Simultaneous saccharification and fermentation of cassava waste for ethanol production

Document Type: Research Paper

Authors

1 Department of Botany, Alagappa Government Arts College, Karaikudi 630003, Tamilnadu, India.

2 Department of Energy Science, Alagappa University, Karaikudi 630004, Tamilnadu, India.

3 Research Centre in Botany, Thiagarajar College, Madurai 625009, Tamilnadu, India.

Abstract

The efficiency of enzymatic and microbial saccharification of cassava waste for ethanol production was investigated and the effective parameters were optimized. The mixture of amylase and amyloglucosidase (AMG) resulted in a significantly higher rate of saccharification (79.6%) than the amylase alone (68.7%). Simultaneous saccharification and fermentation (SSF) yielded 6.2 g L-1 ethanol representing 64.5% of the theoretical yield. Saccharification and fermentation using pure and co-cultures of fungal isolates including Rhizopus stolonifer, Aspergillus terreus, Saccharomyces diastaticus and Zymomonas mobilis revealed that the co-culture system involving S. diastaticus and Z. mobilis was highly suitable for the bio-conversion of cassava waste into ethanol, resulting in 20.4 g L-1 in 36 h (91.3% of the theoretical yield).

Graphical Abstract

Simultaneous saccharification and fermentation of cassava waste for ethanol production

Keywords


Abate, C., Callieri, D., Rodriguez, E., Garro, O., 1996.  Ethanol production by a mixed culture of flocculent strains of Zymomonas mobilis and Saccharomyces sp. Appl. Microbiol. Biotechnol.45, 580-583.

Alexopolous, C.J., Mims, C.W., Blackwell, M., 1996. Introductory Mycology. (4th ed.) John Wiley and Sons, Inc., New York.

Alvira, P., Tomás-Pejó, E., Ballesteros, M., Negro, M.J., 2010. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour. Technol. 101, 4851-4861.

Amutha, R., Gunasekaran, P., 1994.  Simultaneous saccharification and fermentation of cassava starch using Zymomonas mobilis. J. Microbiol. Biotechnol.9, 22-34.

Arasaratnam, V., Balasubramaniam, K., 1993. Synergistic action of α‐amylase and glucoamylase on raw corn. Starch‐Stärke, 45(6), 231-233.

Arditti, J. and Dunn, A., 1969. Experimental plant physiology: experiments in cellular and plant physiology. Holt, Rinehart and Winston. Inc., New York, pp, 8.

Baras, J., Gacesa, S., Pejin, D., 2002.  Ethanol is a strategic raw material.  Chem. Ind. 56, 89-105.

Caputi, A., Veda, M., Brown, T., 1968.  Spectrophotometric determination of ethanol in wine.  American J. Enol. Vitic.19, 160-165.

Chesson, A., 1978.  The maceration of linen flax under anaerobic condition.  J. Appl. Bacteriol. 45, 219-230.

Dabas, R., Verma, V.K., Chaudhary, K., 1997.  Ethanol production from wheat starch.  Indian J. Microbiol.37, 49-50.

Deschatelets, L. and Yu, E.K.C., 1986. A simple pentose assay for biomass conversion.J. Appl. Microbiol. Biotechnol.24, 379-385.

Doelle, H.W., Greenfield, P.F., 1985.  The production of ethanol from sucrose using Zymomonas mobilis.  Appl. Microbiol. Biotechnol.22, 405-410.

Hermiati, E., Mangunwidjaja, D., Sunarti, T., Suparno, O., Prasetya, B., 2012. Potential utilization of cassava pulp for ethanol production in Indonesia. J. Sci. Res. Essays. 7, 100-106.

Kim, S., Dale, B.E., 2002.  Allocation procedure in ethanol production system from corn grain I.  System expansion.  Int. J. Life Cycle Assess. 7, 237-243.

Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., 1951.  Protein measurement with the folin phenol reagent.  J. Biol. chem. 193, 265-275.

Miller, G.L., 1959.  Use of DNS reagent for the determination of reducing sugars. Anal. Chem. 31, 426-428.

Mojovic, L., Nikolic, S., Rakin, M., Vukasinovic, M., 2006. Production of bioethanol from corn meal hydrolyzates.  Fuel. 85, 1750-1755.

Ohgren, K., Rudolf, A., Galbe, M., Zacchi, G., 2006. Fuel ethanol production from steam-pretreated corn stover using SSF at higher dry matter content. Biomass Bioenergy. 30, 863-869.

Pothiraj, C. Balaji, P., Eyini,M., 2006 .Raw Starch Degrading Amylase Production by Various Fungal Cultures Grown on Cassava Waste. Mycobiology  34, 128-130.

Pothiraj,C., Eyini, M., 2007. Enzyme Activities and Substrate Degradation by Fungal Isolates on CassavaWaste During Solid State Fermentation. Mycobiology 35, 196-204.

Updegraff, D.M., 1969. Semi micro determination of cellulose biological materials.  Anal. Biochem. 32, 420-424.

Zabala, I., Ferrer, A., Ledesma, A., Alello, C., 1994. Microbial protein production by submerged fermentation of mixed cellulolytic cultures. Adv. Bioproc. Eng. Springer Netherlands. pp. 455-460. 

Zhu, S., Wu, Y., Zinniu,Y., Xuan, Z., Cunwen, W., Faquan, Y., Siwei, J., Yufeng, Z., Shaoyong, T., Yongping, X., 2005. Simultanious saccharification and fermentation of microwave / alkali pre-treated rice straw to ethanol. Biosys. Eng. 92(2), 229-235.