A review on green liquid fuels for the transportation sector: a prospect of microbial solutions to climate change

Document Type: Review Paper


1 Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia.

2 Department of Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran.

3 Department of Animal Sciences, Ohio State Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, USA.


Environmental deterioration, global climate change, and consequent increases in pollution-related health problems among populations have been attributed to growing consumption of fossil fuels in particular by the transportation sector. Hence, replacing these energy carriers, also known as major contributors of greenhouse gas emissions, with biofuels have been regarded as a solution to mitigate the above-mentioned challenges. On the other hand, efforts have been put into limiting the utilization of edible feedstocks for biofuels production, i.e., first generation biofuels, by promoting higher generations of these eco-friendly alternatives. In light of that, the present review is aimed at comprehensively assessing the role and importance of microorganisms such as bacteria and yeasts as catalysts for sustainable production of liquid biofuels including bioethanol, biomethanol, biobutanol, bio-ammonia, biokerosene, and bioglycerol. Various aspects of these biofuels, i.e., background, chemical synthesis, microbial production (including exploitation of wild and metabolically-engineered species), and product recovery as well as the derivatives produced from these biofuels which are used as fuel additives are thoroughly covered and critically discussed. Furthermore, the industrial features of these green liquid fuels including the industrial practices reported in the literature and the challenges faced as well as possible approaches to enhance these practices are presented.

Graphical Abstract

A review on green liquid fuels for the transportation sector: a prospect of microbial solutions to climate change


  • Microbial-based biofuel as a promising waste-to-energy technology has been scrutinized.
  • Microbial production of bio-jet fuel is possible through DSHC, AtJ, and GtL.
  • Future application of ammonia as bio-fuel requires special design of ICE. 
  • Cons and pros of microbial liquid fuels over gasoline have been outlined.
  • Conversion of microbial liquid fuel into fuel derivatives has been discussed.


[1] Abedinifar, S., Karimi, K., Khanahmadi, M., Taherzadeh, M.J., 2009. Ethanol production by Mucor indicus and Rhizopus oryzae from rice straw by separate hydrolysis and fermentation. Biomass Bioenergy 33(5), 828-833.

[2] AFDC, 2018. Energy efficiency and renewable energy. Alternative Fuel Data Center, U.S. Department of Energy. (accessed on 21 Aug. 2019).

[3] Aghbashlo, M., Tabatabaei, M., Khalife, E., Shojaei, T.R., Dadak, A., 2018. Exergoeconomic analysis of a DI diesel engine fueled with diesel/biodiesel (B5) emulsions containing aqueous nano cerium oxide. Energy 149, 967-978.

[4] Agrawal, M., Mao, Z., Chen, R.R., 2011. Adaptation yields a highly efficient xylose‐fermenting Zymomonas mobilis strain. Biotechnol. Bioeng. 108(4), 777-785.

[5] Alaska Airlines, 2016. Alaska Airlines flies first commercial flight with new biofuel made from forest residuals. (accessed on 17 Sep. 2019).

[6] Alia, K.B., Rasul, I., Azeem, F., Hussain, S., Siddique, M.H., Muzammil, S., Riaz, M., Bari, A., Liaqat, S., Nadeem, H., 2019. Microbial production of ethanol, in: Inamuddin, M.F.A., Asiri, A.M. (Eds.), Microbial Fuel Cells: Materials and Applications. Materials Research Forum LLC., Pennsylvania, pp. 307-334.

[7] Amine, M., Awad, E.N., Ibrahim, V., Barakat, Y., 2018. Effect of ethyl acetate addition on phase stability, octane number and volatility criteria of ethanol-gasoline blends. Egypt. J. Pet. 27(4), 567-572.

[8] Amine, M., Zahran, M., Awad, E., El-Zein, S., Barakat, Y., 2013. Volatility criteria and specifications of some gasoline-ester blends. Inter. J. Mod. Org. Chem. 2, 226-250.

[9] Amini, H., Sowlat, M.H., 2014. National and sub-national environmental burden of disease in Iran from 1990 to 2013-study profile. Arch. Iran. Med. 17(1), 62.

[10] Aminifarshidmehr, N., 1996. The management of chronic suppurative otitis media with acid media solution. Am. J. Otol. 17(1), 24-25.

[11] Annous, B.A., Blaschek, H.P., 1991. Isolation and characterization of Clostridium acetobutylicum mutants with enhanced amylolytic activity. Appl. Microbiol. Biotechnol. 57(9), 2544-2548.

[12] Anthony, C., 1992. The c-type cytochromes of methylotrophic bacteria. Biochim. Biophys. Acta. 1099(1), 1-15.

[13] Arteconi, A., Mazzarini, A., Di Nicola, G., 2011. Emissions from ethers and organic carbonate fuel additives: a review. Water, Air, Soil Pollut. 221(1-4), 405.

[14] Atsumi, S., Cann, A.F., Connor, M.R., Shen, C.R., Smith, K.M., Brynildsen, M.P., Chou, K.J., Hanai, T., Liao, J.C., 2008a. Metabolic engineering of Escherichia coli for 1-butanol production. Metab. Eng. 10(6), 305-311.

[15] Atsumi, S., Hanai, T., Liao, J.C., 2008b. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451(7174), 86.

[16] Azimi, H., Tezel, H., Thibault, J., 2019. Optimisation of the in-situ recovery of butanol from ABE fermentation broth via membrane pervaporation. Chem. Eng. Res. Des. 150, 49-64.

[17] Babau, M., Cescut, J., Allouche, Y., Lombaert-Valot, I., Fillaudeau, L., Uribelarrea, J., Molina-Jouve, C., 2013. Towards a microbial production of fatty acids as precursors of biokerosene from glucose and xylose. Oil Gas Sci. Technol. 68(5), 899-911.

[18] Babson, D.M., Bellman, K., Prakash, S., Fennell, D.E., 2013. Anaerobic digestion for methane generation and ammonia reforming for hydrogen production: A thermodynamic energy balance of a model system to demonstrate net energy feasibility. Biomass Bioenergy. 56, 493-505.

[19] Baer, S.H., Blaschek, H.P., Smith, T.L., 1987. Effect of butanol challenge and temperature on lipid composition and membrane fluidity of butanol-tolerant Clostridium acetobutylicum. Appl. Microbiol. Biotechnol. 53(12), 2854-2861.

[20] Baere, L., Mattheeuws, B., 2010. Anaerobic digestion of MSW in Europe. BioCycle 51(2), 24-26.

[21] Balat, M., Balat, H., Öz, C., 2008. Progress in bioethanol processing. Prog. Energy. Combust. Sci. 34(5), 551-573.

[22] Ball, K.F., Bostick, J.G., Brennan, T.J., 1999. Fuel lubricity from blends of a diethanolamine derivative and biodiesel. United States Patent US5891203 A.

[23] Beal, E.J., House, C.H., Orphan, V.J., 2009. Manganese-and iron-dependent marine methane oxidation. Science 325(5937), 184-187.

[24] Bechtold, R., 1997. Alternative fuels for vehicle fleet demonstration program. Report of the New York State Energy Research and Development Authority, NYSERDA Report.

[25] Bermejo, L.L., Welker, N.E., Papoutsakis, E.T., 1998. Expression of Clostridium acetobutylicum atcc 824 genes in Escherichia coli for acetone production and acetate detoxification. Appl. Microbiol. Biotechnol. 64(3), 1079-1085.

[26] Bertilsson, M., Olofsson, K., Lidén, G., 2009. Prefermentation improves xylose utilization in simultaneous saccharification and co-fermentation of pretreated spruce. Biotechnol. Biofuels 2(1), 8.

[27] Bjerre, A.B., Olesen, A.B., Fernqvist, T., Plöger, A., Schmidt, A.S., 1996. Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnol. Bioeng. 49(5), 568-577.

[28] Boetius, A., Ravenschlag, K., Schubert, C.J., Rickert, D., 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407(6804), 623.

[29] Borden, J.R., Papoutsakis, E.T., 2007. Dynamics of genomic-library enrichment and identification of solvent tolerance genes for Clostridium acetobutylicum. Appl. Microbiol. Biotechnol. 73(9), 3061-3068.

[30] Borodina, I., Nielsen, J., 2014. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Biotechnol. J. 9(5), 609-620.

[31] Brady, S., Tam, K., Leung, C., Salam, C., 2008. Zero waste biodiesel: Using glycerin and biomass to create renewable energy. UCR Undergrad. Res. J. 2, 5-11.

[32] Brandhorst, H., Baltazar-Lopez, M., Tatarchuk, B., Cahela, D.R., Barron, T., 2008. Ammonia–its transformation and effective utilization. 6th International Energy Conversion Engineering Conference (IECEC). AIAA 2008-5610.

[33] Breitmaier, E., Jung, G., 2005. Organische Chemie. Grundlagen, Stoffklassen, Reaktionen, Konzepte, Molekülstruktur; zahlreiche Formeln, Tabellen, 5., überarb. Aufl. Thieme, Stuttgart.

[34] Brooks, T.A., Ingram, L., 1995. Conversion of mixed waste office paper to ethanol by genetically engineered Klebsiella oxytoca strain P2. Biotechnol. Prog. 11(6), 619-625.

[35] Burger, J., Siegert, M., Ströfer, E., Hasse, H., 2010. Poly (oxymethylene) dimethyl ethers as components of tailored diesel fuel: Properties, synthesis and purification concepts. Fuel 89(11), 3315-3319.

[36] Butler, J.R., Pelati, J.E., 2010. Method for production of styrene from toluene and methanol. European Patent, EP2370378A1.

[37] Cáceres, M., Gentina, J.C., Aroca, G., 2014. Oxidation of methane by Methylomicrobium album and Methylocystis sp. in the presence of H2S and NH3. Biotechnol. Lett. 36(1), 69-74.

[38] Chan, S.I., Nguyen, H.H.T., Chen, K.H., Yu, S.S., 2011. Overexpression and purification of the particulate methane monooxygenase from Methylococcus capsulatus (Bath). Methods Enzymol. 495, 177.

[39] Chen, G., Li, S., Jiao, F., Yuan, Q., 2007. Catalytic dehydration of bioethanol to ethylene over TiO2/γ-Al2O3 catalysts in microchannel reactors. Catal. Today 125(1), 111-119.

[40] Cheng, W.H., Kung, H.H., 1994. Methanol production and use. Marcel Dekker, New York.

[41] Choudhary, T.V., Choudhary, V.R., 2008. Energy‐efficient syngas production through catalytic oxy‐methane reforming reactions. Angew. Chem., Int. Ed. 47(10), 1828-1847.

[42] Christensen, C.H., Johannessen, T., Sørensen, R.Z., Nørskov, J.K., 2006. Towards an ammonia-mediated hydrogen economy? Catal. Today 111(1), 140-144.

[43] Colby, J., Stirling, D.I., Dalton, H., 1977. The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds. Biochem. J. 165(2), 395-402.

[44] Cotton, A.F., Wilkinson, G., Bochmann, M., Murillo, C.A., 1999. Advanced inorganic chemistry. John Wiley and Sons, USA.

[45] Cox, J.M., Day, D.J., Anthony, C., 1992. The interaction of methanol dehydrogenase and its electron acceptor, cytochrome cL, in the facultative methylotroph Methylobacterium extorquens AM1 and in the obligate methylotroph Methylophilus methylotrophus. Biochim. Biophys. Acta 1119(1), 97-106.

[46] Criddle, C.S., Hart, J.R., Wu, W.M., Sundstrom, E.R., Morse, M.C., Billington, S.L., Rostkowski, K.H., Frank, C.W., 2012. Production of PHA using biogas as feedstock and power source. United State Patent US20130071890A1.

[47] Cummins, L., 1989. Internal Fire. Revised ed. Society of Automotive Engineers, Incorporated, Warrendale, Pennsylvania.

[48] Dabbagh, H., Ghobadi, F., Ehsani, M., Moradmand, M., 2013. The influence of ester additives on the properties of gasoline. Fuel 104, 216-223.

[49] De Klerk, A., 2012. Fischer-Tropsch Refining. John Wiley and Sons, Weinheim, Hoboken, New Jersey.

[50] De Torres, M., Jimenez-Oses, G., Mayoral, J.A., Pires, E., de los Santos, M., 2012. Glycerol ketals: Synthesis and profits in biodiesel blends. Fuel 94, 614-616.

[51] Dedysh, S.N., Dunfield, P.F., 2011. Facultative and obligate methanotrophs: How to identify and differentiate them. Methods Enzymol. 495, 31.

[52] Dedysh, S.N., Knief, C., Dunfield, P.F., 2005. Methylocella species are facultatively methanotrophic. J. Bacteriol. 187(13), 4665-4670.

[53] Dehghani, A., Ranjbar, M., Eliassi, A., 2018. Novel porous iron molybdate catalysts for synthesis of dimethoxymethane from methanol: Metal organic frameworks as precursors. Nanochem. Res. 3(1), 50-61.

[54] Dehhaghi, M., Kazemi Shariat Panahi, H., Guillemin, G.J., 2019. Microorganisms, tryptophan metabolism, and kynurenine pathway: A complex interconnected loop influencing human health status. Int. J. Tryptophan Res. 12, 1-10.

[55] Dehhaghi, M., Kazemi Shariat Panahi, H., Guillemin, G.J., 2018a. Microorganisms’ footprint in neurodegenerative diseases. Front. Cell. Neurosci. 12, 466.

[56] Dehhaghi, M., Mohammadipanah, F., 2017. Evaluation of growth inhibition activity of myxobacterial extracts against multi-drug resistant Acinetobacter baumannii. Prog. Biol. Sci. 6(2), 181-187.

[57] Dehhaghi, M., Mohammadipanah, F., Guillemin, G.J., 2018b. Myxobacterial natural products: An under-valued source of products for drug discovery for neurological disorders. Neurotoxicology 66, 195-203.

[58] DeRosa, T.F., 2012. Next generation of international chemical additives: A critical review of current US patents. Elsevier, United Kingdom.

[59] Dias De Oliveira, M.E., Vaughan, B.E., Rykiel, E.J., 2005. Ethanol as fuel: Energy, carbon dioxide balances, and ecological footprint. AIBS Bull. 55(7), 593-602.

[60] Dien, B., Cotta, M., Jeffries, T., 2003. Bacteria engineered for fuel ethanol production: Current status. Appl. Microbiol. Biotechnol. 63(3), 258-266.

[61] Dong, J.J., Han, R.Z., Xu, G.C., Gong, L., Xing, W.R., Ni, Y., 2018. Detoxification of furfural residues hydrolysate for butanol fermentation by Clostridium saccharobutylicum DSM 13864. Bioresour. Technol. 259, 40-45.

[62] Doran‐Peterson, J., Cook, D.M., Brandon, S.K., 2008. Microbial conversion of sugars from plant biomass to lactic acid or ethanol. Plant J. 54(4), 582-592.

[63] Dunfield, P.F., Belova, S.E., Vorob'ev, A.V., Cornish, S.L., Dedysh, S.N., 2010. Methylocapsa aurea sp. nov., a facultative methanotroph possessing a particulate methane monooxygenase, and emended description of the genus Methylocapsa. Int. J. Syst. Evol. Microbiol. 60(11), 2659-2664.

[64] Dürre, P., 2005. Sporulation in clostridia (genetics), in: Dürre P. (Ed.), Handbook on clostridia. CRC Press, Boca Raton, Florida, pp. 659-666.

[65] Energy Information Administration, 1988. Alternative to traditional transportation fuels. DOE/EIA-0585(98). Washington, DC.

[66] Errico, M., Sotoft, L.F., Nielsen, A.K., Norddahl, B., 2018. Treatment costs of ammonia recovery from biogas digestate by air stripping analyzed by process simulation. Clean Technol. Environ. Policy 20(7), 1479-1489.

[67] Ettwig, K.F., Butler, M.K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M.M., Schreiber, F., Dutilh, B.E., Zedelius, J., De Beer, D., 2010. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464(7288), 543.

[68] Ezeji, T., Milne, C., Price, N.D., Blaschek, H.P., 2010. Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Appl. Microbiol. Biotechnol.85(6), 1697-1712.

[69] Ezeji, T., Qureshi, N., Blaschek, H.P., 2007. Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol. Bioeng. 97(6), 1460-1469.

[70] Ezeldin, M., Masaad, A.M., Suleman, N.M., 2015. Effect of diethylamine on physicochemical properties of reformat gasoline. Am. J. Sci. Res.(106), 88-96.

[71] Feibelman, P.J., Stumpf, R., 2006. Comments on potential roles of ammonia in a hydrogen economy—a study of issues related to the use of ammonia for on-board vehicular hydrogen storage. Sandia Natl. Lab.

[72] Fernando, S., Adhikari, S., Kota, K., Bandi, R., 2007. Glycerol based automotive fuels from future biorefineries. Fuel 86(17), 2806-2809.

[73] Fiedler, E., Grossmann, G., Kersebohm, D.B., Weiss, G., Witte, C., 2003. Methanol. Ullmann's Encyclopedia of Industrial Chemistry. 6th ed. Wiley-VCH GmbH, Weinheim.

[74] Françoisse, O., Thyrion, F., 1991. Kinetics and mechanism of ethyl tert-butyl ether liquid-phase synthesis. Chem. Eng. Process 30(3), 141-149.

[75] Frank, J., Krimpen, S.H., Verwiel, P.E.J., Jongejan, J.A., Mulder, A.C., Duine, J.A., 1989. On the mechanism of inhibition of methanol dehydrogenase by cyclopropane‐derived inhibitors. Eur. J. Biochem. 184(1), 187-195.

[76] Foulquier, C., Huang, C.-N., Thiel, A., Wilding-Steel, T., Soula, J., Yoo, M., Ehrenreich, A., Meynial-Salles, I., Liebl, W., Soucaille, P., 2019. An efficient method for markerless mutant generation by allelic exchange in Clostridium acetobutylicum and Clostridium saccharobutylicum using suicide vectors. Biotechnol. Biofuels 12(1), 31.

[77] Gapes, J., 2000. The economics of acetone-butanol fermentation: Theoretical and market considerations. J. Mol. Microbiol. Biotechnol. 2(1), 27-32.

[78] Ge, X., Yang, L., Sheets, J.P., Yu, Z., Li, Y., 2014. Biological conversion of methane to liquid fuels: status and opportunities. Biotechnol. Adv. 32(8), 1460-1475.

[79] Gevo Inc., 2016. Gevo’s alcohol to jet fuel meets approved ASTM standard. Clears key hurdle to flying first commercial test flight with Alaska airlines. (accessed on 12 Sep. 2019).

[80] Gómez Cuenca, F., Gómez Marín, M., Folgueras Díaz, M.B., 2011. Effects of ethylene glycol ethers on diesel fuel properties and emissions in a diesel engine. Energy Convers. Manage. 52(8), 3027-3033.

[81] Green, E.M., Boynton, Z.L., Harris, L.M., Rudolph, F.B., Papoutsakis, E.T., Bennett, G.N., 1996. Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology 142(8), 2079-2086.

[82] Greene, N., 2004. Growing energy. How biofuels can help end America's oil dependence. Natural Resources Defense Council.

[83] Gunasekaran, P., Raj, K.C., 1999. Ethanol fermentation technology–Zymomonas mobilis. Curr. Sci. 77(1), 56-68.

[84] Gupta, R., Sharma, K.K., Kuhad, R.C., 2009. Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498. Bioresour. Technol. 100(3), 1214-1220.

[85] Hahn-Hägerdal, B., Galbe, M., Gorwa-Grauslund, M.F., Lidén, G., Zacchi, G., 2006. Bio-ethanol–the fuel of tomorrow from the residues of today. Trends Biotechnol. 24(12), 549-556.

[86] Hajjari, M., Tabatabaei, M., Aghbashlo, M., Ghanavati, H., 2017. A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization. Renewable Sustainable Energy Rev. 72, 445-464.

[87] Hal, B., William, K., Scott, S., 1982. The forbidden fuel: Power alcohol in the twentieth century. Boyd Griffin, New York.

[88] Hamedi, J., Dehhaghi, M., Mohammdipanah, F., 2015a. Isolation of extremely heavy metal resistant strains of rare actinomycetes from high metal content soils in Iran. Int. J. Environ. Res. 9(2), 475-480.

[89] Hamedi, J., Mohammadipanah, F., Panahi, H.K.S., 2015b. Biotechnological exploitation of Actinobacterial members. in: Maheshwari, D., Saraf, M. (Eds.), Halophiles. Vol. 7, Springer, Cham, pp. 57-143.

[90] Hamelinck, C.N., Van Hooijdonk, G., Faaij, A.P., 2005. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle-and long-term. Biomass Bioenergy 28(4), 384-410.

[91] Han, B., Su, T., Wu, H., Gou, Z., Xing, X.H., Jiang, H., Chen, Y., Li, X., Murrell, J.C., 2009. Paraffin oil as a “methane vector” for rapid and high cell density cultivation of Methylosinus trichosporium OB3b. Appl. Microbiol. Biotechnol. 83(4), 669-677.

[92] Han, J.S., Ahn, C.M., Mahanty, B., Kim, C.G., 2013. Partial oxidative conversion of methane to methanol through selective inhibition of methanol dehydrogenase in methanotrophic consortium from landfill cover soil. Appl. Biochem. Biotechnol. 171(6), 1487-1499.

[93] Hansen, J., 1997. Methanol synthesis, in: Ertl, G., Knozinger, H., Weitkamp, J. (Eds.), Handbook of heterogeneous catalysis. Vol. 4, Wiley-VCH GmbH, Weinheim, pp. 1856.

[94] Hanson, R.S., Hanson, T.E., 1996. Methanotrophic bacteria. Microbiol. Rev. 60(2), 439-471.

[95] Hardenberg, H.O., Morey, S., 1992. Samuel Morey and his atmospheric engine. Society of Automotive Engineers, Warrendale, Pennsylvania.

[96] Harris, L., Blank, L., Desai, R., Welker, N., Papoutsakis, E., 2001. Fermentation characterization and flux analysis of recombinant strains of Clostridium acetobutylicum with an inactivated solR gene. J. Ind. Microbiol. Biotechnol. 27(5), 322-328.

[97] Harvey, B.G., 2016. High density fuels from isoprene. United State Patent US9371258 B1.

[98] Haynes, C.A., Gonzalez, R., 2014. Rethinking biological activation of methane and conversion to liquid fuels. Nat. Chem. Biol. 10(5), 331-339.

[99] Hester, A., 2000. Microbial glycerol. Ind. Bioprocess 22(4), 3-5.

[100] Ho, M.W., 2005. Biogas bonanza for third world development. Institute of Science in Society, London, UK.

[101] Holbrook, E., 2018. Demand for jet fuel skyrockets, efficiency gains to follow. Energy Manager Today.

[102] Holbroock, J., 2007. Wrap-up/Ammonia and the clean energy portfolio. Proceedings of the Ammonia–Sustainable, Emission Free Fuel Conference, October 15-16, San Francisco, CA. Iowa Energy Center.

[103] Holmgren, J., 2013. Innovative use of industrial waste gases to produce sustainable fuels and chemicals. Presentation held at the Avalon Air Show, Geelong, Australia Google Scholar.

[104] Huang, C.N., Liebl, W., Ehrenreich, A., 2018. Restriction-deficient mutants and marker-less genomic modification for metabolic engineering of the solvent producer Clostridium saccharobutylicum. Biotechnol. Biofuels 11(1), 264.

[105] Hull, A., 2012. Technology for the production of fully synthetic aviation fuels, diesel and gasoline. Contribution to Solakonferansen. Stavanger.

[106] Huntsman., 2017. Dimethylaminopropylamine (DMAPA). Technical Bulletin, Huntsman Advanced Technology Center, Huntsman Corporation.

[107] Inui, M., Suda, M., Kimura, S., Yasuda, K., Suzuki, H., Toda, H., Yamamoto, S., Okino, S., Suzuki, N., Yukawa, H., 2008. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl. Microbiol. Biotechnol. 77(6), 1305-1316.

[108] James, D.D., Moghaddam, R.B., Chen, B., Pickup, P.G., 2018. Ruthenium-tin oxide/carbon supported platinum catalysts for electrochemical oxidation of ethanol in direct ethanol fuel cells. J. Electrochem. Soc. 165(3), F215-F219.

[109] Jeffries, T., Jin, Y., 2004. Metabolic engineering for improved fermentation of pentoses by yeasts. Appl. Microbiol. Biotechnol. 63(5), 495-509.

[110] Jensen, J.O., Vestbø, A.P., Li, Q., Bjerrum, N., 2007. The energy efficiency of onboard hydrogen storage. J. Alloys Compd. 446, 723-728.

[111] Jiang, A., Zhang, T., Zhao, Q., Frear, C., Chen, S., 2010. Integrated ammonia recovery technology in conjunction with dairy anaerobic digestion. Climate Friendly Farming, Washington State University.

[112] Jiménez-Bonilla, P., Wang, Y., 2018. In situ biobutanol recovery from clostridial fermentations: a critical review. Crit. Rev. Biotechnol. 38(3), 469-482.

[113] Jingura, R.M., Kamusoko, R., 2017. Methods for determination of biomethane potential of feedstocks: A review. Biofuel Res. J. 4(2), 573-586.

[114] Joachimsthal, E.L., Rogers, P.L., 2000. Characterization of a high-productivity recombinant strain of Zymomonas mobilis for ethanol production from glucose/xylose mixtures. Appl. Biochem. Biotechnol. 84(1-9), 343-356.

[115] Johnston, G., 2013. Alcohol to jet (AtJ). Contribution to Paris Air Show. June 2013, Paris.

[116] Jones, R., 2011. Ethyl acetate as fuel or fuel additive. United State Patent US20110296744A1.

[117] Joshi, B., Joshi, J., Bhattarai, T., Sreerama, L., 2019. Currently used microbes and advantages of using genetically modified microbes for ethanol production. in: Ray, C.R., Ramachandran, S. (Eds.), Bioethanol Production from Food Crops. Elsevier, pp. 293-316.

[118] Jung, A.K., Voelkel, L., Crema, S., Misske, A., 2016. Composition and method to improve the fuel economy of hydrocarbon fueled internal combustion engines. United States Patent US9447351B2.

[119] Kádár, Z., Szengyel, Z., Réczey, K., 2004. Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Ind. Crops Prod. 20(1), 103-110.

[120] Kagyrmanova, A., Chumachenko, V., Korotkikh, V., Kashkin, V., Noskov, A., 2011. Catalytic dehydration of bioethanol to ethylene: Pilot-scale studies and process simulation. Chem. Eng. J. 176, 188-194.

[121] Karas, L., Piel, W.J., 2005. Ethers. Fifth ed. Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 10.

[122] Karimi, K., Emtiazi, G., Taherzadeh, M.J., 2006. Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. Enzyme Microb. Technol. 40(1), 138-144.

[123] Katahira, S., Mizuike, A., Fukuda, H., Kondo, A., 2006. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose-and cellooligosaccharide-assimilating yeast strain. Appl. Microbiol. Biotechnol. 72(6), 1136-1143.

[124] Kazemi Shariat Panahi, H., Dehhaghi, M., Aghbashlo, M., Karimi, K., Tabatabaei, M., 2019a. Conversion of residues from agro-food industry into bioethanol in Iran: An under-valued biofuel additive to phase out MTBE in gasoline. Renewable Energy 145, 699-710.

[125] Kazemi Shariat Panahi, H., Dehhaghi, M., Aghbashlo, M., Karimi, K., Tabatabaei, M, 2019b. Shifting fuel feedstock from oil wells to sea: Iran outlook and potential for biofuel production from brown macroalgae (ochrophyta; phaeophyceae). Renewable Sustainable Energy Rev. 112, 626-642.

[126] Kazemi Shariat Panahi, H., Tabatabaei, M., Aghbashlo, M., Dehhaghi, M., Rehan, M., Nizami, A.S., 2019c. Recent updates on the production and upgrading of bio-crude oil from microalgae. Bioresour. Technol. Rep. 7, 100216.

[127] Kochloefl, K., 1997. Steam reforming, in: Ertl G., Knozinger, H., Weitkamp, J. (Eds.), Handbook of heterogeneous catalysis. Vol. 4, Wiley-VCH GmbH. Weinheim, pp. 1819.

[128] Koehl, W.J., Benson, J.D., Burns, V.R., Gorse, R.A., Hochhauser, A.M., Knepper, J.C., Leppard, W.R., Painter, L.J., Rapp, L.A., Reuter, R.M., 1993. Comparison of effects of MTBE and TAME on exhaust and evaporative emissions—Auto/oil air quality improvement research program. SAE Technical Paper. 0148-7191.

[129] Koehler, D., Claffey, W., 1999. Polymeric-amine fuel and lubricant additive. United State Patent US5962738A.

[130] Koppram, R., Nielsen, F., Albers, E., Lambert, A., Wännström, S., Welin, L., Zacchi, G., Olsson, L., 2013. Simultaneous saccharification and co-fermentation for bioethanol production using corncobs at lab, PDU and demo scales. Biotechnol. Biofuels 6(1), 2.

[131] Kroch, E., 1945. Ammonia–a fuel for motor buses. J. Inst. Pet. 31, 213-223.

[132] Kumar, A., Singh, J., Baskar, C., 2019. Lignocellulosic biomass for bioethanol production through microbes: Strategies to improve process efficiency. in: Rastegari, A.A., Yadav, A.N., Gupta, A. (Eds.), Prospects of renewable bioprocessing in future energy systems. Springer, pp. 357-386.

[133] Lagona, J.A., Loper, J.T., 2017. Lubricating oil composition and additive therefor having improved wear properties. United States Patent US9574158B2.

[134] LaMonica, M., 2012. Natural gas tapped as bridge to biofuels, MIT Technology Review. (accessed on 12 Sep. 2018).

[135] Lamy, C., Coutanceau, C., 2012. Electrocatalysis of alcohol oxidation reactions at platinum group metals, in: Liang, Z.X., Zhao, T.S. (Eds.), Catalysts for alcohol-fuelled direct oxidation fuel cells. Royal Society of Chemistry. Cambridge, United Kingdom.

[136] Lancet., 2016. Air pollution—crossing borders. Lancet 388.

[137] Lapuerta, M., Rodríguez-Fernández, J., García-Contreras, R., 2015. Effect of a glycerol-derived advanced biofuel–FAGE (fatty acid formal glycerol ester)–on the emissions of a diesel engine tested under the New European Driving Cycle. Energy 93, 568-579.

[138] Latvala, V., Ketola, A., Oskanen, I., Koskenniemi, K., Laaksonen, M., Lensu, E., 2014. Method for producing ammonia or ammonium by fermentation. United States Patent, Application No.14/565,055.

[139] Lee, S.Y., Park, J.H., Jang, S.H., Nielsen, L.K., Kim, J., Jung, K.S., 2008. Fermentative butanol production by clostridia. Biotechnol. Bioeng. 101(2), 209-228.

[140] Levine, J.A., Wu, S., Chasan, D.E., Rabbat, P., Fenton, R.J., Phillips, G.C., 2018. Friction-reducing compound, method of producing same, and lubricant composition. United States Patent US20170321147A1.

[141] Li, J., Feaster, S., Kohler, A., 2019. A multi-objective multi-technology (MOMT) evaluation and analysis framework for ammonia synthesis process development. Comput.-Aided Chem. Eng. 47, 415-420.

[142] Lin, Y.L., Blaschek, H.P., 1983. Butanol production by a butanol-tolerant strain of Clostridium acetobutylicum in extruded corn broth. Appl. Environ. Microbiol. 45(3), 966-973.

[143] Liu, Z.H., Chen, H.Z., 2016. Simultaneous saccharification and co-fermentation for improving the xylose utilization of steam exploded corn stover at high solid loading. Bioresour. Technol. 201, 15-26.

[144] Lü, X.C., Yang, J.G., Zhang, W.G., Huang, Z., 2005. Improving the combustion and emissions of direct injection compression ignition engines using oxygenated fuel additives combined with a cetane number improver. Energy Fuels19(5), 1879-1888.

[145] McDonald, R.C., Hamdan, M., 2019. Compact Direct Methanol Fuel Cell: Design Approach Using Commercial Micropumps. J. Electrochem. Energy Convers. Storage 16(1), 011003.

[146] MacLean, H.L., Lave, L.B., 2003. Evaluating automobile fuel/propulsion system technologies. Prog. Energy Combust. Sci. 29(1), 1-69.

[147] Mangelsdorf, I., Boehncke, A., Könnecker, G., 2002. Diethylene glycol dimethyl ether. World Health Organization, Geneva.

[148] Mariano, A.P., Qureshi, N., Filho, R.M., Ezeji, T.C., 2011. Bioproduction of butanol in bioreactors: new insights from simultaneous in situ butanol recovery to eliminate product toxicity. Biotechnol. Bioeng. 108(8), 1757-1765.

[149] Mariano, A.P., Qureshi, N., Filho, R.M., Ezeji, T.C., 2012. Assessment of in situ butanol recovery by vacuum during acetone butanol ethanol (ABE) fermentation. J. Chem. Technol. Biotechnol. 87(3), 334-340.

[150] Matsushika, A., Inoue, H., Kodaki, T., Sawayama, S., 2009. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl. Microbiol. Biotechnol. 84(1), 37-53.

[151] Mavinic, D.S., Lobanov, S., Koch, F.A., Farhana, S., 2019. Process for removal or recovery of ammonium nitrogen from wastewater streams. United States Patent 20190062172A1.

[152] McGuinness, D.S., 2011. Olefin oligomerization via metallacycles: Dimerization, trimerization, tetramerization, and beyond. Chem. Rev. 111(3), 2321-2341.

[153] Mohammadipanah, F., Hamedi, J., Dehhaghi, M., 2015. Halophilic bacteria: Potentials and applications in biotechnology. in: Maheshwari, D., Saraf, M. (Eds.), Halophiles. Vol. 7, Springer, Cham, pp. 277-321.

[154] Meadows, C.W., Kang, A., Lee, T.S., 2018. Metabolic engineering for advanced biofuels production and recent advances toward commercialization. Biotechnol. J. 13(1), 1600433.

[155] Mohammadipanah, F., Panahi, H.K.S., Imanparast, F., Hamedi, J., 2016. Development of a reversed-phase liquid chromatographic assay for the quantification of total persipeptides in fermentation broth. Chromatographia 79(19-20), 1325-1332.

[156] Monbaliu, J.C.M., Winter, M., Chevalier, B., Schmidt, F., Jiang, Y., Hoogendoorn, R., Kousemaker, M.A., Stevens, C.V., 2011. Effective production of the biodiesel additive STBE by a continuous flow process. Bioresour. Technol. 102(19), 9304-9307.

[157] Montoya, D., Arévalo, C., Gonzales, S., Aristizabal, F., Schwarz, W.H., 2001. New solvent-producing Clostridium sp. strains, hydrolyzing a wide range of polysaccharides, are closely related to Clostridium butyricum. J. Ind. Microbiol. Biotechnol. 27(5), 329-335.

[158] Morschbacker, A., 2009. Bio-ethanol based ethylene. J. Macromol. Sci., Polym. Rev. 49(2), 79-84.

[159] Mota, C.J., Da Silva, C.X., Rosenbach Jr, N., Costa, J., Da Silva, F.V., 2010. Glycerin derivatives as fuel additives: The addition of glycerol/acetone ketal (solketal) in gasolines. Energy Fuels 24(4), 2733-2736.

[160] Naidoo, M., Tai, S.L., Harrison, S.T.L., 2018. Energy requirements for the in-situ recovery of biobutanol via gas stripping. Biochem. Eng. J. 139, 74-84.

[161] Nair, R.V., Green, E.M., Watson, D.E., Bennett, G.N., Papoutsakis, E.T., 1999. Regulation of the sol locus genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 by a putative transcriptional repressor. J. Bacteriol. 181(1), 319-330.

[162] Neuling, U., Kaltschmitt, M., 2015. Conversion routes for production of biokerosene—status and assessment. Biomass Convers. Biorefin. 5(4), 367-385.

[163] News Release Lotus Engineering, 2008. Lotus researches cars running on CO2 – Exige 270E Tri-fuel is the next stage of Lotus engineering's long-term sustainable, Synthetic Alcohol Research.

[164] Ng, C.Y.C., Takahashi, K., Liu, Z., 2016. Isolation, characterization, and optimization of an aerobic butanol‐producing bacterium from Singapore. Biotechnol. Appl. Biochem. 63(1), 86-91.

[165] Nibin, T., Sathiyagnanam, A., Sivaprakasam, S., Saravanan, C., 2005. Investigation on emission characteristics of a diesel engine using oxygenated fuel additive. IE (I) J. 86, 51-54.

[166] Nielsen, D.R., Leonard, E., Yoon, S.H., Tseng, H.C., Yuan, C., Prather, K.L.J., 2009. Engineering alternative butanol production platforms in heterologous bacteria. Metab. Eng. 11(4), 262-273.

[167] Noureddini, H., Dailey, W., Hunt, B., 1998. Production of ethers of glycerol from crude glycerol-the by-product of biodlesel production. Chem. Biomol. Eng. Res. 13,121-129.

[168] Novozhilov, V., Joseph, P., Ishiko, K., Shimada, T., Wang, H., Liu, J., 2011. Polymer combustion as a basis for hybrid propulsion: A comprehensive review and new numerical approaches. Energies 4(10), 1779-1839.

[169] Nowell, G.P., 1994. On the road with methanol: The present and future benefits of methanol fuel. Acurex Environmental Technical Report.

[170] O'rourke, C., Kavasmaneck, P., Uhl, R., 1981. Manufacture of n-butanol and 2-ethylhexanol by the rhodium oxo process and applications of the alcohols, in: Wickson, E.J. (Ed.), Monohydric alcohols, ACS Publications, Washington, D.C., pp. 71-85.

[171] Ogbu, I., Ajiwe, V., 2016. Fuel properties and their correlations with fatty acids structures of methyl-and butyl-esters of Afzelia africana, Cucurbita pepo and Hura crepitans seed oils. Waste Biomass Valorization 7(2), 373-381.

[172] Okonkwo, C., Azam, M., Ezeji, T., Qureshi, N., 2016. Enhancing ethanol production from cellulosic sugars using Scheffersomyces (Pichia) stipitis. Bioprocess Biosyst. Eng. 39(7), 1023-1032.

[173] Olah, G.A., Goeppert, A., Prakash, G.S., 2011. Beyond oil and gas: the methanol economy. 2nd Edition ed. Wiley-VCH, Weinheim.

[174] Olofsson, K., Palmqvist, B., Lidén, G., 2010. Improving simultaneous saccharification and co-fermentation of pretreated wheat straw using both enzyme and substrate feeding. Biotechnol. Biofuels 3(1), 17.

[175] Oprescu, E.E., Dragomir, R.E., Radu, E., Radu, A., Velea, S., Bolocan, I., Stepan, E., Rosca, P., 2014. Performance and emission characteristics of diesel engine powered with diesel–glycerol derivatives blends. Fuel Process. Technol. 126, 460-468.

[176] Panahi, H.K.S., Mohammadipanah, F., Dehhaghi, M., 2016. Optimization of extraction conditions for liquid-liquid extraction of persipeptides from Streptomyces zagrosensis fermentation broth. Eur. Chem. Bull. 5, 408-415.

[177] Park, S., Shah, N.N., Taylor, R.T., Droege, M.W., 1992. Batch cultivation of Methylosinus trichosporium OB3b: II. Production of particulate methane monooxygenase. Biotechnol. Bioeng. 40(1), 151-157.

[178] Pavlov, O., Karsakov, S., Pavlov, S.Y., 2011. A new technology for the production of isoprene from isobutene-containing C4 fractions and formaldehyde: Prospects for industrial reconstruction. Theor. Found. Chem. Eng. 45(4), 487-491.

[179] Pechstein, J., Neuling, U., Gebauer, J., Kaltschmitt, M., 2018. Alcohol-to-Jet (AtJ), in: Kaltschmitt, M., Neuling, U. (Eds), Biokerosene. Springer, pp. 543-574.

[180] Peng, L., Chen, Y., 2011. Conversion of paper sludge to ethanol by separate hydrolysis and fermentation (SHF) using Saccharomyces cerevisiae. Biomass Bioenergy 35(4), 1600-1606.

[181] Perry, J.H., Perry, C.P., 1990. Methanol: Bridge to a renewable energy future. University Press of America, Lanham, Maryland.

[182] Qi, Z., Hui, W., Qin, Z.f., Wu, Z.W., Wu, J.B., Fan, W.B., Wang, J.G., 2011. Synthesis of polyoxymethylene dimethyl ethers from methanol and trioxymethylene with molecular sieves as catalysts. Ranliao Huaxue Xuebao 39(12), 918-923.

[183] Quispe, C.A., Coronado, C.J., Carvalho Jr, J.A., 2013. Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renewable Sustainable Energy Rev. 27, 475-493.

[184] Qureshi, N., Blaschek, H., 2001. Recent advances in ABE fermentation: Hyper-butanol producing Clostridium beijerinckii BA101. J. Ind. Microbiol. Biotechnol. 27(5), 287-291.

[185] Qureshi, N., Maddox, I.S., Friedl, A., 1992. Application of continuous substrate feeding to the ABE fermentation: Relief of product inhibition using extraction, perstraction, stripping, and pervaporation. Biotechnol. Prog. 8(5), 382-390.

[186] Raganati, F., Procentese, A., Olivieri, G., Russo, M.E., Salatino, P., Marzocchella, A., 2018. Bio-butanol separation by adsorption on various materials: Assessment of isotherms and effects of other ABE-fermentation compounds. Sep. Purif. Technol. 191, 328-339.

[187] Rahimpour, M.R., Keshtkari, S., Aryafard, E., 2019. Ethanol for Air Transportation, in: Basile, A., Iulianelli, A., Dalena, F., Nejat, T.V. (Eds.), Ethanol. Elsevier, pp. 425-448.

[188] Rahimzadeh, H., Tabatabaei, M., Aghbashlo, M., Panahi, H.K.S., Rashidi, A., Goli, S.A.H., Mostafaei, M., Ardjmand, M., Nizami, A.S., 2018. Potential of acid-activated bentonite and SO3H-functionalized MWCNTs for biodiesel production from residual olive oil under biorefinery scheme. Front. Energy Res. 6, 137.

[189] Rakopoulos, D., Rakopoulos, C., Giakoumis, E., Dimaratos, A., Kyritsis, D., 2010. Effects of butanol–diesel fuel blends on the performance and emissions of a high-speed DI diesel engine. Energy Convers. Manage. 51(10), 1989-1997.

[190] Reda, T., Plugge, C.M., Abram, N.J., Hirst, J., 2008. Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proc. Natl. Acad. Sci. 105(31), 10654-10658.

[191] Reed, T.B., Lerner, R., 1973. Methanol: A versatile fuel for immediate use. Science 182(4119), 1299-1304.

[192] RFA, 2019. Annual fuel ethanol production. U.S. and world ethanol production. Renewable Fuels Association. (accessed on 21 Aug. 2019).

[193] Rittmann, B.E., McCarty, P.L., 2012. Environmental biotechnology: principles and applications. 4th ed. Tata McGraw-Hill Education, Boston, MA.

[194] Robota, H.J., Alger, J.C., Shafer, L., 2013. Converting algal triglycerides to diesel and HEFA jet fuel fractions. Energy Fuels 27(2), 985-996.

[195] Romm, J.J., 2004. The hype about hydrogen: fact and fiction in the race to save the climate. Island Press, Washington, DC.

[196] Rühl, J., Schmid, A., Blank, L.M., 2009. Selected Pseudomonas putida strains able to grow in the presence of high butanol concentrations. Appl. Environ. Microbiol. 75(13), 4653-4656.

[197] Saengarun, C., Petsom, A., Tungasmita, D.N., 2017. Etherification of glycerol with propylene or 1-butene for fuel additives. Sci. World J. Article ID: 4089036.

[198] Saha, B.C., Iten, L.B., Cotta, M.A., Wu, Y.V., 2005. Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem. 40(12), 3693-3700.

[199] Sajedi, H., Mohammadipanah, F., Shariat Panahi, H.K., 2018. An image analysis-aided method for redundancy reduction in differentiation of identical actinobacterial strains. Future Microbiology 13(3), 313-329.

[200] Sarkar, N., Ghosh, S.K., Bannerjee, S., Aikat, K., 2012. Bioethanol production from agricultural wastes: An overview. Renewable Energy 37(1), 19-27.

[201] Sassner, P., Galbe, M., Zacchi, G., 2006. Bioethanol production based on simultaneous saccharification and fermentation of steam-pretreated Salix at high dry-matter content. Enzyme Microb. Technol. 39(4), 756-762.

[202] Scarlat, N., Dallemand, J.F., Fahl, F., 2018. Biogas: Developments and perspectives in Europe. Renewable energy 129, 457-472.

[203] Schechter, A., Teller, H., Kashyap, D., 2019. Enhanced anodic reaction of dimethyl ether (DME) on Ptpdsn based catalysts for high power low temperature fuel cells. The Electrochemical Society. pp. 1528-1528.

[204] Schelling, H., Stroefer, E., Pinkos, R., Haunert, A., Tebben, G.D., Hasse, H., Blagov, S., 2005. Method for producing polyoxymethylene dimethyl ethers, U.P. 0207954A1, Google Patents.

[205] Schwarz, W., Gapes, J., 2006. Butanol-rediscovering a renewable fuel. BioWorld Europe 1, 16-19.

[206] Searchinger, T., Heimlich, R., Houghton, R.A., Dong, F., Elobeid, A., Fabiosa, J., Tokgoz, S., Hayes, D., Yu, T.H., 2008. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867), 1238-1240.

[207] Semrau, J.D., DiSpirito, A.A., Yoon, S., 2010. Methanotrophs and copper. FEMS Microbiol. Rev. 34(4), 496-531.

[208] Serov, A., Kwak, C., 2010. Recent achievements in direct ethylene glycol fuel cells (DEGFC). Appl. Catal., B. 97(1), 1-12.

[209] Shahbazi, H., Taghvaee, S., Hosseini, V., Afshin, H., 2016. A GIS based emission inventory development for Tehran. Urban Clim. 17, 216-229.

[210] Shao, P., Huang, R., 2007. Polymeric membrane pervaporation. J. Membr. Sci. 287(2), 162-179.

[211] Sheets, J.P., Ge, X., Li, Y.F., Yu, Z., Li, Y., 2016. Biological conversion of biogas to methanol using methanotrophs isolated from solid-state anaerobic digestate. Bioresour. Technol. 201, 50-57.

[212] Shirani, M., Ghaziaskar, H.S., Xu, C.C., 2014. Optimization of glycerol ketalization to produce solketal as biodiesel additive in a continuous reactor with subcritical acetone using Purolite® PD206 as catalyst. Fuel Process. Technol. 124, 206-211.

[213] Shirzad, M., Kazemi Shariat Panahi, H., Dashti, B.B., Rajaeifar, M.A., Aghbashlo, M., Tabatabaei, M., 2019. A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran. Renewable Sustainable Energy Rev. 111, 571-594.

[214] Singh, A.P., Anbumani, K., 2011. A comparative study on the use of butyl esters of soyabean and sunflower oils as biodiesel fuel for compression ignition engine. J. Iran. Mech. Eng. 12, 68-85.

[215] Smil, V., 2001. Enriching the earth: Fritz Haber, Carl Bosch, and the transformation of world food production. MIT press, Cambridge, MA.

[216] Spooner-Wyman, J.K., Appleby, D.B., Yost, D.M., 2003. Evaluation of di-butoxy glycerol (DBG) for use as a diesel fuel blend component. SAE Technical Paper. 0148-7191.

[217] Steen, E.J., Chan, R., Prasad, N., Myers, S., Petzold, C.J., Redding, A., Ouellet, M., Keasling, J.D., 2008. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb. Cell Fact. 7(1), 36.

[218] Stein, L.Y., Yung, Y.L., 2003. Production, isotopic composition, and atmospheric fate of biologically produced nitrous oxide. Annu. Rev. Earth Planet. Sci. 31(1), 329-356.

[219] Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, B., Midgley, B., 2013. IPCC, 2013: Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press.

[220] Stockes, K., 2007. Ammonia construction record and comments on ammonia fuel. Proc. of the Ammonia–Sustainable, Emission Free Fuel Conference, October 15-16.

[221] Strickland, G., 1981. Ammonia as a hydrogen energy-storage medium. 5th annual thermal storage meeting, Paper 8010555-2 10th October 1980, VA, USA. McLean.

[222] Su, Z., Ge, X., Zhang, W., Wang, L., Yu, Z., Li, Y., 2017. Methanol production from biogas with a thermotolerant methanotrophic consortium isolated from an anaerobic digestion system. Energy Fuels 31(3), 2970-2975.

[223] Subramani, V., Gangwal, S.K., 2008. A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol. Energy Fuels 22(2), 814-839.

[224] Swings, J., De Ley, J., 1977. The biology of Zymomonas. Bacteriol. Rev. 41(1), 1.

[225] Szczodrak, J., Fiedurek, J., 1996. Technology for conversion of lignocellulosic biomass to ethanol. Biomass Bioenergy 10(5-6), 367-375.

[226] Sze, M.C., 1966. Manufacture of aqueous formaldehyde solution and paraformaldehyde. United State Patent US3277179A.

[227] Tabatabaei, M., Aghbashlo, M., Dehhaghi, M., Kazemi Shariat Panahi, H., Mollahosseini, A., Hosseini, M., 2019a. Reactor technologies for biodiesel production and processing: A review. Prog. Energy Combust. Sci. 74, 239-303.

[228] Tabatabaei, M., Aghbashlo, M., Valijanian, E., Hamed, K.S.P., Nizami, A.S., Ghanavati, H., Sulaiman, A., Mirmohamadsadeghi, S., Karimi, K., 2019b. A comprehensive review on recent biological innovations to improve biogas production, part 2: Mainstream and downstream strategies. Renewable Energy 146, 1204-1220.

[229] Taher, E., Chandran, K., 2013. High-rate, high-yield production of methanol by ammonia-oxidizing bacteria. Environ. Sci. Technol. 47(7), 3167-3173.

[230] Takeguchi, M., Furuto, T., Sugimori, D., Okura, I., 1997. ptimization of methanol biosynthesis by Methylosinus trichosporium OB3b: An approach to improve methanol accumulation. Appl. Biochem. Biotechnol. 68(3), 143-152.

[231] Tampier, M., Smith, D., Bibeau, E., Beauchemin, P., 2004. Identifying environmentally preferable uses for biomass resources. Environmental Services Inc.

[232] Temchin, J., 2003. Analysis of market characteristics for conversion of liquid fueled turbines to methanol. The Methanol Foundation and Methanex, Inc.

[233] Theisen, A.R., Murrell, J.C., 2005. Facultative methanotrophs revisited. J. Bacteriol. 187(13), 4303-4305.

[234] Thomas, G., Parks, G., 2006. Potential roles of ammonia in a hydrogen economy: a study of issues related to the use ammonia for on-board vehicular hydrogen storage. US Department of Energy.

[235] Tomas, C.A., Welker, N.E., Papoutsakis, E.T., 2003. Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell's transcriptional program. Appl. Environ. Microbiol. 69(8), 4951-4965.

[236] Ujor, V., Okonkwo, C., Ezeji, T.C., 2016. Unorthodox methods for enhancing solvent production in solventogenic Clostridium species. Appl. Microbiol. Biotechnol. 100(3), 1089-1099.

[237] United Nations, 2015. Climate action now.

[238] USEPA, 2012. Energy projects and candidate landfills. Landfill methane outreach program. USEPA. Washington DC.

[239] Uyttebroek, M., Van Hecke, W., Vanbroekhoven, K., 2015. Sustainability metrics of 1-butanol. Catal. Today 239, 7-10.

[240] Van Blarigan, P., 2000. Advanced internal combustion engine research. DOE Hydrogen Program Review NREL/CP-570-28890.

[241] Vane, L.M., 2005. A review of pervaporation for product recovery from biomass fermentation processes. J. Chem. Technol. Biotechnol. 80(6), 603-629.

[242] Vicente, G., Melero, J.A., Morales, G., Paniagua, M., Martín, E., 2010. Acetalisation of bio-glycerol with acetone to produce solketal over sulfonic mesostructured silicas. Green Chem. 12(5), 899-907.

[243] Vidal, J., 2015. World leaders urged to cut air pollution to save lives in poor countries International edition: The Guardian.

[244] Voelcker, J., 2015. 1.2 billion vehicles on world's roads now, 2 billion by 2035: report, in: Green car reports. Vol. 7, pp. 14.

[245] Walker, M., Iyer, K., Heaven, S., Banks, C., 2011. Ammonia removal in anaerobic digestion by biogas stripping: an evaluation of process alternatives using a first order rate model based on experimental findings. Chem. Eng. J. 178, 138-145.

[246] Wang, Z., Zhuge, J., Fang, H., Prior, B.A., 2001. Glycerol production by microbial fermentation: A review. Biotechnol. Adv. 19(3), 201-223.

[247] WBA, 2018. WBA global bioenergy statistics 2018. World Bioenergy Association- The Global Voice of Bioenergy.

[248] Weiss, K., 2013. Commercialization of a renewable aviation fuel industry in brasil. Contribution to Ethanol Summit. June 2013, Sao Paulo.

[249] Wendt, J., Sternling, C., 1974. Effect of ammonia in gaseous fuels on nitrogen oxide emissions. J. Air Pollut. Control Assoc. 24(11), 1055-1058.

[250] Westbrook, C.K., Pitz, W.J., Curran, H.J., 2006. Chemical kinetic modeling study of the effects of oxygenated hydrocarbons on soot emissions from diesel engines. J. Phys. Chem. A. 110(21), 6912-6922.

[251] Whitehead, T.R., Cotta, M.A., 2004. Isolation and identification of hyper-ammonia producing bacteria from swine manure storage pits. Curr. Microbiol. 48(1), 20-26.

[252] Widmar D., 2019. Higher fertilizer prices in 2019. Agricultural economic insights. (accessed on 22 Aug. 2019).

[253] Wollrab, A., 2009. Organische chemie. (ed.), Eine Einführung für Lehramts- und Nebenfachstudenten, Springer Berlin Heidelberg. Berlin, Heidelberg.

[254] Wood, B.E., Ingram, L., 1992. Ethanol production from cellobiose, amorphous cellulose, and crystalline cellulose by recombinant Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes for ethanol production and plasmids expressing thermostable cellulase genes from Clostridium thermocellum. Appl. Environ. Microbiol. 58(7), 2103-2110.

[255] World Bank, 2016. The cost of air pollution: strengthening the economic case for action. World Bank and Institute for Health Metrics and Evaluation.

[256] Wright, M.E., Harvey, B.G., Quintana, R.L., 2008. Highly efficient zirconium-catalyzed batch conversion of 1-butene: A new route to jet fuels. Energy Fuels 22(5), 3299-3302.

[257] Xin, F., Yan, W., Zhou, J., Wu, H., Dong, W., Ma, J., Zhang, W., Jiang, M., 2018. Exploitation of novel wild type solventogenic strains for butanol production. Biotechnol. Biofuels 11(1), 252.

[258] Yang, L., Zhu, Z., Wang, W., Lu, X., 2013. Microbial recycling of glycerol to biodiesel. Bioresour. Technol. 150, 1-8.

[259] Yang, S., Fei, Q., Zhang, Y., Contreras, L.M., Utturkar, S.M., Brown, S.D., Himmel, M.E., Zhang, M., 2016. Zymomonas mobilis as a model system for production of biofuels and biochemicals. Microb. Biotechnol. 9(6), 699-717.

[260] Yeh, T.M., Dickinson, J.G., Franck, A., Linic, S., Thompson, L.T., Savage, P.E., 2013. Hydrothermal catalytic production of fuels and chemicals from aquatic biomass. J. Chem. Technol. Biotechnol. 88(1), 13-24.

[261] Zamfirescu, C., Dincer, I., 2009. Ammonia as a green fuel and hydrogen source for vehicular applications. Fuel Process Technol. 90(5), 729-737.

[262] Zhang, W., Ge, X., Li, Y.F., Yu, Z., Li, Y., 2016. Isolation of a methanotroph from a hydrogen sulfide-rich anaerobic digester for methanol production from biogas. Process Biochem. 51(7), 838-844.

[263] Zheng, Y., Tang, Q., Wang, T., Liao, Y., Wang, J., 2013. Synthesis of a green fuel additive over cation resins. Chem. Eng. Technol. 36(11), 1951-1956.

[264] Zheng, Y.J., Bruice, T.C., 1997. Conformation of coenzyme pyrroloquinoline quinone and role of Ca2+ in the catalytic mechanism of quinoprotein methanol dehydrogenase. Proc. Natl. Acad. Sci. 94(22), 11881-11886.

[265] Zhu, H., Liu, G., Yuan, J., Chen, T., Xin, F., Jiang, M., Fan, Y., Jin, W., 2019. In-situ recovery of bio-butanol from glycerol fermentation using PDMS/ceramic composite membrane. Sep. Purif. Technol. 229, 115811.