An integrated approach to explore UASB reactors for energy recycling in pulp and paper industry: a case study in Brazil

Document Type: Research Paper


1 Faculty of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, 13083-862, Campinas, São Paulo, Brazil.

2 Interdisciplinary Center of Energy Planning (NIPE), University of Campinas (UNICAMP), Rua Cora Coralina, 13083-970, Campinas, São Paulo, Brazil.


Brazil is currently focused on its energy matrix transition in favor of increasing of the share of renewable energy carriers for both enhanced energy security and mitigation of greenhouse gas emissions. In this context, the country`s pulp and paper industry whose different wastes teams are not generally exploited, could play a critical role. Accordingly, the main objective of this work is to develop a conceptual ‘systemic’ biorefinery framework integrating the treatment of pulp and paper mill wastewater using upflow anaerobic sludge blanket (UASB) reactor with energy recovery through biogas production and its conversion into heat and power in stationary engines and boilers, respectively. Based on the results obtained through the present case study, it was revealed that the adoption of UASB reactors by the paper mill industry could properly addresses the environmental concerns faced while could contribute to the national agenda favoring an increasing share of renewable energies in the country`s energy matrix. The financial analysis showed that the investment required for the implementation of UASB reactors within a biorefinery platform would be minor vs. the investment in the whole mill and would be returned in 6.4 yr with a high return on investment even when operated at half of operational capacity. Moreover, through the developed UASB reactor-based biorefinery, the Brazilian pulp and paper industry as a whole could avoid 1.06 ×105 CO2eq tons, effectively contributing to the decarbonization of the country`s economy.

Graphical Abstract

An integrated approach to explore UASB reactors for energy recycling in pulp and paper industry: a case study in Brazil


  • Conceptual ‘systemic’ biorefinery framework for simultaneous wastewater treatment and bioenergy/biomaterail recovery was developed.
  • UASB reactor-based biorefinery was found efficient in addressing the environmental concerns faced by the pulp and paper industry. 
  • Investment required for UASB reactors would be minor accounting for only 6.8% of the mill`s annual sales.
  • Nationwide implementation of the proposed biorefinery could avoid national GHG emissions by 1.06 ×105 CO2eq tons.
  • Biogas burning in stationary engines can avoid USD 2.89 Millions in electric energy charge. 


[1] Alhashimi, H.A., Aktas, C.B., 2017. Life cycle environmental and economic performance of biochar compared with activated carbon: a meta-analysis. Resour. Conserv. Recycl. 118, 13-26.

[2] Ali, M.,  Sreekrishnan, T.R., 2001. Aquatic toxicity from pulp and paper mill effluents: a review. Adv. Environ. Res. 5(2), 175-196.

[3] ANEEL., 2008. Atlas de Energia Elétrica do Brasil. 3rd edition, Brasília.

[4] Bayr, S., Kaparaju, P., Rintala, J., 2013. Screening pretreatment methods to enhance thermophilic anaerobic digestion of pulp and paper mill wastewater treatment secondary sludge. Chem. Eng. J. 223, 479-486.

[5] Berni, M., Dorileo, I., Nathia, G., Forster-Carneiro, T., Lachos, D., Santos, B.G., 2014. Anaerobic digestion and biogas production: combine effluent treatment with energy generation in UASB reactor as biorefinery annex. Int. J. Chem. Eng. 2014, 8.

[6] Blank, L., Tarkin, A., 2012. Engineering Economy, 7th ed. McGraw Hill, New York.

[7] Brasil, 2010. Lei nº 12.305, de 2 de agosto de 2010.

[8] Buller, L.S., Bergier, I., Ortega, E., Moraes, A., Bayma-Silva, G., Zanetti, M.R., 2014. Soil improvement and mitigation of greenhouse gas emissions for integrated crop-livestock systems: case study assessment in the Pantanal savanna highland, Brazil. Agric. Syst. 137, 206-219.

[9] CCEE., 2018. Prices in XLS format.

[10] CETESB., 1976. Decreto n. 8.468, de 8 de setembro de 1976.

[11] Cherubini, F., 2010. The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers. Manage. 51(7), 1412-1421.

[12] Comgás, 2019. Tarifas do gás natural canalizado.

[13] Correia, N.M., Rezende, P., 2002. Manejo integrado de plantas daninhas na cultura da soja. lavras: editora UFLA.

[14] dos Santos, I.F.S., Vieira, N.D.B., de Nóbrega, L.G.B., Barros, R.M., Tiago Filho, G.L., 2018. Assessment of potential biogas production from multiple organic wastes in Brazil: impact on energy generation, use, and emissions abatement. Resour. Conserv. Recycl. 131, 54-63.

[15] ECOPART., 2009. Relatório inventário de gases de efeito estufa fibria unidades operacionais jacaréi- aracruz-guaíba florestal-industrial-logística inventário de carbono 2009-Ano base 2008.

[16] Elkhalifa, S., Al-Ansari, T., Mackey, H.R., McKay, G., 2019. Food waste to biochars through pyrolysis: a review. Resour. Conserv. Recycl. 144, 310-320.

[17] Esparta, A.R.J., 2016. Mapping report part 2-biogas and biomethane, low carbon business action in Brazil service contract for European union external actions.

[18] Fiore, S., Ruffino, B., Campo, G., Roati, C., Zanetti, M.C., 2016. Scale-up evaluation of the anaerobic digestion of food-processing industrial wastes. Renewable Energy. 96, 949-959.

[19] Foelkel, C., 2010. Resíduos sólidos industriais do processo de fabricação de celulose e papel de eucalipto. Parte 03: Lodos & Lodos.

[20] IBÁ., 2017. Relatório Anual 2017.

[21] Kamali, M., Gameiro, T., Costa, M.E.V.,  Capela, I., 2016. Anaerobic digestion of pulp and paper mill wastes-an overview of the developments and improvement opportunities. Chem. Eng. J. 298, 162-182.

[22] Kesalkar, V., Khedikar, I.P.,  Sudame, A.M., 2012. Physico-chemical characteristics of wastewater from paper industry. Int. J. Eng. Res. Appl. 2(4), 137-143.

[23] Krakat, N., Westphal, A., Schmidt, S., Scherer, P., 2010. Anaerobic digestion of renewable biomass: thermophilic temperature governs methanogen population dynamics. Appl. Environ. Microbiol. 76(6), 1842-1850.

[24] Lobato, L.C.S., Chernicharo, C.A.L., Souza, C.L., 2012. Estimates of methane loss and energy recovery potential in anaerobic reactors treating domestic wastewater. Water Sci. Technol. 66(12), 2745-2753.

[25] Loftus, P.J., Cohen, A.M., Long, J.C., Jenkins, J.D., 2015. A critical review of global decarbonization scenarios: what do they tell us about feasibility?. wiley interdiscip. Rev. Clim. Change. 6(1), 93-112.

[26] Lymberopoulos, N., 2004. Microturbines and their application in bio-energy.

[27] Maghanaki, M.M., Ghobadian, B., Najafi, G., Galogah, R.J., 2013. Potential of biogas production in Iran. Renew. Sust. Energy Rev. 28, 702-714.

[28] Mahmood, T., Elliott, A., 2006. A review of secondary sludge reduction technologies for the pulp and paper industry. Water Res. 40(11), 2093-2112.

[29] MCTIC., 2017. Modelagem setorial de opções de baixo carbono para o setor de papel e celulose.

[30] MCTIC., 2018. Arquivos dos fatores médios de emissão de CO2 grid mês/ano. 

[31] Meyer, T., Edwards,  E.A., 2014. Anaerobic digestion of pulp and paper mill wastewater and sludge. Water Res. 65, 321-349.

[32] MMA., 2005. Resolução CONAMA nº357, de 17 de março de 2005.

[33] MMA., 2011. Resolução no 430, de 13 de maio de 2011.

[34] MME., 2018a. RenovaBio.

[35] MME., 2018b. Brazilian energy balance-2018.

[36] Novato, M., Lacerda, M.I., 2017. RenovaBio-towards a new national biofuel policy and a truly sustainable world. Innovative Energy Res. 6, 2.

[37] Persson, T., Baxter, D., 2015. IEA bioenergy task 37-country reports summary 2014.

[38] Ramos, A.C.L., Calixto, W.P., Alves, A.J., Domingues, E.G., de Oliveira, S.B., Coelho, S.T., 2014. Proposal of technical and commercial arrangements for distributed generation from the use of biogas in a food industry. Int. Conf. Renew. Energies  power quality. Cordoba, Spain. 12.

[39] Salomon, K.R., Lora, E.E.S., 2009. Estimate of the electric energy generating potential for different sources of biogas in Brazil. Biomass Bioenergy. 33(9), 1101-1107.

[40] Savant, D.V., Abdul-Rahman, R., Ranade, D.R., 2006. Anaerobic degradation of adsorbable organic halides (AOX) from pulp and paper industry wastewater. Bioresour. Technol. 97(9), 1092-1104.

[41] Souza, A., 2008. Guia técnico ambiental da indústria de papel e celulose. São Paulo: CETESB.

[42] Torkian, A., Eqbali, A., Hashemian, S.J., 2003. The effect of organic loading rate on the performance of UASB reactor treating slaughterhouse effluent. Resour. Conserv. Recycl. 40(1), 1-11.

[43] von Sperling, M., 2016. Urban wastewater treatment in Brazil. Inter-Am. Dev. Bank.

[44] Welfle, A., 2017. Balancing growing global bioenergy resource demands-Brazil's biomass potential and the availability of resource for trade. Biomass Bioenergy. 105, 83-95.

[45] Whitman, W., Bowen, T., Boone, D., Balows, A., Truper, H., Dworkin, M., Harder, W.,  Schleifer, K., 1992. The methanogenic bacteria, in: Balows, A., Trüper, H.G., Dworkin, M., Harder, W., Schleifer, K.H. (Eds), The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed., New York: Springer-Verlag. 1, 719-767.

[46] Zhang, C., Chen, J., Wen, Z., 2012. Alternative policy assessment for water pollution control in China's pulp and paper industry. Resour. Conserv. Recycl. 66, 15-26.