Direct fermentation of sweet sorghum juice by Clostridium acetobutylicum and Clostridium tetanomorphum to produce bio-butanol and organic acids

Document Type: Research Paper

Authors

School of Chemical and Minerals Engineering, North-West University (Potchefstroom Campus), Potchefstroom, South Africa.

Abstract

Single- and co-culture clostridial fermentation was conducted to obtain organic alcohols and acids from sweet sorghum juice as a low cost feedstock. Different inoculum concentrations of single cultures (3, 5, 10 v/v %) as well as different ratios of C. acetobutylicum to C. tetanomorphum (3:10, 10:3, 6.5:6.5, 3:3, and 10:10 v/v %, respectively) were utilized for the fermentation. The maximum butanol concentration of 6.49 g/L was obtained after 96 h fermentation with 10 % v/v C. acetobutylicum as a single culture. The fermentation with 10% v/v C. tetanomorphum resulted in more than 5 g/l butyric acid production. Major organic acid concentration (lactic acid) of 2.7 g/L was produced when an inoculum ratio of 6.5: 6.5 %v/v C. acetobutylicum to C. tetanomorphum was used.

Graphical Abstract

Direct fermentation of sweet sorghum juice by Clostridium acetobutylicum and Clostridium tetanomorphum to produce bio-butanol and organic acids

Keywords


Abd-Alla, M.H., El-Enany, A.E., 2012. Production of acetone-butanol-ethanol from spoilage date palm (Phoenix dactylifera L.) fruits by mixed culture of Clostridium acetobutylicum and Bacillus subtilis. Biomass Bioenergy. 42, 172-178.

Börner, R.A., Zaushitsyna, O., Berillo, D., Scaccia, N., Mattiasson, B., Kirsebom, H., 2014. Immobilization of Clostridium acetobutylicum DSM 792 as macroporous aggregates through cryogelation for butanol production. Process Biochem. 49, 10-18

Datta Mazumdar, S., Poshadri, A., Srinivasa Rao, P., Ravinder Reddy, C.H., Reddy, B.V.S., 2012.  Innovative use of Sweet sorghum juice in the beverage industryInt. Food Res. J. 19, 1361-1366.

Du, T.F., He, A.Y., Wua, H., Chen, J.N., Kong, X.P., Liu, J.L., Jiang , M., Ouyang, P.K., 2013. Butanol production from acid hydrolyzed corn fiber with Clostridium beijerinckii mutant. Bioresour. Technol. 135, 254-261.

Ezeji, T., Qureshi, N., Blaschek, H.P., 2004.  Production of acetone–butanol–ethanol (ABE) in a continuous flow bioreactor using degermed corn and Clostridium beijerinckii. Process Biochem. 42, 34-39.

Goshadrou, A., Karimi, K., 2010. Bioethanol Production from Sweet Sorghum Bagasse. Chem. Eng. Congr.13, 5-8.

Gottwald, M., Hippe, H., Gottschalk, G., 1984. Formation of n-Butanol from d-Glucose by strains of the ''Clostridium tetanomorphum'' group. Appl. Environ. Microbiol. 48, 573-576.

Jiang, W., Wen, Z., Wu, M., Li, H., Yang, J., Lin, J., Lin, Y., Yang, L., Cen, P., 2014. The Effect of pH Control on Acetone–Butanol–Ethanol Fermentation by Clostridium acetobutylicum ATCC 824 with Xylose and D-Glucose and D-Xylose Mixture. Chin. J.  Chem. Eng. 22, 937-942.

Komonkiat, I., Cheirsilp, B., 2013. Felled oil palm trunk as a renewable source for bio-butanol production by Clostridium spp. Bioresour Technol. 146, 200-207.

Kovács, K., Willson, B.J., Schwarz, K., Heap, J.T., Jackson, A., Bolam, D.N., Winzer, K., Minton, N.P., 2013.  Secretion and assembly of functional mini-cellulosomes from synthetic chromosomal operons in Clostridium acetobutylicum ATCC 824. Biotechnol. Biofuels. 6, 117.

Li, L., Ai, H., Zhang, S., Li, S., Liang, Z., Wua, Z.Q., Yang, S.T., Wang, J.F., 2013. Enhanced butanol production by coculture of Clostridium beijerinckii and Clostridium tyrobutyricum. Bioresour. Technol. 143, 397-404.

Li,J., Chen, X., Qi,B., Luo,J., Zhang,Y., Sub, Y., Wan, Y., 2014.  Efficient production of acetone–butanol–ethanol (ABE) from cassava by a fermentation–pervaporation coupled process. Bioresour. Technol. 169, 251-257.

Lin Li, L., Ai,H., Zhang S., Li, S., Liang, Z., Wua, Z., Yang, S.,  Wang, J., 2013. Enhanced butanol production by coculture of Clostridium beijerinckii and Clostridium tyrobutyricum. Bioresour. Technol. 143, 397-404.

Moon, C., Lee, C.H., Sang, B.I., Uma, Y., 2011. Optimization of medium compositions favoring butanol and 1,3-propanediol production from glycerol by Clostridium pasteurianum. Bioresour. Technol. 102, 10561-10568.

Nakayama, S., Kiyoshi, K., Kadokura, T., Nakazato, A., 2011. Butanol Production from Crystalline cellulose by cocultured Clostridium thermocellum and Clostridium saccharoperbutylacetonicum N1-4. Appl. Environ. Microbiol. 77, 6470-6475.

Qureshi, N., Saha, B.C., Dien, B., Hector, R.E., Cotta, M.A., 2010. Production of butanol (a biofuel) from agricultural residues: Part I-use of barley straw hydrolysate. Biomass Bioenergy. 34, 559-565.

Ranjan, A., Mayank, R., Moholkar, V.S., 2013. Process optimization for butanol production from developed rice straw hydrolysate using Clostridium acetobutylicum MTCC481 strain. Biomass Conv. Bioref. 3, 143-155.

Tran, H.T.M., Cheirsilp, B., Hodgson, B., Umsakul, K., 2010. Potential use of Bacillus subtilis in a co-culture with Clostridium butylicum for acetone–butanol–ethanol production from cassava starch. Biochem. Eng. J. 48, 260-262.

Wen, Z., Wu, m., Yang, Y.L.L., Lin, j., Cen, P., 2014. Artificial symbiosis for acetone-butanol-ethanol (ABE) fermentation from alkali extracted deshelled corn cobs by co-culture of Clostridium beijerinckii and Clostridium cellulovorans. Microbial Cell Fact. 13, 92.

Yang, M.K., Keinänen, S., Vepsäläinen,M.,  Romar, J.,  Tynjälä, H.,  Lassi, P.U.,  Pappinen, A., 2014.  The use of (green field) biomass pretreatment liquor for fermentative butanol production and the catalytic oxidation of bio-butanol. Chem. Eng. Res. Design. 92, 1531-1538.

Zamani, A., 2015.  Lignocellulose-based Bioproducts, in: Karimi, K., Springer International Publishing, Switzerland.