 36th Symposium on Biotechnology for Fuels and Chemicals (April 28-May 1, 2014).

Bonaccorsi, E.D., Ferreira, A. J.S., Chambergo, F. S., Ramos, A.S.P., Mantovani, M.C., Farah, J.P.S., et al., 2006. Transcriptional response of the obligatory aerobe Trichoderma reesei to hypoxia and transient anoxia: implications for energy production and survival in the absence of oxygen. Biochem. 45, 3912-24.

Bothast, R.J., Schlicher, M.A., 2005. Biotechnological processes for conversion of corn into ethanol. Appl. Microbiol. Biotechnol. 67, 19-25.

Bothast, R.J., Saha, B.C., Flosenzier, A.V., Ingram, L.O., 1994. Fermentation of L-arabinose, D-xylose and D-glucose by ethanologenic recombinant Klebsiella oxytoca strain P2.Biotechnol. Lett. 16(4), 401-406.

Bramono, S.E., Lam, Y.S., Ong, S.L., He, J., 2011. A mesophilic Clostridium species that produces butanol from monosaccharides and hydrogen from polysaccharides. Bioresour. Technol. 102, 9558-9563.

Brandon, S.K., Sharma, L.N., Hawkins, G.M., Anderson, W.F., Chambliss, C.K., Doran-Peterson, J., 2011. Ethanol and co-product generation from pressurized batch hot water pretreated T85 bermudagrass and Merkeron napiergrass using recombinant Escherichia coli as biocatalyst. Biomass Bioenerg. 35, 3667-3673.

Brestic-Goachet, N., Gunasekaran, P., Cami B., et al., 1989. Transfer and expression of an Erwinia  chrysanthemi cellulase gene in Zymomonas mobilis.  J. Gen. Microbiol. 135 (4), 893-902.

Brethauer, S., Studer, M.H., 2014. Consolidated bioprocessing of lignocellulose by a microbial consortium. Energy Environ. Sci. 7(4), 1446-1453.

Brethauer, S., Wyman, C.E., 2010. Review: continuous hydrolysis and fermentation for cellulosic ethanol production. Bioresour. Technol. 101(13), 4862-4874.

Brooks, T.A., Ingram, L. 1995. Conversion of mixed waste office paper to ethanol by genetically engineered Klebsiella oxytoca strain P2. Biotechnol. Prog. 11, 619-625.

Brown, S.D., Guss, A.M., Karpinets, T.V., Parks, J.M., Smolin, N., Yang, S., Land, M.L., Klingeman, D.M., Bhandiwad, A., Rodriguez, M., 2011. Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum. Proc. Natl. Acad. Sci. USA. 108, 13752-13757.

Burgess, S.A., Lindsay, D., Flint, S.H., 2010. Thermophilic bacilliand their importance in dairy processing. Int. J. Food Microbiol. 144, 215-225.

Cai, Y., Lai, C., Li, S., Liang, Z., Zhu, M., Liang, S., Wang, J., 2011. Disruption of lactate dehydrogenase through homologous recombination to improve bioethanol production in Thermoanaerobacterium aotearoense. Enzyme Microbial. Technol. 48(2), 155-161.

Caspi, J., Irwin, D., Lamed, R., Li, Y., Fierobe, H.P., Wilson, D.B., Bayer, E.A., 2008. Conversion of Thermobifida fusca free exoglucanases into cellulosomal components: comparative impact on cellulose-degrading activity. J. Biotechnol. 135, 351-357.

Chandel, A.K., Chandrasekhar, G., Narasu, M.L., Rao, L.V., 2010. Simultaneous saccharification and fermentation (SSF) of aqueous ammonia pretreated Saccharum spontaneum (wild sugarcane) for second generation ethanol production. Sugar Tech. 12(2), 125-132.

Chang, J.J., Ho, F.J., Ho, C.Y., Wu, Y.C., Hou, Y.H., Huang, C.C., Li, W.H., 2013. Assembling a cellulase cocktail and a cellodextrin transporter into a yeast host for CBP ethanol production. Biotechnol. Biofuels. 6(1), 19-31.

Chen, F., Dixon, R.A., 2007. Lignin modification improves fermentable sugar yields for biofuel production. Nat. Biotechnol. 25, 759-761.

Chen, W.H., Pen, B.L., Yu, Ch.T., Hwang, W.S., 2011. Pretreatment efficiency and structural characterization of rice straw by an integrated process of dilute-acid and steam explosion for bioethanol production. Bioresour. Technol.102, 2916-2924.

Chen, W.H., Tu, Y.J., Sheen, H.K., 2011. Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave–assisted heating. Appl. Energ. 88, 2726-2734.

Chena, J., Zhanga, L., Zhana, P., Wanga, Y., Aia, B., Wanga, C., 2011. Optimization of simultaneous saccharification and cofermentation process for ethanol production from poplar wood. International Conference on Agricultural and Biosystems Engineering, in Adv. Biomed. Eng. 1-2.

Cheng, K.K., Liu, Q., Zhang, J.A., Li, J.P., Xu, J.M., Wang, G.H., 2010. Improved 2, 3-butanediol production from corncob acid hydrolysate by fed-batch fermentation using Klebsiella oxytoca. Process Biochem. 45(4), 613-616.

Cherry, J.R., Fidantsef, A.L., 2003. Directed evolution of industrial enzymes: an update. Curr. Opin. Biotechnol. 14, 438-443.

Chinn, M.S., Nokes, S.E., 2008. Screening of thermophilic anaerobic bacteria for solid substrate cultivation on lignocellulosic substrates. Biotechnol. Prog. 22, 53-59.

Cho, K.M., Yoo, Y.J., Kang, H.S., 1999. δ-Integration of endo/exo-glucanase and β-glucosidase genes into the yeast chromosomes for direct conversion of cellulose to ethanol. Enzyme Microbiol. Technol. 25, 23-30.

Cho, H.Y., Yukawa, H., Inui, M., Doi, R.H., Wong, S.L., 2004. Production of minicellulosomes from Clostridium cellulovorans in Bacillus subtilis WB800. Appl. Environ. Microbiol. 70, 5704-5707.

Chow, C.M., Yague, E., Raguz, S., Wood, D.A., Thurston, C.F., 1994. The Cel3 gene of Agaricus bisporus codes for a modular cellulase and is transcriptionally regulated by the carbon source. Appl. Environ. Microbiol. 60, 2779-2785.

Christakopoulos, P.K., Macris, B., Kekos, D., 1989. Direct fermentation of cellulose to ethanol by Fusarium oxysporum. Enzyme Microb. Technol. 11, 236-239.

Christakopoulos, P.K., Koullas, D.P., Kekos, D., Koukios, E.G., Macris, B.J., 1991. Direct conversion of straw to ethanol by Fusarium oxysporum: effect of cellulose crystallinity. Enzyme Microb. Technol. 13(3), 272-274.

Chu, S., Majumdar, A., 2012. Opportunities and challenges for a sustainable energy future. Nat. 488(7411), 294-303.

Coleman, H.D., Yan, J., Mansfield, S.D., 2009. Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proc. Natl. Acad. Sci. USA.106, 13118- 13123.

Cosgrove, D.J., Tanada, T., 2007. Use of gr2 proteins to modify cellulosic materials and to enhance enzymatic and chemical modification of cellulose. US Patent, 20070166805.

Cripps, R.E., Eley, K., Leak, D.J., Rudd, B., Taylor, M., Todd, M., Atkinson, T., 2009. Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production. Metab. Eng. 11(6), 398-408.

Dashtban, M., Schraft, H., Qin, W., 2009. Fungal bioconversion of lignocellulosic residues: opportunities and perspectives. Int. J. Biol. Sci. 5, 578-595.

Davey, M.E., O’toole, G.A., 2000. Microbial biofilms: from ecology to molecular genetics. Microbiol. Mol. Biol. Rep. 64, 847-867.

de Almeida, M.N., Guimarães, V.M., Falkoski, D.L., Visser, E.M., Siqueira, G.A., Milagres, A.M., de Rezende, S.T., 2013. Direct ethanol production from glucose, xylose and sugarcane bagasse by the corn endophytic fungi Fusarium verticillioides and Acremonium zeae. J. Biotechnol. 168(1), 71-77.

de Bont, J.A., 1998. Solvent-tolerant bacteria in biocatalysis. Trends Biotechnol.16(12), 493-499.

de Carvalho, C.C., Da Cruz, A.A., Pons, M.N., Pinheiro, H.M., Cabral, J., Da Fonseca, M.M.R., Fernandes, P., 2004. Mycobacterium sp., Rhodococcus erythropolis, and Pseudomonas putida behavior in the presence of organic solvents. Microscopy Res. Tech. 64(3), 215-222.

Deanda, K., Zhang, M., Eddy, C., Picataggio, S., 1996. Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl. Environ. Microbiol. 62, 4465-4470.

Del Pozo, M.V., Fernández-Arrojo, L., Gil-Martínez, J., Montesinos, A., Chernikova, T. N., Nechitaylo, T.Y., Golyshin, P.N., 2012. Microbial β-glucosidases from cow rumen metagenome enhance the saccharification of lignocellulose in combination with commercial cellulase cocktail. Biotechnol. Biofuels. 5, 73.

Demain, A.L., Newcomb, M., Wu, J.H.D., 2005. Cellulase, clostridia, and ethanol. Microbiol. Mol. Biol. Rev. 69,124-154.

den Haan, R., Mcbride, J.E., La Grange, D.C., Lynd, L.R., Van Zyl, W.H., 2007a. Functional expression of cellobiohydrolases in Saccharomyces cerevisiae towards one-step conversion of cellulose to ethanol. Enzyme Microb. Technol. 40, 1291-1299.

den Haan, R., Rose, S.H., Lynd, L.R., Van Zyl, W.H., 2007b. Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab. Eng. 9, 87-94.

den Haan, R., Kroukamp, H., Mert, M., Bloom, M., Görgens, J.F., van Zyl, W.H., 2013. Engineering Saccharomyces cerevisiae for next generation ethanol production. J. Chem. Technol. Biotechnol. 88(6), 983-991.

den Haan, R., van Rensburg, E., Rose, S. H., Görgens, J.F., van Zyl, W.H., 2015. Progress and challenges in the engineering of non-cellulolytic microorganisms for consolidated bioprocessing. Curr. Opin. Biotechnol. 33, 32-38.

Deng, Y., Fong, S.S., 2011. Metabolic engineering of Thermobifida fusca for direct aerobic  bioconversion of untreated lignocellulosic biomass to 1-propanol. Metab. Eng. 13, 570-577.

Deng, Y., Olson, D.G., Zhou, J., Herring, C.D., Joe Shaw, A., Lynd, L.R., 2013. Redirecting carbon flux through exogenous pyruvate kinase to achieve high ethanol yields in Clostridium thermocellum. Metab. Eng. 15, 151-158.

Dharmagadda, V.S.S., Nokes, S.E., Strobel, H.J., Flythe, M.D., 2010. Investigation of the metabolic inhibition observed in solid-substrate cultivation of Clostridium thermocellum on cellulose. Bioresour. Technol. 101, 6039-6044.

Dias, A.A., Freitas, G.S., Marques, G.S.M., Sampaio, A., Fraga, I.S., Rodrigues, M.A.M., Evtuguin, D.V., Bezerra, R.M.F., 2010. Enzymatic saccharification of biologically pre-treated wheat straw with white-rot fungi. Bioresour. Technol. 101, 6045-6050.

Dmytruk, O.V., Voronovsky, A.Y., Abbas, C.A., Dmytruk, K.V., Ishchuk, O.P., Sibirny, A.A., 2008a. Overexpression of bacterial xylose isomerase and yeast host xylulokinase improves xylose alcoholic fermentation in the thermotolerant yeast Hansenula polymorpha. FEMS Yeast Res. 8(1), 165-173.

Dmytruk, O.V., Dmytruk, K.V., Abbas, C.A., Voronovsky, A.Y., Sibirny, A.A., 2008b. Engineering of xylose reductase and overexpression of xylitol dehydrogenase and xylulokinase improves xylose alcoholic fermentation in the thermotolerant yeast Hansenula polymorpha. Microb. Cell Fact. 7, 21.

Doran, K., Stern, L., Pilgrim, C., 2012. Mascoma and Lallemand ethanol technology announce commercial agreement with Pacific ethanol for drop-in MGT™ yeast product and commercial roll-out progress. Business Wire. Available on Mascoma-Lallemand-Ethanol-Technology-Announce-Commercial-Agreement. (accessed on 5 February 2015).

Doran, J.B., Ingram, L.O., 1993. Fermentation of crystalline cellulose to ethanol by Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes. Biotechnol. Progress, 9(5), 533-538.

Doran, J.B., Aldrich, H.C., Ingram, L.O., 1994. Saccharification and fermentation of sugar cane bagasse by Klebsiella oxytoca P2 containing chromosomally integrated genes encoding the Zymomonas mobilis ethanol pathway. Biotechnol. Bioeng. 44(2), 240-247.

Du, R., Li, S., Zhang, X., Wang, L., 2010. Cellulose hydrolysis and ethanol production by a facultative anaerobe bacteria consortium H and its identification. Sheng wu gong cheng xue bao= Chinese J. Biotechnol. 26(7), 960-965.

Eksteen, J.M., van Rensburg, P., Cordero Otero, R.R., Pretorius, I.S., 2003. Starch fermentation by recombinant Saccharomyces cerevisiae strains expressing the α-amylase and glucoamylase genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera. Biotechnol. Bioeng. 84(6), 639-646.

Elkins, J.G., Raman, B., and Keller, M., 2010. Engineered microbial systems for enhanced conversion of lignocellulosic biomass. Curr. Opin. Biotechnol. 21, 657-662.

Erdei, B., Frankó, B., Galbe, M., Zacchi, G., 2013a. Glucose and xylose co-fermentation of pretreated wheat straw using mutants of S. cerevisiae TMB3400. J. Biotechnol. 164(1), 50-58.

Erdei, B., Galbe, M., Zacchi, G., 2013b. Simultaneous saccharification and co-fermentation of whole wheat in integrated ethanol production. Biomass and Bioenerg. 56, 506-514.

Ezeji, T.C., Blaschek, H.P., 2007. Biofuel from butanol: advances in genetic and physiological manipulation of clostridia. BioWorld Eur. 2, 12-15.

Ezeji, T.C., Blaschek, H.P., 2008. Fermentation of dried distillers’ grains and soluble (DDGS) hydrolysates to solvents and value-added products by solventogenic Clostridia. Bioresour. Technol. 99, 5232-5242.

Ezeji, T.C., Milne, C., Price, N.D., et al., 2010. Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Appl. Microbiol. Biotechnol. 85, 1697-1712.

Ezeji, T.C., Qureshi, N., Blaschek, H.P., 2012. Microbial production of a biofuel (acetone-butanolethanol) in a continuous bioreactor: Impact of bleed and simultaneous product recovery. Bioproc. Biosyst. Eng. 36(1), 109-116.

Fan, L.H., Zhang, Z.J., Yu, X.Y., Xue, Y.X., Tan, T.W., 2012a. Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production. Proc. Natl. Acad. Sci. USA., 109, 13260-13265.

Fan, Z., Wu, W., Hildebrand, A., Kasuga, T., Zhang, R., et al., 2012b. Anovel biochemical route for fuels and chemicals production from cellulosic biomass. PLOS ONE, 7 (2).

Fan, L.H., Zhang, Z.J., Yu, X.Y., Xue, Y.X., Wang, M.M., Tan, T.W., 2013. In vitro assembly of minicellulosomes with two scaffoldins on the yeast cell surface for cellulose saccharification and bioethanol production.Process Biochem. 48(3), 430-437.

Fan, Z.L., South, C., Lyford, K., Munsie, J., van Walsum, P., Lynd, L.R., 2003. Conversion of paper sludge to ethanol in a semicontinuous solids-fed reactor. Bioprocess Biosyst. Eng. 26 (2), 93-101.

Fang, H., Xia, L., 2015. Cellulase production by recombinant Trichoderma reesei and its application in enzymatic hydrolysis of agricultural residues. Fuel.  143, 211-216.

Faure, E., Bagnara, C., Belaich, A., Belaich, J.P., 1988. Cloning and expression of two cellulase genes of Clostridium cellulolyticum in Escherichia coli. Gene. 65, 51-58.

Favaro, L., Basaglia, M., Saayman, M., Rose, S. H., van Zyl, W.H., Casella, S., 2010a. Engineering amylolytic yeasts for industrial bioethanol production. Chem. Eng. Transactions. 20, 97-102.

Favaro, L., Basaglia, M., Trento, A., Saayman, M., Rose, S.H., van Zyl W.H., et al., 2010b. Development of raw starch hydrolyzing yeasts for industrial bioethanol production. J. Biotechnol.  150 (Supplement 1), 142.

Favaro, L., Basaglia, M., van Zyl, W.H., Casella, S., 2012b. Using an efficient fermenting yeast enhances ethanol production from unfiltered wheat bran hydrolysates. Appl. Energy. Available on 2012.05.059. (accessed on 5 February 2015).

Favaro, L., Jooste, T., Basaglia, M., Rose, S.H., Saayman, M., Görgens, J.F., et al., 2012b. Codon-optimized glucoamylase sGAI of Aspergillus awamori improves starch utilization in an industrial yeast. Appl. Microbiol. Biotechnol. 95, 957-68.

Favaro, L., Jooste, T., Basaglia, M., Rose, S.H., Saayman, M., Görgens, J.F., Casella, S., van Zyl, W.H., 2013. Designing industrial yeasts for the consolidated bioprocessing of starchy biomass to ethanol, Bioeng. 4(2), 97-102.

Ferreira, J.A., Lennartsson, P.R., Edebo. L., Taherzadeh, M.J., 2013. Zygomycetes-based biorefinery: Present status and future prospects, Bioresour.  Technol. 135, 523-532.

Fierobe, H.P., Mingardon, F., Mechaly, A., Belaich, A.,  Rincon, M.T., Pages, S., Lamed, R., Tardif, C., Belaich, J.P., Bayer, E.A., 2005. Action of designer cellulosomes on homogeneous versus complex substrates: controlled incorporation of three distinct enzymes into a defined trifunctional scaffoldin. J. Biol. Chem. 280, 16325-16334.

Fierobe, H.P., Mechaly, A., Tardif, C., Belaich, A., Lamed, R., Shoham, Y., Bayer, E.A., 2001. Design and production of active cellulosome chimeras Selective incorporation of dockerin-containing enzymes into defined functional complexes. J.Biol. Chem. 276(24), 21257-21261.

Flores, J.A., Gschaedler, A., Amaya-Delgado, L., Herrera-López, E.J., Arellano, M., Arrizon, J., 2013. Simultaneous saccharification and fermentation of Agave tequilana fructans by Kluyveromyces marxianus yeasts for bioethanol and tequila production. Bioresour. Technol. 146, 267-273.

Fond, O., Engasser, J.-M., Matta-El-Amouri, G., Petitdemange, H., 1986. Acetone butanol fermentation on glucose and xylose. I. Regulation and kinetics in batch cultures. Biotechnol. Bioeng. 28, 160-166.

Fong, J.C.N., Svenson, C.J., Nakasugi, K., Leong, C.T.C. , Bowman, J.P., Chen, B., Glenn, D.R., Neilan, B.A., Rogers, P.L., 2006. Isolation and characterization of two novel ethanol-tolerant facultative-anaerobic thermophilic bacteria strains from waste compost. Extremophiles. 10, 363-372.

Fonseca, C., Olofsson, K., Ferreira, C., Runquist, D., Fonseca, L.L., Hahn-Hägerdal, B., Lidén, G., 2011. The glucose/xylose facilitator Gxf1 from Candida intermedia expressed in a xylose-fermenting industrial strain of Saccharomyces cerevisiae  increases xylose uptake in SSCF of wheat straw. Enzyme Microbial. Technol. 48(6), 518-525.

Fonseca, G.G., Gombert, A.K., Heinzle, E., Wittmann, C., 2007. Physiology of the yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source. FEMS Yeast Res. 7(3), 422-435.

Fonseca, G.G., Heinzle, E., Wittmann, C., Gombert, A.K., 2008. The yeast Kluyveromyces marxianus and its biotechnological potential. Appl. Microbiol. Biotechnol. 79(3), 339-354.

Fontes, C.M., Gilbert, H.J., 2010. Cellulosomes: highly efficient nanoma- chines designed to deconstruct plant cell wall complex carbohydrates. Annu. Rev. Biochem. 79, 655-681.

Freeman, S., 2012. Qteros biofuels start-up closes Chicopee facility. MassLive. Available on (accessed on 5 February 2015).

Fry, S.C., Mohler, K.E., Nesselrode, B.H., Frankov´a, L., 2008. Mixed linkage beta-glucan: Xyloglucan endotransglucosylase, a novel wall-remodelling enzyme from Equisetum (horsetails) and charophytic algae. Plant J. 55, 240-252.

Fu, C., Mielenz, J.R., Xiao, X., Ge, Y., Hamilton, C.Y., Rodriguez, M., Chen, F., Foston, M., Ragauskas, A., Bouton, J., 2011. Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc. Natl. Acad. Sci. USA. 108, 3803-3808.

Fujita, Y., Ito, J., Ueda, M., Fukuda, H., Kondo, A., 2004. Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl. Environ. Microbiol. 70, 1207-1212.

Fujita, Y., Takahashi, S., Ueda, M., Tanaka, A., Okada, H., Morikawa, Y., Kawaguchi, T., Arai, M., Fukuda, H. Kondo, A., 2002. Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl. Environ. Microbiol. 68, 5136-5141.

Fukuda, H., Kondo, A., Tamalampudi, S., 2009. Bioenergy: sustainable fuels from biomass by yeast and fungal whole-cell biocatalysts. Biochem. Eng. J. 44, 2-12.

Gal, L., Pages, S., Guadin, C., et al., 1997. Characterization of the cellulolytic complex (cellulosome) produced by Clostridium cellulolyticum. Appl. Environ. Microbiol. 217, 15-22.

Galazka, J.M., Tian, C., Beeson, W.T., Martinez, B., Glass, N.L., Cate, J.H., 2010. Cellodextrin transport in yeast for improved biofuel production. Sci. 330, 84-86.

Gao, K., Boiano, S., Marzocchella, A., Rehmann, L., 2014. Cellulosic Butanol Production from Alkali-Pretreated Switchgrass (Panicumvirgatum) and Phragmites (Phragmites australis). Bioresour. Technol. 174, 176-181.

Geddes, C.C., Mullinnix, M.T., Nieves, I.U., Peterson, J.J., Hoffman, R.W., York, S.W., Ingram, L.O., 2011. Simplified process for ethanol production from sugarcane bagasse using hydrolysate-resistant Escherichia coli strain MM160. Bioresour. Technol. 102(3), 2702-2711.

Gefen, G., Anbar, M., Morag, E., Lamed, R., Bayer, E.A., 2012. Enhanced cellulose degradation by targeted integration of a cohesin- fused beta-glucosidase into the Clostridium thermocellum cellulosome. Proc. Natl. Acad. Sci. U.S.A. 109, 10298-10303.

Geng, A., Zou, G., Yan, X., Wang, Q., Zhang, J., Liu, F., Zhou, Z., 2012. Expression and characterization of a novel metagenome-derived cellulase Exo2b and its application to improve cellulase activity in Trichoderma reesei. Appl. Microbiol. Biotechnol. 96(4), 951-962.

Georgieva, T.I., Mikkelsen, M.J., Ahring, B.K., 2008. Ethanol production from wet-exploded wheat straw hydrolysate by thermophilic anaerobic bacterium Thermoanaerobacter BG1L1 in a continuous immobilized reactor. In Biotechnol. Fuels and Chem. (pp. 99-110). Humana Press.

Gharechahi, J., Zahiri, H.S., Noghabi, K.A., Salekdeh, G.H., 2014. In-depth diversity analysis of the bacterial community resident in the camel rumen. Systematic and Appl. Microbiol. (Online first). doi:10.1016/j.syapm.2014.09.004.

Gheshlaghi, R.E.Z.A., Scharer, J.M., Moo-Young, M., Chou, C.P., 2009. Metabolic pathways of clostridia for producing butanol. Biotechnol. Adv. 27(6), 764-781.

Golias, H., Dumsday, G.J., Stanley, G.A., Pamment, N.B., 2002. Evaluation of a recombinant Klebsiella oxytoca strain for ethanol production from cellulose by simultaneous saccharification and fermentation: comparison with native cellobiose-utilising yeast strains and performance in co-culture with thermotolerant yeast and Zymomonas mobilis. J. Biotechnol. 96(2), 155-168.

Gonzalez, R., Tao, H., Purvis, J., et al., 2003. Gene array-based identification of changes that contribute to ethanol tolerance in ethanologenic Escherichia coli: comparison of KO11 (parent) to LY01 (resistant mutant). Biotechnol. Prog. 19, 612-623.

Görgens, J.F., Bressler, D.C., van Rensburg, E., 2014. Engineering Saccharomyces cerevisiae  for direct conversion of raw, uncooked or granular starch to ethanol. Critical Rev. Biotechnol. 1-23.

Goshadrou, A., Karimi, K., Lefsrud, M., 2013. Enhanced NSSF for ethanol production by phosphoric acid pretreatment. CSBE/SCGAB 2013 Annual Conference, University of Saskatchewan, Saskatoon, SK, 7-10 July 2013.

Goto, M., Semimaru, T., Furukawa, K., Hayashida, S., 1994. Analysis of the raw starch-binding domain by mutation of a glucoamylase from Aspergillus awamori var. kawachi expressed in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 60, 3926-30.

Goto, M., Shinoda, N., Oka, T., Sameshima, Y., Ekino, K., Furukawa, K., 2004. Thr/Ser-rich domain of Aspergillus glucoamylase is essential for secretion. Biosci. Biotechnol. Biochem. 68, 961-3.

Gottumukkala, L.D., Parameswaran, B., Valappil, S.K., Mathiyazhakan, K., Pandey, A., Sukumaran, R.K., 2013. Biobutanol production from rice straw by a non acetone producing Clostridium sporogenes BE01. Bioresour. Technol. 145, 182-187.

Gottumukkala, L.D., Parameswaran, B., Valappil, S.K., Pandey, A., Sukumaran, R.K., 2014. Growth and butanol production by Clostridium sporogenes BE01 in rice straw hydrolysate: kinetics of inhibition by organic acids and the strategies for their removal. Biomass Convers. Bioref. 1-7.

Gowen, C.M., Fong, S.S., 2010. Exploring biodiversity for cellulosic biofuel production. Chem. Biodivers. 7, 1086-1097.

Goyal, G., Tsai, S.L., Madan, B., Da Silva, N.A., Chen, W., 2011. Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome. Microb. Cell Fact. 10, 89-96.

Graham, J.E., Clark, M.E., Nadler, D.C., Huffer, S., Chokhawala, H.A., Rowland, S.E., Blanch, H.W., Clark, D.S., Robb, F.T., 2011. Identification and characterization of a multidomain hyperthermophilic cellulase from an archaeal enrichment. Nat. Commun. 2 (375), 1-9.

Gruber, F., Visser, J., Kubicek, C.P., de Graaff,  L.H., 1990. The development of a heterologous transformation system for the cellulolytic fungus Trichoderma reesei based on a pyrG-negative mutant strain. Curr. Genet. 18, 71-76.

Guangtao, Z., Seiboth, B., Wen, C., Yaohua, Z., Xian, L., Wang, T., 2010. A novel carbon source-dependent genetic transformation system for the versatile cell factory Hypocrea jecorina (anamorph Trichoderma reesei). FEMS Microbiol. Lett. 303(1), 26-32.

Guedon, E., Desvaux, M., Petitdemange, H.,2002.Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Appl. Environ. Microbiol. 68, 53-58.

Guo, T., He, A.Y., Du, T.F., Zhu, D.W., Liang, D.F., Jiang, M., Ouyang, P.K., 2013. Butanol production from hemicellulosic hydrolysate of corn fiber by a Clostridium beijerinckii mutant with high inhibitor-tolerance. Bioresour. Technol. 135, 379-385.

Guo, X., Cao, C., Wang, Y., Li, C., Wu, M., Chen, Y., Xiao, D., 2014. Effect of the inactivation of lactate dehydrogenase, ethanol dehydrogenase, and phosphotransacetylase on 2, 3-butanediol production in Klebsiella pneumoniae strain. Biotechnol. Biofuels. 7(1), 44.

Ha, S.J., Galazka, J.M., Rin Kim, S., Choi, J.H., Yang, X., Seo, J.H., Louise Glass, N., Cate, J.H.D., Jin, Y.S., 2011. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc. Natl. Acad. Sci. USA. 108, 504-509.

Ha, S.J., Galazka, J.M., Joong Oh, E., Kordić, V., Kim, H., Jin, Y.S., Cate, J.H., 2013. Energetic benefits and rapid cellobiose fermentation by Saccharomyces cerevisiae expressing cellobiose phosphorylase and mutant cellodextrin transporters. Metab. Eng. 15, 134-143.

Haghighi Mood, S., Golfeshan, A.H., Tabatabaei, M., Salehi Jouzani, G., Najafi, G.H., Gholami, M., Ardjmand, M., 2013. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew. Sustain. Energy Rev. 27, 77-93.

Haghighi Mood, S., Golfeshan, A.H., Tabatabaei, M., Abbasalizadeh, S., Ardjmand, M., Salehi Jouzani, Gh., 2014. Comparison of different ionic liquids pretreatment for corn stover enzymatic saccharification. Preparative Biochem. Biotechnol. 44(5), 451-463.

Hall, M., Bansal, P., Lee, J.H., Realff, M.J., Bommarius, A.S., 2010. Cellulose crystallinity – a key predictor of the enzymatic hydrolysis rate. FEBS J. 277, 1571-1582.

Hamelinck, C.N., van Hooijdonk, G., Faaji, A.P.C., 2005. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenerg. 28, 384-410.

Hargreaves, P.I., Barcelos, C.A., da Costa, A.C.A., Pereira J.N., 2013. Production of ethanol 3G from Kappaphycus alvarezii: Evaluation of different process strategies. Bioresour. Technol. 134, 257-263.

Hasunuma, T., Kondo, A., 2012. Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Biotechnol. Adv.  30(6), 1207-1218.

He, M.X., Wu, B., Qin, H., Ruan, Z.Y., Tan, F.R., Wang, J.L., Hu, Q.C., 2014. Zymomonas mobilis: a novel platform for future biorefineries. Biotechnol. Biofuels, 7(1), 101.

He, Q., Hemme, C.L., Jiang, H., He, Z., Zhou, J., 2011. Mechanisms of enhanced cellulosic bioethanol fermentation by co-cultivation of Clostridium and Thermoanaerobacter spp. Bioresour.  Technol. 102(20), 9586-9592.

Hennessy, R.C., Doohan, F., Mullins, E., 2013. Generating phenotypic diversity in a fungal biocatalyst to investigate alcohol stress tolerance encountered during microbial cellulosic biofuel production. PloS one, 8(10), e77501.

Hess, M., Sczyrba, A., Egan, R., Kim, T.W., Chokhawala, H., Schroth, G., Rubin, E.M., 2011. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Sci. 331, 463-467.

Hickert, L.R., Souza-Cruz, P.B.D., Rosa, C.A., Ayub, M.A.Z., 2013. Simultaneous saccharification and co-fermentation of un-detoxified rice hull hydrolysate by Saccharomyces cerevisiae  ICV D254 and Spathaspora arborariae NRRL Y-48658 for the production of ethanol and xylitol. Bioresour. Technol. 143, 112-116.

Higashide, W., Li, Y., Yang, Y., Liao, J. C., 2011. Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose. Appl. Environ. Microbiol. 77(8), 2727-2733.

Ho, C.Y., Chang, J.J., Lee, S.C., Chin, T.Y., Shih, M.C., Li, W.H., Huang, C.C., 2012. Development of cellulosic ethanol production process via co-culturing of artificial cellulosomal Bacillus and kefir yeast. Appl. Energ. 100, 27-32.

Ho, C.Y., Chang, J.J., Lin, J.J., Chin, T.Y., Mathew, G.M., Huang, C.C., 2011. Establishment of functional rumen bacterial consortia (FRBC) for simultaneous biohydrogen and bioethanol production from lignocellulose. Int. J. Hydrogen Energ. 36(19), 12168-12176.

Hodge, D., Karim, M., Schell, D., McMillan, J., 2009. Model-based fed-batch for high-solids enzymatic cellulose hydrolysis. Appl. Biochem. Biotechnol. 152, 88-107.

Hong, J., Tamaki, H., Yamamoto, K., Kumagai, H., 2003. Cloning of a gene encoding a thermo-stable endo-beta-1,4-glucanase from Thermoascus aurantiacus and its expression in yeast. Biotechnol. Lett. 25, 657-661.

Hong, J., Wang, Y., Kumagai, H., Tamaki, H., 2007. Construction of thermotolerant yeast expressing thermostable cellulase genes. J. Biotechnol. 130, 114-123.

Hörmeyer, H.F., Tailliez, P., Millet, J., Girard, H., Bonn, G., Bobleter, O., Aubert, J.P., 1988. Ethanol production by Clostridium thermocellum grown on hydrothermally and organosolv pretreated lignocellulosic materials. Appl. Microbiol. Biotechnol. 29, 528-535.

Hossain, S.M., Anantharaman, N., Das, M., 2012. Bioethanol fermentation from untreated and pretreated lignocellulosic wheat straw using fungi Fusarium oxysporum. Indian J. Chem. Technol. 19, 63-70.

Hossain, S.M., 2013. Bioethanol fermentation from non-treated and pretreated corn stover using Aspergillus oryzae. Chem. Eng. Res. Bul. 16(1), 33-44.

Houbraken, J., Varga, J., Rico-Munoz, E., Johnson, S., Samson, R., 2008. Sexual reproduction as the cause of heat resistance in the food spoilage fungus Byssochlamys spectabilis (anamorph Paecilomyces variotii). Microbiol. 74, 1613-1619.

Houbraken, J., Verweij, P.E., Rijs, A.J.M.M., Borman, A.M., Samson, R.A., 2010. Identification of Paecilomyces variotii in clinical samples and settings. J. Clin. Microbiol. 2754-761.

Hu, N., Yuan, B., Sun, J., Wang, S.A., Li, F.L., 2012. Thermotolerant Kluyveromyces marxianus and Saccharomyces cerevisiae  strains representing potentials for bioethanol production from Jerusalem artichoke by consolidated bioprocessing. Appl. Microbiol. Biotechnol. 95(5), 1359-1368.

Huang, H., Liu, H., Gan, Y.R., 2010. Genetic modification of critical enzymes and involved genes in butanol biosynthesis from biomass. Biotechnol. Adv. 28, 651-657.

Huang, J., Chen, D., Wei, Y., Wang, Q., Li, Z., Chen, Y., Huang, R., 2014.  Direct ethanol production from lignocellulosic sugars and sugarcane bagasse by a recombinant Trichoderma reesei strain HJ48. Sci. World J. Article ID 798683, 8 pages. Available on (accessed on 5 February 2015).

Huffer S., Roche C.M., Blanch H.W., Clark D.S., 2012. Escherichia coli for biofuel production: bridging the gap from promise to practice. Trends Biotechnol. 30, 538-545.

Hughes, S.R., Gibbons, W.R., Bang, S.S., Pinkelman, R., Bischoff, K.M., Slininger, P.J.,  Javers, J.E., 2012. Random UV-C mutagenesis of Scheffersomyces (formerly Pichia) stipitisNRRL Y-7124 to improve anaerobic growth on lignocellulosic sugars. J. Ind. Microbiol. Biotechnol. 39(1), 163-173.

Ilmen, M., Den Haan, R., Brevnova, E., McBride, J., Wiswall, E., Froehlich, A., Koivula, A., Voutilainen, S.P., Siika-aho, M., Lagrange, D.C., Thorngren, N., Ahlgren, S., Mellon, M., Deleault, K., Rajgarhia, V., Van Zyl, W.H., Penttila, M., 2011. High level secretion of cellobiohydrolases by Saccharomyces cerevisiae. Biotechnol. Biofuels. 4, 30.

Ingram, L., Conway, T., Clark, D., et al., 1987. Genetic engineering of ethanol production in Escherichia coli. Appl. Environ. Microbiol. 53, 2420-2425.

Inokuma, K., Takano, M., Hoshino, K., 2013. Direct ethanol production from N-acetylglucosamine and chitin substrates by Mucor species. Biochem. Eng. J. 72, 24-32.

Inui, M., Suda, M., Kimura, S., et al., 2008. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl. Microbiol. Biotechnol. 77, 1305-1316.

Ishchuk, O.P., Abbas, C.A., Sibirny, A.A., 2010.  Heterologous expression of Saccharomyces cerevisiae  MPR1 gene confers tolerance to ethanol and L-azetidine-2-carboxylic acid in Hansenula polymorpha. J. Ind. Microbiol. Biotechnol. 37 (2), 213-218.

Ishchuk, O.P., Voronovsky, A.Y., Abbas, C.A., Sibirny, A.A., 2009. Construction of Hansenula polymorpha strains with improved thermotolerance. Biotechnol. Bioeng. 104 (5), 911-919.

Ishchuk, O.P., Voronovsky, A.Y., Stasyk, O.V., Gayda, G.Z., Gonchar, M.V., Abbas, C.A., Sibirny, A.A., 2008. Overexpression of pyruvate decarboxylase in the yeast Hansenula polymorpha results in increased ethanol yield in high-temperature fermentation of xylose. FEMS Yeast Res. 8(7), 1164-1174.

Ishola, M.M., Jahandideh, A., Haidarian, B., Brandberg, T., Taherzadeh, M.J., 2013. Simultaneous saccharification, filtration and fermentation (SSFF): A novel method for bioethanol production from lignocellulosic biomass. Bioresour. Technol. 133, 68-73.

Isroi, M.R., Syamsiah, S., Niklasson, C., Cahyanto, M.N., Lundquist, K., Taherzadeh, M.J., 2011. Biological pretreatment of lignocelluloses with white-rot fungi and its applications: A review.  BioResourc. 6(4), 5224-5259.

Jang, Y.S., Lee, J., Malaviya, A., Seung, D.Y., Cho, J.H., Lee, S.Y., 2012. Butanol production from renewable biomass: rediscovery of metabolic pathways and metabolic engineering. Biotechnol. J. 7(2), 186-198.

Jeffries, T.W., Nelson, S.S., Mahan, S.D., Su, Y.K., Van Vleet, J.R.H., Long, T.M., 2010. Pichia stipitis engineered for improved fermentation of cellulosic and hemicellulosic sugars. In The 32nd Symposium on Biotechnology for Fuels and Chemicals.

Jeon, E., Hyeon, J.E., Suh, D.J., Suh, Y.W., Kim, S.W., Song, K.H., Han, S.O., 2009. Production of cellulosic ethanol in Saccharomyces cerevisiae heterologous expressing Clostridium thermocellum endoglucanase and Saccharomycopsis fibuligera β-glucosidase genes. Mol. Cells. 28, 369-373.

Jin, M., Balan, V., Gunawan, C., Dale, B.E., 2011. Consolidated bioprocessing (CBP) performance of Clostridium phytofermentans on AFEX-treated corn stover for ethanol production. Biotechnol. Bioeng. 108(6), 1290-1297.

Jin, M., Gunawan, C., Balan, V., Dale, B.E., 2012a. Consolidated bioprocessing (CBP) of AFEX™‐pretreated corn stover for ethanol production using Clostridium phytofermentans at a high solids loading. Biotechnol. Bioeng. 109(8), 1929-1936.

Jin, M., Gunawan, C., Uppugundla, N., Balan, V., Dale, B.E., 2012b. A novel integrated biological process for cellulosic ethanol production featuring high ethanol productivity, enzyme recycling and yeast cells reuse. Energy Environ. Sci. 5(5), 7168-7175.

Jin, M., Lau, M.W., Balan, V., Dale, B.E., 2010. Two-step SSCF to convert AFEX-treated switchgrass to ethanol using commercial enzymes and Saccharomyces cerevisiae 424A (LNH-ST). Bioresour. Technol. 101(21), 8171-8178.

Jin, M., Sarks, C., Gunawan, C., Bice, B.D., Simonett, S.P., Narasimhan, R.A., Sato, T.K., 2013. Phenotypic selection of a wild Saccharomyces cerevisiae strain for simultaneous saccharification and co-fermentation of AFEX™ pretreated corn stover. Biotechnol. Biofuels. 6(1), 108.

Jin, T., Wang, H., Wang, J., Mou, H., 2014. Ethanol production from kelp slag hydrolysates using genetically engineered Escherichia coli KO11. J. Appl. Phycol. 1-10.

Jordan, D.B., Bowman, M.J., Braker, J.D., Dien, B.S., Hector, R.E., Lee, C.C., Mertens, J.A., Wagschal, K., 2012. Plant cell walls to ethanol. Biochem. J. 442, 241-252.

Jung, S.K., Parisutham, V., Jeong, S.H., Lee, S.K., 2012. Heterologous expression of plant cell wall degrading enzymes for effective production of cellulosic biofuels. BioMed Res. Int. Available on (accessed on 5 February 2015).

Jurgens, G., Survase, S., Berezina, O., Sklavounos, E., Linnekoski, J., Kurkijärvi, A., Granström, T., 2012. Butanol production from lignocellulosics. Biotechnol. Lett. 34(8), 1415-1434.

Kádár, Z., Szengyel, Z., Réczey, K., 2004. Simultaneous saccharification and fermentation (SSF) of industrial wast es for the production of ethanol.  Ind. Crop. Prod. 20, 103-110.

Kamei, I., Hirota, Y., Meguro, S., 2014a. Direct fungal production of ethanol from high-solids pulps by the ethanol-fermenting white-rot fungus Phlebia sp. MG-60. BioResour. 9(3), 5114-5124.

Kamei, I., Nitta, T., Nagano, Y., Yamaguchi, M., Yamasaki, Y., Meguro, S., 2014b. Evaluation of spent mushroom waste from Lentinula edodes cultivation for consolidated bioprocessing fermentation by Phlebia sp. MG-60. Int. Biodet. Biodeg. 94, 57-62.

Kamei, I., Hirota, Y., Mori, T., Hirai, H., Meguro, S., Kondo, R., 2012a. Direct ethanol production from cellulosic materials by the hypersaline-tolerant white-rot fungus Phlebia sp. MG-60. Bioresour. Technol.112, 137-142.

Kamei, I., Hirota, Y., and Meguro, S., 2012b. Integrated delignification and simultaneous saccharification and fermentation of hard wood by a white-rot fungus, Phlebia sp. MG-60.  Bioresour. Technol. 26, 137 -141.

Kang, L., Wang, W., Lee, Y.Y., 2010. Bioconversion of kraft paper mill sludges to ethanol by SSF and SSCF. Appl. Biochem. Biotechnol. 161(1-8), 53-66.

Kang, L., Wang, W., Pallapolu, V.R., Lee, Y.Y., 2011. Enhanced ethanol production from de-ashed paper sludge by simultaneous saccharification and fermentation and simultaneous saccharification and co-fermentation. BioResour. 6(4), 3791-3808.

Karhumaa, K., Wiedemann, B., Hahn-Hagerdal, B., Boles, E., Gorwa-Grauslund, M.F., 2006. Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae  strains. Microb. Cell Fact. 10, 5-18.

Katahira, S., Fujita, Y., Mizuike, A., Fukuda, H., Kondo, A., 2004. Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Appl. Environ. Microbiol. 70, 5407-5414.

Katahira, S., Mizuike, A., Fukuda, H., Kondo, A., 2006. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose-and cellooligosaccharide-assimilating yeast strain. Appl. Microbiol. Biotechnol. 72(6), 1136-1143.

Kazi, F.K., Fortman, J.A., Anex, R.P., Hsu, D.D., Aden, A., Dutta, A., Kothandaraman, G., 2010. Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel. 89, 20-28.

Khattab, S.M.R., Watanabe, S., Saimura, M., Afifi, M.M., Zohri, A.N.A., Abdul-Raouf, U. M., Kodaki, T., 2011. Construction of a novel strictly NADPH-dependent Pichia stipitis xylose reductase by site-directed mutagenesis for effective bioethanol production. In Zero-Carbon Energy Kyoto (pp. 117-122). Springer Japan.

Khaw, T.S., Katakura, Y., Koh, J., Kondo, A., Ueda, M., Shioya, S., 2006a. Evaluation of performance of different surface-engineered yeast strains for direct ethanol production from raw starch. Appl. Microbiol. Biotechnol. 70(5), 573-579.

Khaw, T., Katakura, Y., Ninomiya, K., Bito, Y., Katahira, S., Kondo, A., Shioya, S., 2006b. Effect of flocculation on performance of arming yeast in direct ethanol fermentation. Appl. Microbiol. Biotechnol. 73(1), 60-66.

Khaw, T.S., Katakura, Y., Ninomiya, K., Moukamnerd, C., Kondo, A., Ueda, M., Shioya, S., 2007. Enhancement of ethanol production by promoting surface contact between starch granules and arming yeast in direct ethanol fermentation. J. Biosci. Bioeng. 103(1), 95-97.

Khramtsov, N., McDade, L., Amerik, A., Yu, E., Divatia, K., Tikhonov, A., Henck, S., 2011. Industrial yeast strain engineered to ferment ethanol from lignocellulosic biomass. Bioresour.  Technol. 102(17), 8310-8313.

Khuong, L.D., Kondo, R., De Leon, R., Anh, T.K., Meguro, S., Shimizu, K., Kamei, I., 2014a. Effect of chemical factors on integrated fungal fermentation of sugarcane bagasse for ethanol production by a white-rot fungus, Phlebia sp. MG-60. Bioresour. Technol. 167, 33-40.

Khuong, L.D., Kondo, R., De Leon, R., Kim Anh, T., Shimizu, K., Kamei, I., 2014b. Bioethanol production from alkaline-pretreated sugarcane bagasse by consolidated bioprocessing using Phlebia sp. MG-60. Int. Biodet. Biodeg.88, 62-68.

Kim, S., Dale, B.E., 2004. Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenerg. 26, 361-75.

Kim, T., Lee, Y.Y., 2005. Pretreatment of corn stover by soaking in aqueous ammonia. Appl.  Biochem. Biotechnol. 124(1/3), 1119-1132.

Kim, D.K., Rathnasingh, C., Song, H., Lee, H.J., Seung, D., Chang, Y.K., 2013. Metabolic engineering of a novel Klebsiella oxytoca strain for enhanced 2, 3-butanediol production. J. Biosci.  Bioeng. 116(2), 186-192.

Kim, H.R., Im, Y.K., Ko, H.M., Chin, J.E., Kim, I.C., Lee, H.B., Bai, S., 2011. Raw starch fermentation to ethanol by an industrial distiller’s yeast strain of Saccharomyces cerevisiae expressing glucoamylase and α-amylase genes. Biotechnol. Lett.33(8), 1643-1648.

Kim, J.H., Kim, H.R., Lim, M.H., Ko, H.M., Chin, J.E., Lee, H.B., Bai, S., 2010. Construction of a direct starch-fermenting industrial strain of Saccharomyces cerevisiae producing glucoamylase, α-amylase and debranching enzyme. Biotechnol. Lett. 32(5), 713-719.

Kim, S., Baek, S.H., Lee, K., Hahn, J.S., 2013.  Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β-glucosidase, Microb. Cell Fact. 12, 1-7.

Kim, S., Kim, C.H., 2014. Evaluation of whole Jerusalem artichoke (Helianthus tuberosus> L.) for consolidated bioprocessing ethanol production. Renew. Energ. 65, 83-91.

Kim, T.H., Lee, Y.Y., 2007. Pretreatment of corn stover by soaking in aqueous ammonia at moderate temperatures. Appl. Biochem. Biotechnol. 137(1-12), 81-92.

Kim, T.H., Taylor, F., Hicks, K.B., 2008. Bioethanol production from barley hull using SAA (soaking in aqueous ammonia) pretreatment. Bioresour. Technol. 99(13), 5694-5702.

Klein, M.D., Oleskowicz P.P., Simmons, B.A., Blanch, H.W., 2012. The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol. Bioeng. 109(4), 1083-1087.

Ko, K.C., Lee, J.H., Han, Y., Choi, J.H., Song, J.J., 2013. A novel multifunctional cellulolytic enzyme screened from metagenomic resources representing ruminal bacteria. Biochem. Biophys. Res. Commun. 441, 567-572.

Kondo, A., Shigechi, H., Abe, M., Uyama, K., Matsumoto, T., Takahashi, S., Fukuda, H., 2002. High-level ethanol production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell-surface glucoamylase. Appl. Microbiol. Biotechnol. 58(3), 291-296.

Kosugi, A., Kondo, A., Ueda, M., Murata, Y., Vaithanomsat, P., Thanapase, W., Mori, Y., 2009. Production of ethanol from cassava pulp via fermentation with a surface-engineered yeast strain displaying glucoamylase. Renew. Energ. 34(5), 1354-1358.

Kotaka, A., Bando, H., Kaya, M., Kato-Murai, M., Kuroda, K., Sahara, H., Ueda, M., 2008. Direct ethanol production from barley β-glucan by sake yeast displaying Aspergillus oryzae β-glucosidase and endoglucanase. J. Biosci. Bioeng. 105(6), 622-627.

Kötter, P., Ciriacy, M., 1993. Xylose fermentation by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 38, 776-783.

Kovács, K., Willson, B.J., Schwarz, K., Heap, J.T., Jackson, A., Bolam, D.N., Minton, N.P., 2013. Secretion and assembly of functional mini-cellulosomes from synthetic chromosomal operons in Clostridium acetobutylicum ATCC 824. Biotechnol. Biofuels. 6(1), 117.

Kricka, W., Fitzpatrick, J., Bond, U., 2014. Metabolic engineering of yeasts by heterologous enzyme production for degradation of cellulose and hemicelluloses from biomass: a perspective, Front. Microbiol. 5, 174, 1-11.

Krivoruchko, A., Serrano-Amatriain, C., Chen, Y., Siewers, V., Nielsen, J., 2013. Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism. J. Ind. Microbiol. Biotechnol. 40(9), 1051-1056.

Kubicek, C.P., 2013. Systems biological approaches towards understanding cellulase production by Trichoderma reesei. J. Biotechnol.163, 133-142.

Kumagai, A., Kawamura, S., Lee, S. H., Endo, T., Rodriguez Jr, M., Mielenz, J.R., 2014. Simultaneous saccharification and fermentation and a consolidated bioprocessing for Hinoki cypress andEucalyptus after fibrillation by steam and subsequent wet-disk milling. Bioresour. Technol. 162, 89-95.

Kundu, S., Ghose, T.K., Mukhopadhyay, S.N., 1983. Bioconversion of cellulose into ethanol by Clostridium thermocellum—product inhibition. Biotechnol. Bioeng. 25(4), 1109-1126.

la Grange, D.C., Den Haan, R., Van Zyl, W.H., 2010. Engineering cellulolytic ability into bioprocessing organisms. Appl. Microbiol. Biotechnol. 87(4), 1195-1208.

la Grange, D.C., Pretorius, I.S., Claeyssens, M., van Zyl, W.H., 2001. Degradation of xylan to D-xylose by recombinant Saccharomyces cerevisiae coexpressing the Aspergillus niger β-xylosidase (xlnD) and the Trichoderma reesei xylanase II (xyn2) genes. Appl. Environ. Microbiol. 67, 5512-5519.

Lan, T.Q., Gleisner, R., Zhu, J.Y., Dien, B.S., Hector, R.E., 2013. High titer ethanol production from SPORL-pretreated lodgepole pine by simultaneous enzymatic saccharification and combined fermentation. Bioresour. Technol. 127, 291-297.

Lee, F.W.F., Da Silva, N.A., 1997. Improved efficiency and stability of multiple cloned gene insertions at the δ sequences of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 48, 339-45.

Lee, J., Jang, Y.S., Choi, S.J., Im, J.A., Song, H., Cho, J.H., Seung, D.Y., Terry, P.E., Bennett, G.N., Lee, S.Y., 2012. Metabolic engineering of Clostridium acetobutylicum ATCC 824 for isopropanol-butanol-ethanol fermentation. Appl. Environ. Microbiol. 78, 1416-1423.

Lee, S.K., Chou, H., Ham, T.S., Lee, T.S., Keasling, J.D., 2008. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr. Opin. Biotechnol. 19, 556-563.

Lee, Y.E., Lowe, S.E., Zeikus, J.G., 1993. Regulation and characterization of xylanolytic enzymes of Thermoanaerobacterium saccharolyticum B6A-RI. Appl. Environ. Microbiol. 59, 763-771.

Lee, W.H., Nan, H., Kim, H.J., Jin, Y.S., 2013. Simultaneous saccharification and fermentation by engineered Saccharomyces cerevisiae without supplementing extracellular β-glucosidase. J. Biotechnol. 167(3), 316-322.

Leggio, L.L., Welner, D., and DeMaria, L., 2012. A structural overview of GH61 proteins fungal cellulose degrading polysaccharide monooxygenases. Comput. Struct. Biotechnol. J. 2, 1-8.

Lejeune, A., Eveleigh, D.E., Colson, C., 1988. Expression of an endoglucanase gene of Pseudomonas fluorescens var. cellulose in Zymomonas mobilis,” FEMS Microbiol. Lett. 49(3),  363-366.

Lewis, L.Z., Weber, S.A., Cotta, M.A., Li, S.Z., 2012. A new β-glucosidase producing yeast for lower-cost cellulosic ethanol production from xylose-extracted corncob residues by simultaneous saccharification and fermentation. Bioresour. Technol. 104, 410-416.

Li, C., Knierim, B., Manisseri, C., Arora, R., Scheller, H.V., Auer, M., Vogel, K.P., Simmons, B.A., Singh, S., 2010. Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour. Technol. 101,  4900-4906.

Li, H.G., Luo, W., Wang, Q., Yu, X.B., 2014a. Direct fermentation of gelatinized cassava starch to acetone, butanol, and ethanol using Clostridium acetobutylicum mutant obtained by atmospheric and room temperature plasma. Appl. Biochem. Biotechnol. 172(7), 3330-3341.

Li, H.G., Ofosu, F.K., Li, K.T., Gu, Q.Y., Wang, Q., Yu, X.B., 2014b. Acetone, butanol, and ethanol production from gelatinized cassava flour by a new isolates with high butanol tolerance. Bioresour. Technol. 172, 276-282.

Li, J., Baral, N.R., Jha, A.K., 2014. Acetone–butanol–ethanol fermentation of corn stover by Clostridium species: present status and future perspectives. World J. Microbiol. Biotechnol. 30(4), 1145-1157.

Li, Y., Xu, T., Tschaplinski, T.J., Engle, N.L., Yang, Y., Graham, D.E., Zhou, J., 2014. Improvement of cellulose catabolism in Clostridium cellulolyticum by sporulation abolishment and carbon alleviation. Biotechnol. Biofuels. 7(1), 25.

Li, L., Ai, H., Zhang, S., Li, S., Liang, Z., Wu, Z.Q., Wang, J.F., 2013. Enhanced butanol production by coculture of Clostridium beijerinckii and Clostridium tyrobutyricum. Bioresour. Technol. 143, 397-404.

Li, P., Lee, J., Ryu, H.J., Oh, K.K., 2013. Ethanol production from Saccharina japonica using an optimized extremely low acid pretreatment followed by simultaneous saccharification and fermentation. Bioresour. Technol. 127, 119-125.

Li, Y., Tschaplinski, T.J., Engle, N.L., Hamilton, C.Y., Rodriguez, M., Liao, J.C., Graham, D.E., 2012. Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations. Biotechnol. Biofuels. 5(1), 2.

Liang, C., Fioroni, M., Rodriguez-Ropero, F., Xue, Y., Schwaneberg, U., Ma,Y., 2011. Directed evolution of a thermophilic endoglucanase (Cel5A) into highly active Cel5A variants withan expanded temperature profile. J. Biotechnol. 154, 46-53.

Lim, S.H., Lee, H., Sok, D.E., Choi, E.S., 2010. Recombinant production of an inulinase in a Saccharomyces cerevisiae  gal80 strain. J. Microbiol. Biotechnol. 20, 1529-1533.

Lin, Y., Tanaka, S., 2006. Ethanol fermentation from biomass resources: current state and prospects. Appl. Microbiol. Biotechnol. 69, 627-642.

Lin, C.W., Wu, C.H., Tran, D.T., Shih, M.C., Li, W.H., Wu, C.F., 2011. Mixed culture fermentation from lignocellulosic materials using thermophilic lignocellulose-degrading anaerobes. Process Biochem. 46(2), 489-493.

Linger J.G., Adney, W.S., Darzins, A., 2010. Heterologous expression and extracellular secretion of cellulolytic enzymes by Zymomonas mobilis, Appl. Environ. Microbiol. 76(19),  6360-6369.

Linggang, S., Phang, L.Y., Wasoh, H., Abd-Aziz, S., 2013. Acetone–butanol–ethanol production by Clostridium acetobutylicum ATCC 824 using sago pith residues hydrolysate. BioEnerg.  Res. 6(1), 321-328.

López-Contreras, A.M., Smidt, H., van der Oost, J., Claassen, P.A., Mooibroek, H., de Vos, W.M., 2001. Clostridium beijerinckii cells expressing Neocallimastix patriciarum glycoside hydrolases show enhanced lichenan utilization and solvent production. Appl. Environ. Microbiol. 67, 5127-5133.

Lu, X., Zhang., Y., Angelidaki, I., 2009. Optimization of H2SO4 catalyzed hydrothermal pretreatment of rapeseed straw for bioconversion to ethanol: Focusing on pretreatment at high solids content. Bioresour. Technol. 100, 3048-3053.

Lu, Y., Yi-Heng, P.Z., Lynd, L.R., 2006. Enzyme–microbe synergy during cellulose hydrolysis by Clostridium thermocellum. Proc. Natl. Acad. Sci. USA., 103, 16165-16169.

Lübbehüsen, T.L., Nielsen, J., McIntyre, M., 2004. Aerobic and anaerobic ethanol production by Mucorcircinelloides during submerged growth. Appl. Microbiol. Biotechnol. 63, 543-548.

Lundell, T.K., Makela, M.R., and Hilden, K., 2010. Lignin modifying enzymes in filamentous basidiomycetes: Ecological, functional and phylogenetic review J. Basic Microbiol. 50 (1), 5- 20.

Luo, Z., Zhang, Y., Bao, J., 2014. Extracellular secretion of β-glucosidase in ethanologenic E. coli enhances ethanol fermentation of cellobiose. Appl. Biochem. Biotechnol. 174(2), 772-783.

Lynd, L.R., Baskaran, S., Casten, S., 2001. Salt accumulation resulting from base added for pH control, and not ethanol, limits growth of Thermoanaerobacterium thermosaccharolyticum HG-8 at elevated feed xylose concentrations in continuous culture. Biotechnol. Prog. 17, 118-125.

Lynd, L.R., Weimer, P.J., Van Zyl, W.H. Pretorius, I.S., 2002. Microbial cellulose utilization: fundamentals and Biotechnol. Microbiol. Mol. Biol. Rev. 66, 506-577.

Mach, R.L., Schindler, M., Kubicek, C.P., 1994. Transformation of Trichoderma reesei based on hygromycin B resistance using homologous expression signals. Curr. Genet. 25, 567-70.

Machida, M., Yamada, O., Gomi, K., 2008. Genomics of Aspergillus oryzae: learning from the history of Koji mold and exploration of its future. DNA Res. 15(4), 173-183.

Maehara, T., Ichinose, H., Furukawa, T., Ogasawara, W., Takabatake, K., Kaneko, S., 2013a. Ethanol production from high cellulose concentration by the basidiomycete fungus Flammulina velutipes. Fungal Biol. 117(3), 220-226.

Maehara, T., Takabatake, K., Kaneko, S., 2013b. Expression of Arabidopsis thaliana xylose isomerase gene and its effect on ethanol production in Flammulina velutipes. Fungal Biol. 117(11), 776-782.

Maki, M. L., Armstrong, L., Leung, K.T., Qin, W., 2013. Increased expression of β-glucosidase in Clostridium thermocellum 27405 significantly increases cellulase activity. Bioeng. 4(1), 15.

Marchal, R., Ropars, M., Pourquie, J., et al., 1992. Large-scale enzymatic hydrolysis of agricultural lignocellulosic biomass. Part 2: conversion into acetone-butanol. Bioresour. Technol. 42, 205-217.

Martinez, D., Berka, R.M., Henrissat, B., Saloheimo, M., Arvas, M., Baker, S.E., et al., 2008. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat. Biotechnol.26, 553-560.

Matano, Y., Hasunuma, T., Kondo, A., 2012. Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass. Bioresour. Technol. 108, 128-133.

Matano, Y., Hasunuma, T., Kondo, A., 2013. Cell recycle batch fermentation of high-solid lignocellulose using a recombinant cellulase-displaying yeast strain for high yield ethanol production in consolidated bioprocessing. Bioresour. Technol. 135, 403-409.

Matsushika, A., Inoue, H., Kodaki, T., Sawayama, S., 2009. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl. Micorobiol. Biotechnol. 84, 37-53.

Matsuzaki, C., Nakagawa, A., Koyanagi, T., Tanaka, K., Minami, H., Tamaki, H., Kumagai, H., 2012. Kluyveromyces marxianus-based platform for direct ethanol fermentation and recovery from cellulosic materials under air-ventilated conditions. J. Biosci. Bioeng. 113(5), 604-607.

Mazzoli, R., Lamberti, C., Pessione, E., 2012. Engineering new metabolic capabilities in bacteria: lessons from recombinant cellulolytic strategies. Trends Biotechnol. 30, 111-119.

McBride, J.E., Brevnova, E., Ghandi, C., Mellon, M., Froehlich, A., Delaault, K., Rajgarhia, V., Flatt, J., Van Zyl, W.H., den Haan, R., La Grange, D.C., Rose, S.H., Penttil¨a, M., Ilmen, M., Siika-aho, M., Uusitalo, J., Hau, H.H., Rice, C., Villari, J., Stonehouse, E.A., Gilbert, A., Keating, J.D., Xu, H., Willes, D., Shikhare, I., Thorngren, N., Warner, A.K., Murphy, D., 2010. Yeast expressing cellulases for simultaneous saccharification andfermentation using cellulose. PCT/US2009/065571.

McMillan, J.D., Newman, M.M., Templeton, D.W., Mohagheghi, A., 1999. Simultaneous saccharification and cofermentation of dilute-acid pretreated yellow poplar hardwood to ethanol using xylose-fermenting Zymomonas mobilis. In Twentieth Symposium on Biotechnol. for Fuels and Chemicals (pp. 649-665). Humana Press.

Mei, C., Park, S.H., Sabzikar, R., Qi, C., Ransom, C., Sticklen, M., 2009. Green tissue-specific production of a microbial endo-cellulase in maize (Zea mays L.) endoplasmic-reticulum and mitochondria converts cellulose into fermentable sugars. J. Chem. Technol. Biotechnol.  84, 689-695.

Meinander. N.Q., Boels, I., Hahn-Hägerdal, B., 1999. Fermentation of xylose/glucose mixtures by metabolically engineered Saccharomyces cerevisiae strains expressing XYL1 and XYL2 from Pichia stipitis with and without overexpression of TAL1. Bioresour. Technol.  68, 79-87.

Millati, R., Mustikaningrum, G., Yuliana, A., Cahyanto, M.N., Niklasson, C., Taherzadeh, M. J., 2014. 2ndGeneration ethanol by zygomycetes fungi at elevated temperature. Energy Procedia. 52, 104-109.

Mingardon, F., Chanal, A., Tardif, C., Fierobe, H., 2011. The issue of secretion in heterologous expression of Clostridium cellulolyticum cellulase-encoding genes in Clostridium acetobutylicum ATCC 824. Appl. Environ. Microbiol.  77, 2831-2838.

Mingardon, F., Perret, S., Belaich, A., Tardif, C., Belaich, J., Fierobe, H., 2005. Heterologous production, assembly, and secretion of a minicellulosome by Clostridium acetobutylicum ATCC 824. Appl. Environ. Microbiol. 71, 1215-1222.

Mingardon, F., Chanal, A., Lopez-Contreras, A.M., Dray, C., Bayer, E.A., Fierobe, H.P., 2007. Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting cellulolytic complexes. Appl. Environ. Microbiol. 73, 3822-3832.

Ming-xiong, H., Hong, F., Fan, B., Yi, L., Xun, L., Yi-zheng, Z., 2009. Direct production of ethanol from raw sweet potato starch using genetically engineered Zymomonas mobilis. African J. Microbiol. Res. 3(11), 721-726.

Minty, J.J., Singer, M.E., Scholz, S.A., Bae, C.H., Ahn, J.H., Foster, C.E., Lin, X.N., 2013. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proc. Natl. Acad. Sci. USA. 110(36), 14592-14597.

Misawa N., Okamoto, T., Nakamura, K., 1988. Expression of a cellulase gene in Zymomonas mobilis. J. Biotechnol. 7(3), 167-177.

Mizuno, R., Ichinose, H., Maehara, T., Takabatake, K., Kaneko, S., 2009a. Properties of ethanol fermentation by Flammulina velutipes. Biosci. Biotechnol. Biochem. 73(10), 2240-2245.

Mizuno, R., Ichinose, H., Honda, M., Takabatake, K., Sotome, I., Takai, T., Kaneko, S., 2009b. Use of whole crop sorghums as a raw material in consolidated bioprocessing bioethanol production using Flammulina velutipes. Biosci. Biotechnol. Biochem. 73(7), 1671-1673.

Mohr, G., Hong, W., Zhang, J., Cui, G.Z., Yang, Y., Cui, Q., Lambowitz, A.M., 2013. A targetron system for gene targeting in thermophiles and its application in Clostridium thermocellum. PloS one. 8(7), e69032.

Monrroy, M., Ibanez, J., Melin, V., Baeza, J., Mendonca, R.T., Contreras, D., Freer, J., 2010. Bioorganosolv pretreatments of P. radiata by a brown rot fungus (Gloephyllum trabeum) and ethanolysis. Enzyme Microb. Technol. 47, 11-16.

Moreno, A.D., Tomás-Pejó, E., Ibarra, D., Ballesteros, M., Olsson, L., 2013. In situ laccase treatment enhances the fermentability of steam-exploded wheat straw in SSCF processes at high dry matter consistencies. Bioresour. Technol. 143, 337-343.

Morisaka, H., Matsui, K., Tatsukami, Y., Kuroda, K., Miyake, H., Tamaru, Y., Ueda, M., 2012. Profile of native cellulosomal proteins of Clostridium cellulovorans adapted to various carbon sources. AMB Express. 2 (37), 1-5.

Moshi, A.P., Crespo, C.F., Badshah, M., Hosea, K.M., Mshandete, A.M., Mattiasson, B., 2014. High bioethanol titre from Manihot glaziovii through fed-batch simultaneous saccharification and fermentation in Automatic Gas Potential Test System. Bioresour. Technol. 156, 348-356.

Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M., 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol.  96(6), 673-686.

Müller, S., Sandal, T., Kamp-Hansen, P., Dalbøge, H., 1998. Comparison of expression systems in the yeasts Saccharomyces cerevisiae, Hansenula polymorpha, Klyveromyces lactis, Schizosaccharomyces pombe and Yarrowia lipolytica. Cloning of two novel promoters from Yarrowia lipolytica. Yeast. 14, 1267-1283.

Mullinnix, M.T., 2014. Evaluation of four different cultivars of Eucalyptus grandis for the production of ethanol in a liquefaction plus simultaneous saccharification and co-fermentation (L+ SScF) process using ethanologenic bacteria Escherichia coli SY100. In 36th Symposium on Biotechnology for Fuels and Chemicals (April 28-May 1, 2014).

Muñoz-Gutiérrez, I., Oropeza, R., Gosset, G., Martinez, A., 2012. Cell surface display of a β-glucosidase employing the type V secretion system on ethanologenic Escherichia coli for the fermentation of cellobiose to ethanol. J. Ind. Microbiol. Biotechnol. 39(8), 1141-1152.

Murai, T., Yoshino, T., Ueda, M., Haranoya, I., Ashikari, T., Yoshizumi, H., Tanaka, A., 1998. Evaluation of the function of arming yeast displaying glucoamylase on its cell surface by direct fermentation of corn to ethanol. J. Ferment. Bioeng. 86(6), 569-572.

Nakamura, Y., Kobayashi, F., Ohnaga, M., Sawada, T., 1997. Alcohol fermentation of starch by a genetic recombinant yeast having glucoamylase activity. Biotechnol. Bioeng. 53, 21-5.

Nakamura, Y., Kobayashi, F., Ohnaga, M., Sawada, T., 1997. Alcohol fermentation of starch by a genetic recombinant yeast having glucoamylase activity. Biotechnol. Bioeng. 53(1), 21-25.

Nakatani, Y., Yamada, R., Ogino, C., Kondo, A., 2013. Synergetic effect of yeast cell-surface expression of cellulase and expansin-like protein on direct ethanol production from cellulose. Microb. Cell Fact. 12, 66.

Nakayama, S., Bando, Y., Ohnishi, A., Kadokura, T., Nakazato, A., 2013. Decreased hydrogen production leads to selective butanol production in co-cultures of Clostridium thermocellum and Clostridium saccharoperbutylacetonicum strain N1-4. J. Biosci. Bioeng. 115(2), 173-175.

Nakayama, S., Kiyoshi, K., Kadokura, T., Nakazato, A., 2011. Butanol production from crystalline cellulose by cocultured Clostridium thermocellum and Clostridium saccharoperbutylacetonicum N1-4. Appl. Environ. Microbiol. 77(18), 6470-6475.

Nanda, S., Dalai, A.K., Kozinski, J.A., 2014. Butanol and ethanol production from lignocellulosic feedstock: biomass pretreatment and bioconversion. Energy Sci. Eng. 2(3), 138-148.

Nazina, T.N., Tourova, T.P., Poltaraus, A.B., Novikova, E.V., Grigoryan, A.A., Ivanova, A.E., Ivanov, M. V., 2001. Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneusgen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus. Int. J. Syst. Evol. Microbiol. 51(2), 433-446.

Nguyen, T.A., Kim, K.R., Han, S.J., Cho, H.Y., Kim, J.W., Park, S.M., Park, J.Ch., Sim, S.J., 2010. Pretreatment of rice straw with ammonia and ionic liquid for lignocelluloses conversion to fermentable sugars. Bioresour. Technol. 101, 7432-7438.

Ni, Y., Sun, Z., 2009. Recent progress on industrial fermentative production of acetone-butanolethanol by Clostridium acetobutylicum in China. Appl. Microbiol. Biotechnol. 83, 415-423.

Nielsen, D.R., Leonard, E., Yoon, S.H., Tseng, H.C., Yuan, C., Prather, K.L.J., 2009. Engineering alternative butanol production platforms in heterologous bacteria. Metab. Eng. 11(4), 262-273.

Nieves, I.U., Geddes, C.C., Miller, E.N., Mullinnix, M.T., Hoffman, R.W., Fu, Z., Ingram, L.O., 2011. Effect of reduced sulfur compounds on the fermentation of phosphoric acid pretreated sugarcane bagasse by ethanologenic Escherichia coli. Bioresour. Technol. 102(8), 5145-5152.

Nigam, J., 2001. Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J. Biotechnol. 87, 17-27.

Nijkamp, K., van Luijk, N., de Bont, J.A., Wery, J., 2005. The solvent-tolerant Pseudomonas putida S12 as host for the production of cinnamic acid from glucose. Appl. Microbiol. Biotechnol. 69(2), 170-177.

Ninomiya, K., Kamide, K., Takahashi, K., Shimizu, N., 2010. Enhanced enzymatic saccharification of kenaf powder after ultrasonic pretreatment in ionic liquids at room temperature. Bioresour. Technol. 103, 259-265.

Oberoi, H.S., Vadlani, P.V., Brijwani, K., Bhargav, V.K., Patil, R.T., 2010. Enhanced ethanol production via fermentation of rice straw with hydrolysate-adapted Candida tropicalis ATCC 13803. Process Biochem. 45(8), 1299-1306.

Ohgren, K., Bengtsson, O., Gorwa-Grauslund, M.F., Galbe, M., Hahn-Hagerdal, B., Zacchi, G., 2006. Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. J. Biotechnol. 126(4), 488-498.

Ohta, K., Beall, D., Mejia, J., Shanmugam, K.T., Ingram, L.O., 1991a. Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl. Environ. Microbiol. 57, 893-900.

Ohta, K., Beall, D.S., Mejia, J.P., Shanmugam, K.T., Ingram, L.O., 1991b. Metabolic engineering of Klebsiella oxytoca M5A1 for ethanol production from xylose and glucose. Appl. Environ. Microbiol. 57(10), 2810-2815.

Ohta, K., Hamada, S., Nakamura, T., 1993. Production of high concentrations of ethanol from inulin by simultaneous saccharification and fermentation using Aspergillus niger and Saccharomyces cerevisiae. Appl. Environ. Microbiol. 59, 729-733.

Ojeda, K., Sánchez, E., El-Halwagi, M., Kafarov, V., 2011. Exergy analysis and process integration of bioethanol production from acid pre-treated biomass: comparison of SHF, SSF and SSCF pathways. Chem. Eng. J. 176, 195-201.

Okamoto, K., Uchii A., Kanawaku R., Yanase H., 2014. Bioconversion of xylose, hexoses and biomass to ethanol by a new isolate of the white rot basidiomycete Trametes versicolor. Springer Plus 3, 121. Available on (accessed on 5 February 2015).

Okamoto, K., Imashiro, K., Akizawa, Y., et al., 2010. Production of ethanol by the white-rot basidiomycetes Peniophora cinerea and Trametes suaveolens, Biotechnol. Lett. 32(7), 909-913.

Okamoto T., Yamano, S., Ikeaga, H., Nakamura, K., 1994. Cloning of the Acetobacter xylinum cellulase gene and its expression in Escherichia coli and Zymomonas mobilis. Appl. Microbiol. Biotechnol. 42(4), 563-568.

Okamoto, K., Nitta, Y., Maekawa, N., Yanase, H., 2011. Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trametes hirsuta. Enzyme Microb. Technol. 48(3), 273-277.

Okamura, T., Ogata, T., Minamoto, N., Takeno, T., Noda, H., Fukuda, S., Ohsugi, M., 2001. Characteristics of wine produced by mushroom fermentation. Biosci. Biotechnol. Biochem. 65(7), 1596-1600.

 Okamura, T., Takeno, T., Dohi, M., Yasumasa, I., Hayashi, T., Toyoda, M., Ohsugi, M., 2000. Development of mushrooms for thrombosis prevention by protoplast fusion. J. Biosci. Bioeng. 89(5), 474-478.

Olofsson, K., Rudolf, A., Lidén, G., 2008. Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae. J. Biotechnol. 134,112-120.

Olofsson, K., Palmqvist, B., Lidén, G., 2010a. Improving simultaneous saccharification and co-fermentation of pretreated wheat straw using both enzyme and substrate feeding. Biotechnol. Biofuels 3, 17-17.

Olofsson, K., Wiman, M., Lidén, G., 2010b. Controlled feeding of cellulases improves conversion of xylose in simultaneous saccharification and co-fermentation for bioethanol production. J. Biotechnol. 145(2), 168-175.

Olson, D.G., McBride, J.E., Shaw, J.A., Lynd, L.R., 2012. Recent progress in consolidated bioprocessing. Curr. Opin. Biotechnol. 23, 396-405.

Ota, M., Sakuragi, H., Morisaka, H., Kuroda, K., Miyake, H., Tamaru, Y., Ueda, M., 2013. Display of Clostridium cellulovorans xylose isomerase on the cell surface of Saccharomyces cerevisiae and its direct application to xylose fermentation. Biotechnol. Prog. 29(2), 346-351.

Palmqvist, E., Hahn-Hagerdal, B., 2000. Fermentation of lignocellulosic hydrolysates. I. Inhibition and detoxification. Bioresour. Technol. 74, 17-24.

Palmqvist, B., Lidén, G., 2014. Combining the effects of process design and pH for improved xylose conversion in high solid ethanol production from Arundo donax. AMB Express, 4(1), 41.

Panagiotou, G., Pachidou, F., Petroutsos, D., Olsson, L., Christakopoulos, P., 2008. Fermentation characteristics of Fusarium oxysporum grown on acetate. Bioresour. Technol. 99(15), 7397-7401.

Panagiotou, G., Christakopoulos, P., Olsson, L., 2005. Simultaneous saccharification and fermentation of cellulose by Fusarium oxysporum F3—growth characteristics and metabolite profiling. Enzyme Microb. Technol. 36(5), 693-699.

Papendieck, A., Dahlems, U., Gellissen, G. 2002. Technical enzyme production and whole-cell biocatalysis: application of Hansenula polymorpha. In: Gellissen G (ed) Hansenula polymorpha: biology and applications. Wiley-VCH, Weinham. pp, 255-271.

Parekh, S.R., Parekh, R.S., Wayman, M. 1988. Ethanol and butanol production by fermentation of enzymatically sacchari field SO2 pretreated lignocellulosics. Enzyme Microb. Technol. 10, 660-668.

Parisutham, V., Kim, T.H., & Lee, S.K., 2014. Feasibilities of consolidated bioprocessing microbes: From pretreatment to biofuel production. Bioresour. Technol.  161, 431-440.

Park, S.H., Ransom, C., Mei, C., Sabzikar, R., Qi, C., Chundawat, S., Dale, B., Sticklen, M., 2011. Produced heterologous multi-cellulases readily deconstruct lignocellulosic biomass into fermentable sugars. J. Chem. Technol. Biotechnol. 86, 633-641.

Park, E.Y., Naruse, K., Kato, T., 2012. One-pot bioethanol production from cellulose by co-culture of Acremonium cellulolyticus and Saccharomyces cerevisiae. Biotechnol. Biofuels. 5, 64.

Partow, S., Siewers, V., Bjørn, S., Nielsen, J., Maury, J., 2010. Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast. 27(11), 955-964.

Patel, M.A., Ou, M.S., Ingram, L.O., Shanmugam, K.T., 2005. Simultaneous saccharification and co-fermentation of crystalline cellulose and sugar cane bagasse hemicellulose hydrolysate to lactate by a thermotolerant acidophilic Bacillus sp. Biotechnol. Prog. 21(5), 1453-1460.

Pauly, M., Keegstra, K. 2008. Cell wall carbohydrates and their modification as a resource for biofuels. Plant J. 54, 559-568.

Penttila, M., Nevalainen, H., Ratto, M., Salminen, E., Knowles, J., 1987. A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene. 61, 155-64.

Peralta-Yahya, P., Carter, B.T., Lin, H.N., Tao, H.Y., Comish, V.W., 2008. Highthroughput selection for cellulase catalysts using chemical complementation. J. Am. Chem. Soc. 130, 17446-17452.

Perret, S., Casalot, L., Fierobe, H., Tardif, C., Sabathe, F., Belaich, J., Belaich, A., 2004. Production of heterologous and chimeric scaffoldins by Clostridium acetobutylicum ATCC 824. J. Bacteriol. 186, 253-257.

Peterbauer, C.K., Heidenreich, E., Baker, R.T., Kubicek, C.P., 1992. Effect of benomyl and benomyl resistance on cellulase formation by Trichoderma reesei and Trichoderma harzianum. Can. J. Microbiol. 38, 1292-1297.

POET, 2009. POET plant produces cellulosic ethanol. POET News & Media. Available on (accessed on 5 February 2015).

Poling, S.M., Wicklow, D.T., Rogers, K.D., Gloer, J.B., 2008. Acremonium zeae, a protective endophyte of maize, produces dihydroresorcylide and 7-hydroxydihydroresorcylides. J. Agri. Food Chem. 56(9), 3006-3009.

Pottkamper, J., Barthen, P., Ilmberger, N., Schwaneberg, U., Schenk, A., Schulte, M., Ignatiev, N., Streit, W.R., 2009. Applying metagenomics for the identification of bacterial cellulases that are stable in ionic liquids. Green Chem. 11, 957-965.

Preez, J., Bosch, M., Prior, B. 1986. The fermentation of hexose and pentose sugars by Candida shehatae and Pichia stipitis. Appl. Microbiol. Biotechnol. 23, 228-233.

Prosser, J.I., Bohannan, B.J.M., Curtis, T.P., Ellis, R.J., Firestone, M.K., Freckleton, R.P., Green, J.L., Green, L.E., Killham, K., Lennon, J.J., Osborn, A.M, Solan, M., van der Gast, C.J., Young, J.P.W., 2007. The role of ecological theory in microbial ecology. Nat. Rev. Microbiol.  5, 384-392.

Puls, J., Wood, T.M., 1991. The degradation pattern of cellulose by extracellular cellulases of aerobic and anaerobic microorganisms. Bioresour. Technol. 36, 15-19.

Qing, Q., Yang, B. Wyman, C.E., 2010. Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes.Bioresour. Technol.101, 9624-9630.

Qureshi, N., Ezeji, T., Ebener, J., Dien, B., Cotta, M., Blaschek, H., 2008. Butanol production by Clostridium beijerinckii. Part I: Use of acid and enzyme hydrolyzed corn fiber. Bioresour. Technol. 99, 5915-5922.

Qureshi, N., Saha, B., Dien, B., Hector, R., Cotta, M.,  2010a. Production of butanol (a biofuel) from agricultural residues: part I - Use of barley straw hydrolysate. Biomass Bioenerg. 34, 559-565.

Qureshi, N., Saha, B.C., Hector, R.E., et al., 2010b. Production of butanol (a biofuel) from agricultural residues: part II—use of corn stover and switchgrass hydrolysate. Biomass Bioenerg. 34, 566-571.

Qureshi, N., Saha, B.C., Cotta, M.A., 2007. Butanol production from wheat straw hydrolysate using Clostridium beijerinckii . Bioprocess Biosyst. Eng. 30, 419-427.

Qureshi, N., Liu, S., Ezeji   T.C., 2013. Cellulosic Butanol Production from Agricultural Biomass and Residues: Recent advances in technology, in Lee J.W. (ed.), Adv. Biofuels Bioprod. DOI 10.1007/978-1-4614-3348-4_15, 247.

Qureshi, N., Ezeji T.C.,2008. Butanol, a superior biofuel’ production from agricultural residues (renewable biomass): recent progress in technology. Biofuels Bioprod. Bioref. 2, 319-330.

Rabinovich, M.L., Melnik, M.S., Boloboba, A.V., 2002. Microbial cellulases (review). Appl. Biochem. Microbiol. 38, 305-321.

Ragauskas, A., Akinosho, H., Lee, K., Close, D., 2014. The emergence of Clostridium thermocellum as a high utility candidate for consolidated bioprocessing applications. Front. Chem. 2, 66.

Rajagopalan, G., He, J., Yang, K.L., 2014. Direct fermentation of xylan by Clostridium strain BOH3 for the production of butanol and hydrogen using optimized culture medium. Bioresour. Technol. 154, 38-43.

Rajagopalan, G., Yew, K.W., He, J., Yang, K.L., 2013. Production, purification, and characterization of a xylooligosaccharides-forming xylanase from highbutanol-producing strain Clostridium sp. BOH3. Bioenerg. Res. 6, 448-457.

Rajendran, K., Taherzadeh, M.J., 2014. Pretreatment of lignocellulosic materials, In: Bisaria, V., Kondo A., eds, Bioprocessing of renewable resources to commodity bioproducts, Wiley, USA ISBN: 978-1118175835, Chapter 3, 43-76.

Rajoka, M.I., Khan, S., Shahid, R., 2003. Kinetics and regulation studies of the production of b-galactosidase from Kluyveromyces marxianus grown on different substrates. Food Technol. Biotechnol. 41(4), 315-320.

Ralph, J., Akiyama, T., Kim, H., Lu, F., Schatz, P.F., Marita, J.M., Ralph, S.A., Reddy, M.S., Chen, F., Dixon, R.A., 2006. Effects of coumarate 3‑hydroxylase down-regulation on lignin structure. J. Biol. Chem. 281, 8843-8853.

Reddy, H.K., Srijana, M., Reddy, M.D., Reddy, G., 2010. Coculture fermentation of banana agro-waste to ethanol by cellulolytic thermophilic Clostridium thermocellum CT2. Afr. J. Biotechnol. 9, 1926-1934.

Riyanti, E.I., Rogers, P.L., 2013. Kinetic evaluation of ethanol-tolerant thermophile Geobacillus thermoglucosidasius M10EXG for ethanol production. Indonesian J. Agri. Sci. 10(1).

Rogers, P., Lee, K., Skotnicki, M., Tribe, D.E., 1982. Ethanol production by Zymomonas mobilis. Microb. React. 23, 37-84.

van Rooyen, R., Hahn-Hagerdal, B., La Grange, D.C., Van Zyl, W.H., 2005. Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae  strains. J. Biotechnol. 120, 284-295.

Rubin, E. M., 2008. Genomics of cellulosic biofuels. Nat. 454, 841-845.

Rumbold, K., van Buijsen, H.J.J., Gray, V.M., van Groenestijn, J.W., Overkamp, K.M., Slomp, R.S., 2010. Microbial renewable feedstock utilization: a substrate-oriented approach. Bioeng. Bugs 1, 359-66.

Sadie, C.J., Rose, S.H., Den Haan, R., Van Zyl, W.H., 2011. Co-expression of a cellobiose phosphorylase and lactose permease enables intracellular cellobiose utilisation by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 90, 1373-1380.

Sakamoto, T., Hasunuma, T., Hori, Y., Yamada, R. Kondo, A., 2012. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. J. Biotechnol.158, 203-210.

Salimi, F., Zhuang, K., Mahadevan, R., 2010. Genome-scale metabolic modeling of a clostridial co-culture for consolidated bioprocessing. Biotechnol. J. 5, 726-738.

Salimi, F., Mahadevan, R., 2013. Characterizing metabolic interactions in a clostridial co-culture for consolidated bioprocessing, BMC Biotechnol.  13, 95.

Sarkar, N., Ghosh, S.K., Bannerjee, S., Aikat, K., 2012. Bioethanol production from agricultural wastes: An overview. Renew. Energ. 37(1), 19-27.

Sassner, P., Galbe, M., Zacchi, G., 2008. Techno-economic evaluation of bioethanol production from three different lignocellulosic materials. Biomass Bioenerg. 32, 422-430.

Schuster, A., Kubicek, C.P., Friedl, M.A., Druzhinina, I.S., Schmoll, M., 2007. Impact of light on Hypocrea jecorina and the multiple cellular roles of ENVOY in this process. BMC Genom. 8, 449-65.

Schuster, B.G., Chinn, M.S., 2013. Consolidated bioprocessing of lignocellulosic feedstocks for ethanol fuel production. BioEnerg. Res., 6(2), 416-435.

Shafiei, M., Karimi, K., Taherzadeh, M. J., 2011. Techno-economical study of ethanol and biogas from spruce wood by NMMO-pretreatment and rapid fermentation and digestion. Bioresour. Technol. 102(17), 7879-7886.

Shang, S.M., Qian, L., Zhang, X., Li, K.Z., Chagan, I., 2013. Themoanaerobacterium calidifontis sp. nov., a novel anaerobic, thermophilic, ethanol-producing bacterium from hot springs in China. Archiv. Microbiol. 195(6), 439-445.

Shao, X., Jin, M., Guseva, A., Liu, C., Balan, V., Hogsett, D., Dale, B.E., Lynd, L., 2011. Conversion for Avicel and AFEX pretreated corn stover by Clostridium thermocellum and simultaneous saccharification and fermentation: Insights into microbial conversion of pretreated cellulosic biomass. Bioresour. Technol. 102, 8040-8045.

Shaw, A.J., Podkaminer, K.K., Desai, S.G., Bardsley, J.S., Rogers, S.R., Thorne, P.G., Lynd, L.R., 2008. Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc. Natl. Acad. Sci. USA. 105, 13769-13774.

Shaw, A.J, Covalla, S.F., Miller, B.B., Firliet, B.T., Hogsett, D.A., Herring, C.D., 2012. Urease expression in a Thermoanaerobacterium saccharolyticum ethanologen allows high titer ethanol production. Metab. Eng. 14(5), 528-532.

Shaw, A.J., Covalla, S.F., Hogsett, D.A., Herring, C.D., 2011. Marker removal system for Thermoanaerobacterium saccharolyticum and development of a markerless ethanologen. Appl. Environ. Microbiol. 77(7), 2534-2536.

Shen, C.R., Lan, E.I., Dekishima, Y., Baez, A., Cho, K.M., Liao, J.C., 2011. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl. Environ. Microbiol. 77, 2905-2915.

Shen, C.R., Liao, J.C., 2008. Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab. Eng. 10(6), 312-320.

Shi J., Sharma-Shivappa R.R., Chinn M., Howell N., 2009. Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass Bioenerg. 33, 88-96.

Shi, J., Zhang, M., Zhang, L., Wang, P., Jiang, L., Deng, H., 2014. Xylose-fermenting Pichia stipitis by genome shuffling for improved ethanol production. Microb. Biotechnol. 7(2), 90-99.

Shigechi, H., Koh, J., Fujita, Y., Matsumoto, T., Bito, Y., Ueda, M., Kondo, A., 2004a. Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and α-amylase. Appl. Environ. Microbiol. 70(8), 5037-5040.

Shigechi, H., Fujita, Y., Koh, J., Ueda, M., Fukuda, H., Kondo, A., 2004b. Energy-saving direct ethanol production from low-temperature-cooked corn starch using a cell-surface engineered yeast strain co-displaying glucoamylase and α-amylase. Biochem. Eng. J. 18(2), 149-153.

Shin, H.D., Wu, J., Chen, R., 2014. Comparative engineering of Escherichia coli for cellobiose utilization: Hydrolysis versus phosphorolysis. Metab. Eng. 24, 9-17.

Shong, J., Jimenez Diaz, M.R., Collins, C.H., 2012. Towards synthetic microbial consortia for  bioprocessing. Curr. Opin. Biotech. 23(5), 798-802.

Shukor, H., Al-Shorgani, N.K.N., Abdeshahian, P., Hamid, A.A., Anuar, N., Rahman, N.A., Kalil, M.S., 2014. Production of butanol by Clostridium saccharoperbutylacetonicum N1-4 from palm kernel cake in acetone–butanol–ethanol fermentation using an empirical model. Bioresour. Technol. 170, 565-573.

Sigurbjornsdottir, M.A., Orlygsson, J., 2012. Combined hydrogen and ethanol production from sugars and lignocellulosic biomass by Thermoanaerobacterium AK 54, isolated from hot spring. Appl. Energ. 97, 785-791.

Sims, R.E., Mabee, W., Saddler, J.N., Taylor, M., 2010. An overview of second generation biofuel technologies. Bioresour. Technol. 101(6), 1570-1580.

Sommer, M.O.A., Church, G.M., Dantas, G., 2010. A functional metagenomics approach for expanding the synthetic biology toolbox for biomass conversion. Mol. Syst. Biol. 6 (1), 1-7.

South, C.R., Hogsett, D.A., Lynd, L.R., 1993. Continuous fermentation of cellulosic biomass to ethanol. Appl. Biochem. Biotechnol. 39, 587-600.

Speers, A.M., Reguera, G., 2012. Consolidated bioprocessing of AFEX-pretreated corn stover to ethanol and hydrogen in a microbial electrolysis cell. Environ. Sci. Technol. 46(14), 7875-7881.

Srikrishnan, S., Chen, W., Da Silva, N.A., 2013. Functional assembly and characterization of a modular xylanosome for hemicelluloses hydrolysis in yeast. Biotechnol. Bioeng. 110, 275-285.

Steen, E.J., Chan, R., Prasad, N., Myers, S., Petzold, C.J., Redding, A., Keasling, J.D., 2008. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb. Cell Fact. 7(1), 36.

Su P., Delaney, S.F., Rogers, P.L., 1989. Cloning and expression of a β-glucosidase gene from Xanthomonas albilineans in Escherichia coli and Zymomonas mobilis. J. Biotechnol. 9(2), 139-152.

Su, R., Ma, Y., Qi, W., Zhang, M., Wang, F., Du, R., He, Z., 2013. Ethanol production from high-solid SSCF of alkaline-pretreated corncobusing recombinant Zymomonas mobilis CP4. BioEnerg. Res. 6(1), 292-299.

Sun, J., Wen, F., Si, T., Xu, J.H., Zhao, H., 2012. Direct conversion of xylan to ethanol by recombinant Saccharomyces cerevisiae strains displaying an engineered mini-hemicellulosome. Appl. Environ. Microbiol. 78, 3837-3845.

Sun, Y., Cheng, J., 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol.83(1), 1-11.

Suriyachai, N., Weerasaia, K., Laosiripojana, N., Champreda, V., Unrean, P., 2013. Optimized simultaneous saccharification and co-fermentation of rice straw for ethanol production by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture using design of experiments. Bioresour. Technol.  142, 171-178.

Suwannarangsee, S., Oh, D.B., Seo, J.W., Kim, C.H., Rhee, S.K., Kang, H.A., Chulalaksananukul, W., Kwon, O., 2010. Characterization of alcohol dehydrogenase of the thermotolerant methylotrophic yeast Hansenula polymorpha. Appl. Microbiol. Biotechnol. 88(2), 497-507.

Suzuki, H., Murakami, A., Yoshida, K.I., 2012. Counterselection system for Geobacillus kaustophilus HTA426 through disruption of pyrF and pyrR. Appl. Environ. Microbiol. 78(20), 7376-7383.

Taherzadeh, M.J., Karimi, K., 2007. Enzymatic-based hydrolysis processes for Ethanol. BioResour. 2(4), 707-738.

Taherzadeh, M.J., Karimi, K., 2008. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int. J. Mol. Sci. 9(9), 1621-1651.

 Takada, G., Kawaguchi, T., Sumitani, J., Arai, M., 1998. Expression of Aspergillus aculeatus No. F-50 cellobiohydrolase I (cbhI) and beta-glucosidase 1 (bgl1) genes by Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 62, 1615-1618.

Takashima, S., Iikura, H., Nakamura, A., Hidaka, M., Masaki, H., Uozumi, T., 1998. Overproduction of recombinant Trichoderma reesei cellulases by Aspergillus oryzae and their enzymatic properties. J. Biotechnol. 65(2), 163-171.

Tamayo, J.P., Migo, V.P., 2014. Optimization of alkaline pretreatment of Eucalyptus urophylla ST blake wood residue by response surface methodology (RSM) for bioethanol production. Asia Life Sci-Asian Int. J. Life Sci. 23(2), 641-663.

Tang, Y.J., Sapra, R., Joyner, D., Hazen, T.C., Myers, S., Reichmuth, D., Keasling, J.D., 2009. Analysis of metabolic pathways and fluxes in a newly discovered thermophilic and ethanol-tolerant Geobacillus strain. Biotechnol. Bioeng. 102(5), 1377-1386.

Tang, Y., Zhao, D., Cristhian, C., Jiang, J., 2011. Simultaneous saccharification and cofermentation of lignocellulosic residues from commercial furfural production and corn kernels using different nutrient media. Biotechnol. Biofuels 4(1), 22.

Taniguchi, M., Takahashi, D., Watanabe, D., Sakai, K., Hoshino, K., Kouya, T., Tanaka, T., 2010. Effect of steam explosion pretreatment on treatment with Pleurotus ostreatus for the enzymatic hydrolysis of rice straw. J. Biosci. Bioeng. 110, 449-452.

Taylor, M.P., Eley, K.L., Martin, S., Tuffin, M.I., Burton, S.G., Cowan, D.A., 2009. Thermophilic ethanologenesis: future prospects for second-generation bioethanol production. Trends Biotechnol. 27(7), 398-405.

Te’o, V.S.J., Bergquist, P.L., Nevalainen, K.M.H., 2002. Biolistic transformation of Trichoderma reesei using the Bio-Rad seven barrels hepta adaptor system. J. Microbiol. Methods 51, 393-9.

Teixeira, L.C., Linden, J.C., Schroeder, H.A., 1999. Optimizing peracetic acid pretreatment conditions for improved simultaneous saccharification and co-fermentation (SSCF) of sugar cane bagasse to ethanol fuel. Renew. Energ. 16(1), 1070-1073.

Tengborg, C., Galbe, M., Zacchi, G., 2001. Reduced inhibition of enzymatic hydrolysis of steam-pretreated softwood. Enzyme Microb. Technol. 28(9), 835-844.

Tester, R.F., Karkalas, J., Qi, X., 2004. Starch-composition, fine structure and architecture. J. Cereal Sci. 39, 151-165.

Thirumalai Vasan, P., Sobana Piriya, P., Immanual Gilwax Prabhu, D., John Vennison, S., 2011. Cellulosic ethanol production by Zymomonas mobilis harboring an endoglucanase gene from Enterobacter cloacae. Bioresour. Technol. 102(3), 2585-2589.

Thorn, R.G., Reddy, C.A., Harris, D., Paul, E.A., 1996. Isolation of saprophytic basidiomycetes from soil. Appl. Environ. Microbiol. 62(11), 4288-4292.

Tian, C., Beeson, W.T., Iavarone, A.T., Sun, J., Marletta, M.A., Cate, J.H., Glass, N.L., 2009. Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa. Proc. Natl. Acad. Sci. USA. 106, 22157-22162.

Traff, K.L., Otero, C.R., Van Zyl, W.H., Hahn-Hagerdal, B., 2001. Deletion of the GRE3 aldosereductase gene and its influence on xylose metabolismin recombinant strains of Saccharomyces cerevisiae  expressing the xylA and XKS1 genes. Appl. Environ. Microbiol. 67, 5668-5674.

Tracy, B.P., Jones, S.W., Fast, A.G., Indurthi, D.C., Papoutsakis, E.T., 2012. Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr. Opin. Biotechnol. 23(3), 364-381.

Tran, D.T., Lin, C.W., 2013. Developing co-culture system of dominant cellulolytic Bacillus sp. THLA0409 and dominant ethanolic Klebsiella oxytoca THLC0409 for enhancing ethanol production from lignocellulosic materials. J. Taiwan Inst.Chem. Eng. 44(5), 762-769.

Tran, D.T., Lin, C.W., Lai, C.Y., Wu, C.H., 2011. Ethanol production from lignocelluloses by native strain Klebsiella oxytoca THLC0409. Waste Biomass Valor. 2(4), 389-396.

Tran, H.T.M., Cheirsilp, B., Hodgson, B., Umsakul, K., 2010. Potential use of Bacillus subtilis in a co-culture with Clostridium butylicum for acetone–butanol–ethanol production from cassava starch. Biochem. Eng. J. 48(2), 260-267.

Tsai, S.L., Oh, J., Singh, S., Chen, R., Chen, W., 2009. Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Appl. Environ. Microbiol. 75, 6087-6093.

Tsuji, M., Goshima, T., Matsushika, A., Kudoh, S., Hoshino, T., 2013. Direct ethanol fermentation from lignocellulosic biomass by Antarctic basidiomycetous yeast Mrakia blollopis under a low temperature condition. Cryobiol. 67(2), 241-243.

Tsuji, M., Yokota, Y., Kudoh, S., Hoshino, T., 2014. Improvement of direct ethanol fermentation from woody biomasses by the Antarctic basidiomycetous yeast, Mrakia blollopis, under a low temperature condition. Cryobiol. 68(2), 303-305.

Turhan, O., Isci, A., Mert, B., Sakiyan, O., Donmez, S., 2014. Optimization of ethanol production from microfluidized wheat straw by response surface methodology. Preparative Biochem. Biotechnol. (just-accepted).

Ueda, M., Tanaka, A., 2000. Cell surface engineering of yeast: construction of arming yeast with biocatalyst. J. Biosci. Bioeng. 90, 125-136.

Uversky, V.N., Kataeva, I.A., 2006. Cellulosome. Nova Science Publishers.

Vaaje-Kolstad, G., Houston, D.R., Riemen, A.H., Eijsink, V.G., van Aalten, D.M., 2005. Crystal structure and binding properties of the Serratia marcescens chitin-binding protein CBP21. J. Biol. Chem. 280, 11313-11319.

van Vleet, J.H., Jeffries, T.W., 2009. Yeast metabolic engineering for hemicellulosic ethanol production. Curr. Opin. Biotechnol.20, 300-306.

van Zyl, W.H., Bloom, M., Viktor, M.J., 2012. Engineering yeasts for raw starch conversion. Appl. Microbiol. Biotechnol. 95, 1377-1388.

van Zyl, W.H., Lynd, L.R., Den Haan, R., McBride, J.E., 2007. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Adv. Biochem. Eng. Biotechnol. 108, 205-235.

van Zyl, W.H., den Haan, R., la Grange, D.C., 2011. Developing organisms for consolidated bioprocessing of biomass to ethanol. Aurélio dos Santos Bernardes M (ed) Biofuel production-recent developments and prospects, ISBN, 978-953.

Varga, E., Klinke, H.B., Reczey, K., and Thomsen, A.B., 2004, High solid  simultaneous saccharification and fermenta tion of wet oxidized corn stover to  ethanol.  Biotechnol. Bioeng. 88(5), 567-574.

Vinuselvi, P., Lee, S.K., 2012. Engineered Escherichia coli capable of co-utilization of cellobiose and xylose. Enzyme Microb. Technol. 50, 1-4.

Vinuselvi, P., Park, J.M., Lee, J.M., Oh, K., Ghim, C.M., Lee, S.K., 2011. Engineering microorganisms for biofuel production. Biofuels. 2, 153-166.

Voronovsky A.Y., Rohulya O.V., Abbas C.A., Sibirny A.A., 2009. Development of strains of the thermotolerant yeast Hansenula polymorpha capable of alcoholic fermentation of starch and xylan. Metab. Eng. 11, 234-242.

Voronovsky, A.Y., Ryabova, O.B., Verba, O.V., Ishchuk, O.P., Dmytruk, K.V., Sibirny, A.A., 2005. Expression of xylA genes encoding xylose isomerases from Escherichia coli and Streptomyces coelicolor in the methylotrophic yeast Hansenula polymorpha. FEMS Yeast Res.  5 (11), 1055-1062.

Wang, B., Xia, L., 2011. High efficient expression of cellobiase gene from Aspergillus niger in the cells of Trichoderma reesei. Bioresour. Technol., 102(6), 4568-4572.

Wang, X.J., Peng, Y.J., Zhang, L.Q., Li, A.N., and Li, D.C., 2012. Directed evolution and structural prediction of cellobiohydrolase II from the thermophilic fungus Chaetomium thermophilum. Appl. Microbiol. Biotechnol. 95, 1469-1478.

Wang, G.J., Wang, Z.S., Zhang, Y.W., Zhang, Y.Z., 2012. Cloning and expression of amyE gene from Bacillus subtilis in Zymomonas mobilis and direct production of ethanol from soluble starch. Biotechnol. Bioprocess Eng. 17(4), 780-786.

Wang, L., Tang, Y., Wang, S., Liu, R.L., Liu, M.Z., Zhang, Y., Feng, L., 2006. Isolation and characterization of a novel thermophilic Bacillus strain degrading long-chain n-alkanes. Extremophiles, 10(4), 347-356.

Wang, R., Koppram, R., Olsson, L., Franzén, C.J., 2014a. Kinetic modeling of multi-feed simultaneous saccharification and co-fermentation of pretreated birch to ethanol. Bioresour. Technol. 172, 303-311.

Wang, R., Wang, D., Gao, X., Hong, J., 2014b. Direct fermentation of raw starch using a Kluyveromyces marxianus strain that expresses glucoamylase and Alpha-amylase to produce ethanol. Biotechnol. Prog. 30(2), 338-347.

Wang, L., Hatem, A., Catalyurek, U.V., Morrison, M., Yu, Z., 2013. Metagenomic insights into the carbohydrate-active enzymes carried by the microorganisms adhering to solid digesta in the rumen of cows. PloS one, 8(11), e78507.

Wang, S., Liu, G., Wang, J., Yu, J., Huang, B., Xing, M., 2013. Enhancing cellulase production in Trichoderma reesei RUT C30 through combined manipulation of activating and repressing genes. J. Ind. Microbiol. Biotechnol. 40(6), 633-641.

Wang, Z., Cao, G., Jiang, C., Song, J., Zheng, J., Yang, Q., 2013. Butanol production from wheat straw by combining crude enzymatic hydrolysis and anaerobic fermentation using Clostridium acetobutylicum ATCC824. Energ.  Fuels. 27(10), 5900-5906.

Wang, S.A., Li, F.L., 2013. Invertase SUC2 is the key hydrolase for inulin degradation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 79, 403-406.

Warnecke, F., Luginbühl, P., Ivanova, N., Ghassemian, M., Richardson, T.H., Stege, J.T., Leadbetter, J.R., 2007. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite.Nat. 450(7169), 560-565.

Watanabe, T., Watanabe, I., Yamamoto, M., Ando, A., Nakamura, T., 2011. A UV-induced mutant of Pichia stipitis with increased ethanol production from xylose and selection of a spontaneous mutant with increased ethanol tolerance. Bioresour. Technol. 102(2), 1844-1848.

Wen, F., Sun, J., Zhao, H.M., 2010. Yeast surface display of trifunctionalminicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl. Environ. Microbiol. 76, 1251-1260.

Wen, Z., Wu, M., Lin, Y., Yang, L., Lin, J., Cen, P., 2014a. Artificial symbiosis for acetone-butanol-ethanol (ABE) fermentation from alkali extracted deshelled corn cobs by co-culture of Clostridium beijerinckii and Clostridium cellulovorans. Microb. Cell Fact. 13(1), 92.

Wen, Z., Wu, M., Lin, Y., Yang, L., Lin, J., Cen, P., 2014b. A novel strategy for sequential co-culture of Clostridium thermocellum and Clostridium beijerinckii to produce solvents from alkali extracted corn cobs. Process Biochem.49(11), 1941-1949.

Wertz, J.L., and Bédué, O., 2013. Lignocellulosic Biorefineries. EFPL Press.

Wiegel, J., Ljungdahl, L.G., 1986. The importance of thermophilic bacteria in biotechnology.Crit. Rev. Biotechnol.3, 39-108.

Wierckx, N.J., Ballerstedt, H., de Bont, J.A., Wery, J., 2005. Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose. Appl. Environ. Microbiol. 71(12), 8221-8227.

Williams, J., 2012. Bio Architecture Lab wins 2012 sustainable biofuels award presented by world biofuels markets. Marketwire. Available on (accessed on 5 February 2015).

Williams, J. 2012. Freedom pines biorefinery. LanzaTech. Available on http://www. (accessed on 5 February 2015).

Wingren, A., Galbe, M., Zacchi, G., 2003. Techno-economic evaluation of producing ethanol from softwood: Comparison of SSF and SHF and identification of bottlenecks. Biotechnol. Prog.  19, 1109-1117.

Wongwisansri, S., Promdonkoy, P., Matetaviparee, P., Roongsawang, N., Eurwilaichitr, L., Tanapongpipat, S., 2013. High-level production of thermotolerant β-xylosidase of Aspergillus sp.BCC125 in Pichia pastoris: Characterization and its application in ethanol production. Bioresour. Technol.  132, 410-413.

Wu, B., He, M.X., Feng, H., Shui, Z.X., Tang, X.Y., Hu, Q.C., Zhang, Y.Z., 2014. Construction of a novel secretion expression system guided by native signal peptide of PhoD in Zymomonas mobilis. Biosci. Biotechnol. Biochem. 78(4), 708-713.

Wu, Z., Lee, Y.Y., 1998. Nonisothermal simultaneous saccharification and fermentation for direct conversion of lignocellulosic biomass to ethanol. Appl. Biochem. Biotechnol. 70 (1), 479-492.

Xin, F., He, J., 2013. Characterization of a thermostable xylanase from a newly isolated Kluyvera species and its application for biobutanol production. Bioresour. Technol. 135, 309-315.

Xiros, C., Christakopoulos, P., 2009. Enhanced ethanol production from brewer's spent grain by a Fusarium oxysporum consolidated system. Biotechnol. Biofuels. 2(1), 4.

Xiros, C., Vafiadi, M., Paschos, T., Christakopoulos, P., 2011. Toxicity tolerance of Fusarium oxysporum towards inhibitory compounds formed during pretreatment of lignocellulosic materials. J. Chem. Technol. Biotechnol. 86(2), 223-230.

Xu, Q., Singh, A., Himmel, M.E., 2009. Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr. Opin. Biotechnol. 20, 364-371.

Xu, L., Tschirner, U., 2011. Improved ethanol production from various carbohydrates through anaerobic thermophilic co-culture. Bioresour. Technol. 102(21), 10065-10071.

Yamada, R., Bito, Y., Adachi, T., Tanaka, T., Ogino, C., Fukuda, H., Kondo, A., 2009. Efficient production of ethanol from raw starch by a mated diploid Saccharomyces cerevisiae with integrated α-amylase and glucoamylase genes. Enzyme Microb. Technol.  44, 344-349. 

Yamada, R., Taniguchi, N., Tanaka, T., Ogino, C., Fukuda, H., Kondo, A. 2010a. Cocktail δ-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microb. Cell Fact. 9, 32. doi:10.1186/1475-2859-9-32.

Yamada, R., Tanaka, T., Ogino, C., Fukuda, H., Kondo, A., 2010b. Novel strategy for yeast construction using δ-integration and cell fusion to efficiently produce ethanol from raw starch. Appl. Microbiol. Biotechnol. 85(5), 1491-1498.

Yamada, R., Nakatani, Y., Ogino, C., Kondo, A., 2013. Efficient direct ethanol production from cellulose by cellulase-and cellodextrin transporter-co-expressing. AMB Express, 3(1), 1-7.

Yamada, R., Yamakawa, S.I., Tanaka, T., Ogino, C., Fukuda, H., Kondo, A., 2011. Direct and efficient ethanol production from high-yielding rice using a Saccharomyces cerevisiae strain that express amylases. Enzyme Microb. Technol. 48(4), 393-396.

Yamakawa, S.I., Yamada, R., Tanaka, T., Ogino, C., Kondo, A., 2012. Repeated fermentation from raw starch using Saccharomyces cerevisiae displaying both glucoamylase and α-amylase. Enzyme Microb. Technol. 50(6), 343-347.

Yanase, H., Nozaki, K., Okamoto, K., 2005. Ethanol production from cellulosic materials by genetically engineered Zymomonas mobilis. Biotechnol. Lett. 27(4), 259-263.

Yanase, S., Hasunuma, T., Yamada, R., Tanaka, T., Ogino, C., Fukuda, H., Kondo, A., 2010. Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes. Appl. Microbiol. Biotechnol. 88(1), 381-388.

Yang, B., Wyman, C.E., 2008. Pre-treatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod. Bioref. 2, 26-40.

Yang, S., Jia, N., Li, M., Wang, J., 2011. Heterologous expression and efficient ethanol production of a Rhizopus glucoamylase gene in Saccharomyces cerevisiae. Mol. Biol. Rep. 38(1), 59-64.

Yang, X., 2014. Metabolic engineering of cellulolytic Clostridium cellulovorans for biofuel production directly from cellulosic biomass (Doctoral dissertation, The Ohio State University).

Yao, S., Mikkelsen, M.J., 2010. Metabolic engineering to improve ethanol production in Thermoanaerobacter mathranii. Appl. Microbiol. Biotechnol. 88(1), 199-208.

Yasuda, M., Nagai, H., Takeo, K., Ishii, Y., Ohta, K., 2014. Bio-ethanol production through simultaneous saccharification and co-fermentation (SSCF) of a low-moisture anhydrous ammonia (LMAA)-pretreated napiegrass (Pennisetum purpureum Schumach). SpringerPlus. 3(1), 333.

Yee, K.L., Rodriguez Jr, M., Tschaplinski, T.J., Engle, N.L., Martin, M.Z., Fu, C., Mielenz, J.R., 2012. Evaluation of the bioconversion of genetically modified switchgrass using simultaneous saccharification and fermentation and a consolidated bioprocessing approach. Biotechnol. Biofuels. 5, 81.

Yoon K.H., Park, S.H., Pack, M.Y., 1988. Transfer of Bacillus subtilis endo-β-1,4-glucanase gene into Zymomonas anaerobia. Biotechnol. Lett. 10(3), 213-216.

Yu, E.K.C., Deschatelets, L., Saddler, J.N., 1984. The bioconversion of wood hydrolyzates to butanol and butanediol. Biotechnol. Lett.  6, 327-332.

Yu, M., Li, J., Li, S., Du, R., Jiang, Y., Fan, G., Chang, S., 2014. A cost-effective integrated process to convert solid-state fermented sweet sorghum bagasse into cellulosic ethanol. Appl. Energ. 115, 331-336.

Yuan, B., Wang, S.A., Li, F.L., 2013. Improved ethanol fermentation by heterologous endoinulinase and inherent invertase from inulin by Saccharomyces cerevisiae. Bioresour. Technol.  139, 402-405.

Yuan, W., Zhao, X., Chen, L., Bai, F., 2013. Improved ethanol production in Jerusalem artichoke tubers by overexpression of inulinase gene in Kluyveromyces marxianus. Biotechnol. Bioprocess Eng. 18(4), 721-727.

Yuan, W.J., Chang, B.L., Ren, J.G., Liu, J.P., Bai, F.W., Li, Y.Y., 2012. Consolidated bioprocessing strategy for ethanol production from Jerusalem artichoke tubers by Kluyveromyces marxianusunder high gravity conditions. J. Appl. Microbiol. 112(1), 38-44.

Zerva, A., Savvides, A.L., Katsifas, E.A., Karagouni, A.D., Hatzinikolaou, D.G., 2014. Evaluation of Paecilomyces variotii potential in bioethanol production from lignocellulose through consolidated bioprocessing. Bioresour. Technol.  62, 294-299.

Zhang, D., Lax, A.R., Raina, A.K., Bland, J.M., 2009. Differential cellulolytic activity of native-form and C-terminal tagged-form cellulase derived from Coptotermes formosanus and expressed in E. coli. Insect Biochem. Mol. Biol. 39, 516-522.

Zhang, J., Shao, X., Lynd, L.R., 2009. Simultaneous saccharification and co- fermentation of paper sludge to ethanol by Saccharomyces cerevisiae RWB222. Part II: Investigation of discrepancies between predicted and observed performance at high solids concentration. Biotechnol. Bioeng.  104, 932-938.

Zhang, M., Eddy, C., Deanda, K. et al., 1995. Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Sci. 267, 240-243.

Zhang, X.Y., Xu, C.Y., Wang, H.X., 2007a. Pretreatment of bamboo residues with Coriolus versicolor for enzymatic hydrolysis. J. Biosci. Bioeng. 104, 149-151.

Zhang, X.Y., Xu, C.Y., Wang, H.X., Liu, Y.X., 2007b. Evaluation of biological pretreatment with white rot fungi for the enzymatic hydrolysis of bamboo culms. Int. Biodeterior. Biodegrad. 60, 159-164.

Zhang, Y.H., Lynd, L.R., 2004. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol. Bioeng. 88, 797-824.

Zhang, J., Lynd, L.R., 2010. Ethanol production from paper sludge by simultaneous saccharification and co-fermentation using recombinant xylose-fermenting microorganisms. Biotechnol. Bioeng. 107(2), 235-244.

Zhang, J., Qu, Y., Xiao, P., Wang, X., Wang, T., He, F., 2012a. Improved biomass saccharification by Trichoderma reesei through heterologous expression of lacA gene from Trametes sp. AH28-2. J. Biosci. Bioeng. 113(6), 697-703.

Zhang, J., Zhang, W.X., Yang, J., Liu, Y.H., Zhong, X., Wu, Z.Y., Deng, Y., 2012b. Pretreatment of rice straw using a butanone or an acetaldehyde dilute solution explosion for producing ethanol. Appl. Biochem. Biotechnol. 166(7), 1856-1870.

Zhao, X., Zhang, L., Liu, D., 2012. Biomass recalcitrance. Part I: The chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels, Bioprod.  Bioref. 6, 465-482.

Zhong, Y.H., Wang, X.L., Wang, T.H., Jiang, Q., 2006. Agrobacterium-mediated transformation (AMT) of Trichoderma reesei as an efficient tool
for random insertional mutagenesis. Appl. Microbiol. Biotechnol. 73, 1348-1354.

Zhong, Y., Wang, X., Yu, H., Liang, S., Wang, T., 2012. Application of T-DNA insertional mutagenesis for improving cellulase production in the filamentous fungus Trichoderma reesei. Bioresour. Technol., 110, 572-577.

Zhou, H., Cheng, J.S., Wang, B., Fink, G.R. Stephanopoulos, G., 2012. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab. Eng.14, 611-622.

Zhou, S., Ingram, L.O., 2001. Simultaneous saccharification and fermentation of amorphous cellulose to ethanol by recombinant Klebsiella oxytoca SZ21 without supplemental cellulase. Biotechnol. Lett. 23(18), 1455-1462.

Zhu, S., Wu, Y., Yu, Z., Chen, Q., Wu, G., Yu, F., Jin, S., 2006. Microwave-assisted alkali pre-treatment of wheat straw and its enzymatic hydrolysis. Biosystems Eng. 94, 437-442.

Zhu, J.Q., Qin, L., Li, B.Z., Yuan, Y.J., 2014. Simultaneous saccharification and co-fermentation of aqueous ammonia pretreated corn stover with an engineered Saccharomyces cerevisiae  SyBE005. Bioresour. Technol.  169, 9-18.

Zhu, Y., Lee, Y.Y., Elander, R.T., 2007. Conversion of aqueous ammonia-treated corn stover to lactic acid by simultaneous saccharification and cofermentation. Appl. Biochem. Biotechnol. 137(1-12), 721-738.

Zou, G., Shi, S., Jiang, Y., van den Brink, J., de Vries, R.P., Chen, L., Zhou, Z., 2012. Construction of a cellulase hyper-expression system in Trichoderma reesei by promoter and enzyme engineering. Microb. Cell Fact. 11(1), 21.

Zuroff, T.R., Curtis, W.R., 2012. Developing symbiotic consortia for lignocellulosic biofuel production. Appl. Microbiol. Biotechnol. 93, 1423-1435.

Zuroff, T.R., Xiques, S.B., Curtis, W.R., 2013. Consortia-mediated bioprocessing of cellulose to ethanol with a symbiotic Clostridium phytofermentans/yeast co-culture. Biotechnol. Biofuels. 6(1), 59.

Zverlov, V.V., Kellermann, J., and Schwarz, W.H., 2005a. Functional subgenomics of Clostridium thermocellum cellulosomal genes: Identification of the major catalytic components in the  extracellular complex and detection of three new enzymes. Proteomics. 5, 3646-3653.

Zverlov, V.V., Schantz, N., Schmitt-Kopplin, P., Schwarz, W.H., 2005b. Two new major subunits in the cellulosome of Clostridium thermocellum: Xyloglucanase Xgh74A and  endoxylanase Xyn10D. Microbiol. 151, 3395-3401.