Modeling of thermochemical conversion of waste biomass – a comprehensive review

Document Type : Review Paper


Department of Chemical and Process Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka.


Thermochemical processes, which include pyrolysis, torrefaction, gasification, combustion, and hydrothermal conversions, are perceived to be more efficient in converting waste biomass to energy and value-added products than biochemical processes. From the chemical point of view, thermochemical processes are highly complex and sensitive to numerous physicochemical properties, thus making reactor and process modeling more challenging. Nevertheless, the successful commercialization of these processes is contingent upon optimized reactor and process designs, which can be effectively achieved via modeling and simulation. Models of various scales with numerous simplifying assumptions have been developed for specific applications of thermochemical conversion of waste biomass. However, there is a research gap that needs to be explored to elaborate the scale of applicability, limitations, accuracy, validity, and special features of each model. This review study investigates all above mentioned important aspects and features of the existing models for all established industrial thermochemical conversion processes with emphasis on waste biomass, thus addressing the research gap mentioned above and presenting commercial-scale applicability in terms of reactor designing, process control and optimization, and potential ways to upgrade existing models for higher accuracy.

Graphical Abstract

Modeling of thermochemical conversion of waste biomass – a comprehensive review


  • Thermochemical processes for waste biomass to energy conversion are presented.
  • The effects of process parameters on product yield and distribution are discussed.
  • Kinetic and reactor models for waste biomass are reviewed.
  • Accuracy, limitations, and applicability of the models are presented.
  • Drawbacks, potentials, and possible upgrades of the models are discussed.


  1. Adeniyi, A.G., Ighalo, J.O., Amosa, M.K., 2019. Modelling and simulation of banana ( Musa spp.) waste pyrolysis for bio-oil production. Biofuels. 12(7), 1-5.
  2. Aierzhati, A., Stablein, M.J., Wu, N.E., Kuo, C.T., Si, B., Kang, X., Zhang, Y., 2019. Experimental and model enhancement of food waste hydrothermal liquefaction with combined effects of biochemical composition and reaction conditions. Bioresour. Technol. 284, 139-147.
  3. Akhtar, J., Amin, N.A.S., 2011. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew. Sust. Energy Rev. 15(3), 1615-1624.
  4. Al-Qayim, K., Nimmo, W., Hughe, K.J., Pourkashanian, M., 2019. Effect of oxy-fuel combustion on ash deposition of pulverized wood pellets. Biofuel Res. J. 6(1), 927-936.
  5. Altafini, C.R., Wander, P.R., Barreto, R.M., 2003. Prediction of the working parameters of a wood waste gasifier through an equilibrium model. Energy Convers. Manage. 44(17), 2763-2777.
  6. Álvarez-Murillo, A., Sabio, E., Ledesma, B., Román, S., González-García, C.M., 2016. Generation of biofuel from hydrothermal carbonization of cellulose. Kinet. modell. Energy. 94, 600-608.
  7. Amutio, M., Lopez, G., Alvarez, J., Moreira, R., Duarte, G., Nunes, J., Olazar, M., Bilbao, J., 2013. Pyrolysis kinetics of forestry residues from the Portuguese Central Inland Region. Chem. Eng. Res. Des. 91(12), 2682-2690.
  8. Anca-Couce, A., 2016. Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Prog. Energy Combust. Sci. 53, 41-79.
  9. Asthana, A., Ménard, Y., Sessiecq, P., Patisson, F., 2010. Modeling on-grate MSW incineration with experimental validation in a batch incinerator. Ind. Eng. Chem. Res. 49(16), 7597-7604.
  10. Axelsson, L., Franzén, M., Ostwald, M., Berndes, G., Lakshmi, G., Ravindranath, N.H., 2012. Jatropha cultivation in southern India: assessing farmers’ experiences. Biofuels, Bioprod. Biorefin. 6(3), 246-256.
  11. Azzone, E., Morini, M., Pinelli, M., 2012. Development of an equilibrium model for the simulation of thermochemical gasification and application to agricultural residues. Renew. Energy. 46, 248-254.
  12. Bach, Q.V., Skreiberg, Ø., 2016. Upgrading biomass fuels via wet torrefaction: a review and comparison with dry torrefaction. Renew. Sust. Energy Rev. 54, 665-677.
  13. Bach, Q.V., Skreiberg, Ø., Lee, C.J., 2017. Process modeling and optimization for torrefaction of forest residues. Energy. 138, 348-354.
  14. Balat, M., Balat, M., Kırtay, E., Balat, H., 2009. Main routes for the thermo-conversion of biomass into fuels and chemicals. part 1: pyrolysis systems. Energy Convers. Manage. 50(12), 3147-3157.
  15. Balu, E., Chung, J.N., 2012. System characteristics and performance evaluation of a trailer-scale downdraft gasifier with different feedstock. Bioresour. Technol. 108, 264-273.
  16. Baratieri, M., Basso, D., Patuzzi, F., Castello, D., Fiori, L., 2015. Kinetic and thermal modeling of hydrothermal carbonization applied to grape marc. Chem. Eng. Trans. 43(43), 505-510.
  17. Baruah, D., Baruah, D.C., 2014. Modeling of biomass gasification: a review. Renew. Sust. Energy Rev. 39, 806-815.
  18. Bates, R.B., Ghoniem, A.F., 2014. Modeling kinetics-transport interactions during biomass torrefaction: the effects of temperature, particle size, and moisture content. Fuel. 137, 216-229.
  19. Bech, N., Larsen, M.B., Jensen, P.A., Dam-Johansen, K., 2009. Modelling solid-convective flash pyrolysis of straw and wood in the Pyrolysis Centrifuge Reactor. Biomass Bioenergy. 33(6-7), 999-1011.
  20. Bhavanam, A., Sastry, R.C., 2013. Modelling of solid waste gasification process for synthesis gas production. J. Sci. Ind. Res. 72(9-10), 611-616.
  21. Bhoi, P.R., Ouedraogo, A.S., Soloiu, V., Quirino, R., 2020. Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis. Renew. Sust. Energy Rev. 121, 109676.
  22. Bridgwater, A.V., 2012. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy. 38, 68-94.
  23. Bryden, K.M., Ragland, K.W., Rutland, C.J., 2002. Modeling thermally thick pyrolysis of wood. Biomass Bioenergy. 22(1), 41-53.
  24. Bugge, M., Skreiberg, Ø., Haugen, N.E.L., Carlsson, P., Houshfar, E., Løvås, T., 2015. Numerical simulations of staged biomass grate fired combustion with an emphasis on NOx emissions. Energy Procedia. 75, 156-161.
  25. Cao, Y., Bai, Y., Du, J., 2021. Air-steam gasification of biomass based on a multi-composition multi-step kinetic model: a clean strategy for hydrogen-enriched syngas production. Sci. Total Environ. 753, 141690.
  26. Cerciello, F., Apicella, B., Russo, C., Cortese, L., Senneca, O., 2021. Effects of pressure on lignocellulosic biomass fast pyrolysis in nitrogen and carbon dioxide. Fuel. 287, 119604.
  27. Chan, Y.H., Quitain, A.T., Yusup, S., Uemura, Y., Sasaki, M., Kida, T., 2018. Optimization of hydrothermal liquefaction of palm kernel shell and consideration of supercritical carbon dioxide mediation effect. J. Supercrit. Fluids. 133, 640-646.
  28. Chan, Y.H., Yusup, S., Quitain, A.T., Tan, R.R., Sasaki, M., Lam, H.L., Uemura, Y., 2015. Effect of process parameters on hydrothermal liquefaction of oil palm biomass for bio-oil production and its life cycle assessment. Energy Convers. Manage. 104, 180-188.
  29. Chartier, J., Guernion, P.Y., Milo, I., 2007. CFD modelling of municipal solid waste incineration. Prog. Comput. Fluid Dyn. Int. J. 7(1), 19-24.
  30. Chen, W.H., Lin, B.J., Huang, M.Y., Chang, J.S., 2015a. Thermochemical conversion of microalgal biomass into biofuels: a review. Bioresour. Technol. 184, 314-327.
  31. Chen, W.H., Peng, J., Bi, X.T., 2015b. A state-of-the-art review of biomass torrefaction , densi fi cation and applications. Renew. Sust. Energy Rev. 44, 847-866.
  32. Chen, X., Tian, Z.F., van Eyk, P.J., Lewis, D., Nathan, G.G.J., 2021. Numerical simulation of hydrothermal liquefaction of algae in a lab-scale coil reactor. Exp. Comput. Multiphase Flow. 1(1), 1-8.
  33. Chen, Y., Wu, Y., Ding, R., Zhang, P., Liu, J., Yang, M., Zhang, P., 2015c. Catalytic hydrothermal liquefaction of D . tertiolecta for the production of bio-oil over different acid/base catalysts. AIChE J. 61(4), 1118-1128.
  34. Chhiti, Y., Kemiha, M., 2013. Thermal conversion of biomass, pyrolysis and gasification: a review. Int. J. Eng. Sci. 2(3), 75-85.
  35. Chiou, B.S., Cao, T., Valenzuela-Medina, D., Bilbao-Sainz, C., Avena-Bustillos, R.J., Milczarek, R.R., Du, W.X., Glenn, G.M., Orts, W.J., 2018. Torrefaction kinetics of almond and walnut shells. J. Therm. Anal. Calorim. 131(3), 3065-3075.
  36. Cordiner, S., Manni, A., Mulone, V., Rocco, V., 2017. Biomass fast pyrolysis process at laboratory scale: residence time and heating up evaluation in a shaftless screw reactor by means of a discrete element model approach, in: International Symposium on Advances in Computational Heat Transfer. Begellhouse, Connecticut. pp. 1071-1083.
  37. Corella, J., Herguido, J., Gonzalez-Saiz., J., 1989. Steam gasification of biomass in fluidized bed-Effect of the type of feed stock, in: Ferrero, G.L., Maniatis, K., Buekens, A., Bridgwater, A.V. (Eds.), in: pyrolysis and gasification. London. Elsevier Applied Science., pp. 618-623.
  38. Corma, A., Huber, G.W., Sauvanaud, L., O'connor, P., 2007. Processing biomass-derived oxygenates in the oil refinery: catalytic cracking (FCC) reaction pathways and role of catalyst. J. Catal. 247(2), 307-327.
  39. da Silva, J.C., de Oliveira, R.C., da Silva Neto, A., Pimentel, V.C., dos Santos, A.D.A., 2015. Extraction, addition and characterization of hemicelluloses from corn cobs to development of paper properties. Procedia Mater. Sci. 8, 793-801.
  40. Dahlquist, E., Mirmoshtaghi, G., Larsson, E.K., Thorin, E., Yan, J., Engvall, K., Liliedahl, T., Dong, C., Hu, X., Lu, Q., 2013. Modelling and simulation of biomass conversion processes, in: 2013 8th EUROSIM Congress on Modelling and Simulation. IEEE, pp. 506-512.
  41. Damartzis, T., Zabaniotou, A., 2011. Thermochemical conversion of biomass to second generation biofuels through integrated process design-a review. Renew. Sust. Energy Rev. 15(1), 366-378.
  42. Danso-Boateng, E., Holdich, R.G., Shama, G., Wheatley, A.D., Sohail, M., Martin, S.J., 2013. Kinetics of faecal biomass hydrothermal carbonisation for hydrochar production. Appl. Energy. 111, 351-357.
  43. De Kam, M.J., Morey, R.V., Tiffany, D.G., 2009. Integrating biomass to produce heat and power at ethanol plants. Appl. Eng. Agric. 25(2), 227-244.
  44. Demirbaş, A., 2005. Thermochemical conversion of biomass to liquid products in the aqueous medium. Energy Sources. 27(13), 1235-1243.
  45. Dhanavath, K.N., Shah, K., Bhargava, S.K., Bankupalli, S., Parthasarathy, R., 2018. Oxygen-steam gasification of karanja press seed cake: fixed bed experiments, ASPEN Plus process model development and benchmarking with saw dust, rice husk and sunflower husk. J. Environ. Chem. Eng. 6(2), 3061-3069.
  46. Dhar, S.A., Sakib, T.U., Hilary, L.N., 2020. Effects of pyrolysis temperature on production and physicochemical characterization of biochar derived from coconut fiber biomass through slow pyrolysis process. Biomass Convers. Biorefin. 1-17.
  47. Di Blasi, C., 1993. Analysis of convection and secondary reaction effects within porous solid fuels undergoing pyrolysis. Combust. Sci. Technol. 90(5-6), 315-340.
  48. Di Blasi, C., 2008. Modeling chemical and physical processes of wood and biomass pyrolysis. Prog. Energy Combust. Sci. 34(1), 47-90.
  49. Dupont, C., Chen, L., Cances, J., Commandre, J.M., Cuoci, A., Pierucci, S., Ranzi, E., 2009. Biomass pyrolysis: kinetic modelling and experimental validation under high temperature and flash heating rate conditions. J. Anal. Appl. Pyrolysis. 85(1-2), 260-267.
  50. Efeovbokhan, V.E., Akinneye, D., Ayeni, A.O., Omoleye, J.A., Bolade, O., Oni, B.A., 2020. Experimental dataset investigating the effect of temperature in the presence or absence of catalysts on the pyrolysis of plantain and yam peels for bio-oil production. Data Brief. 31, 105804.
  51. Elorf, A., Sarh, B., Bonnamy, S., Asbik, M., Rahib, Y., Chaoufi, J., 2019. Injection type effects on pulverized biomass (solid olive waste) combustion in a 50 kW combustor. Int. J. Renew. Energy Res. 9(2), 639-648.
  52. Ergudenler, A., Ghaly, A.E., 1992. Determination of reaction kinetics of wheat straw using thermogravimetric analysis. Appl. Biochem. Biotechnol. 34(1), 75-91.
  53. Ergüdenler, A., Ghaly, A.E., Hamdullahpur, F., Al-Taweel, A.M., 1997. Mathematical modeling of a fluidized bed straw gasifier: part I-model development. Energy Sources. 19(10), 1065-1084.
  54. Eri, Q., Zhao, X., Ranganathan, P., Gu, S., 2017. Numerical simulations on the effect of potassium on the biomass fast pyrolysis in fluidized bed reactor. Fuel. 197, 290-297.
  55. Eseltine, D., Thanapal, S.S., Annamalai, K., Ranjan, D., 2013. Torrefaction of woody biomass (Juniper and Mesquite) using inert and non-inert gases. Fuel. 113, 379-388.
  56. Faeth, J.L., Valdez, P.J., Savage, P.E., 2013. Fast hydrothermal liquefaction of Nannochloropsis to produce biocrude. Energy Fuels. 27(3), 1391-1398.
  57. Fan, X., Yang, L., Jiang, J., 2020. Experimental study on industrial-scale CFB biomass gasification. Renewable Energy. 158, 32-36.
  58. Farzad, S., Mandegari, M.A., Görgens, J.F., 2016. A critical review on biomass gasification, co-gasification, and their environmental assessments. Biofuel Res. J. 3(4), 483-495.
  59. Fatehi, H., Weng, W., Li, Z., Bai, X.S., Aldén, M., 2021. Recent development in numerical simulations and experimental studies of biomass thermochemical conversion. Energy Fuels. 35(9), 6940-6963.
  60. Feng, S., Yuan, Z., Leitch, M., Xu, C.C., 2014. Hydrothermal liquefaction of barks into bio-crude-effects of species and ash content/composition. Fuel. 116, 214-220.
  61. French, R., Czernik, S., 2010. Catalytic pyrolysis of biomass for biofuels production. Fuel Process. Technol. 91(1), 25-32.
  62. Funke, A., Ziegler, F., 2010. Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioprod. Biorefin. 4(2), 160-177.
  63. Gabbar, H.A., Lisi, D., Aboughaly, M., Damideh, V., Hassen, I., 2020. Modeling of a plasma-based waste gasification system for solid waste generated onboard of typical cruiser vessels used as a feedstock. Designs. 4(3), 33.
  64. Gao, Y., Wang, X., Yang, H., Chen, H., 2012. Characterization of products from hydrothermal treatments of cellulose. Energy. 42(1), 457-465.
  65. Gao, Y., Yu, B., Wu, K., Yuan, Q., Wang, X., Chen, H., 2016. Physicochemical, pyrolytic, and combustion characteristics of hydrochar obtained by hydrothermal carbonization of biomass. BioResources. 11(2), 4113-4133.
  66. Gascó, G., Paz-Ferreiro, J., Álvarez, M.L., Saa, A., Méndez, A., 2018. Biochars and hydrochars prepared by pyrolysis and hydrothermal carbonisation of pig manure. Waste Manage. 79, 395-403.
  67. Ghabi, C., Benticha, H., Sassi, M., 2008. Two-dimensional computational modeling and simulation of wood particles pyrolysis in a fixed bed reactor. Combust. Sci. Technol. 180(5), 833-853.
  68. Ghassemi, H., Shahsavan-Markadeh, R., 2014. Effects of various operational parameters on biomass gasification process; a modified equilibrium model. Energy Convers. Manage. 79, 18-24.
  69. Gibilaro, L.G., Rowe, P.N., 1974. A model for a segregating gas fluidised bed. Chem. Eng. Sci. 29(6), 1403-1412.
  70. Gómez, J., Corsi, G., Pino-Cortés, E., Díaz-Robles, L.A., Campos, V., Cubillos, F., Pelz, S.K., Paczkowski, S., Carrasco, S., Silva, J., Lapuerta, M., Pazo, A., Monedero, E., 2020. Modeling and simulation of a continuous biomass hydrothermal carbonization process. Chem. Eng. Commun. 207(6), 751-768.
  71. Goodman, B.A., 2020. Utilization of waste straw and husks from rice production: a review. J. Bioresour. Bioprod. 5(3), 143-162.
  72. Goossens, W.R.A., 1971. Fluidization of binary mixtures in the laminar flow region. In Chem. Engng Progr. Symp. Ser. 67, 38-45.
  73. Gordillo, G., Annamalai, K., Carlin, N., 2009. Adiabatic fixed-bed gasification of coal, dairy biomass, and feedlot biomass using an air-steam mixture as an oxidizing agent. Renewable Energy. 34(12), 2789-2797.
  74. Govumoni, S.P., Koti, S., Kothagouni, S.Y., Venkateshwar, S., Linga, V.R., 2013. Evaluation of pretreatment methods for enzymatic saccharification of wheat straw for bioethanol production. Carbohydr. Polym. 91(2), 646-650.
  75. Goyal, H.B., Seal, D., Saxena, R.C., 2008. Bio-fuels from thermochemical conversion of renewable resources: a review. Renew. Sust. Energy Rev. 12(2), 504-517.
  76. Grønli, M.G., Melaaen, M.C., 2000. Mathematical model for wood pyrolysis comparison of experimental measurements with model predictions. Energy Fuels. 14(4), 791-800.
  77. Gunarathne, D.S., Udugama, I.A., Jayawardena, S., Gernaey, K.V., Mansouri, S.S., Narayana, M., 2019. Resource recovery from bio-based production processes in developing Asia. Sustainable Prod. Consumption. 17, 196-214.
  78. Gungor, A., 2008. Two-dimensional biomass combustion modeling of CFB. Fuel. 87(8-9), 1453-1468.
  79. Gupta, A., Mahajani, S., 2020. Kinetic studies in pyrolysis of garden waste in the context of downdraft gasification: experiments and modeling. Energy. 208, 118427.
  80. Guran, S., 2020. Thermochemical conversion of biomass, in: Green Energy and Technology, pp. 159-194.
  81. Harun, N.H.H.M., Samad, N.A.F.A., Saleh, S., 2017. Development of kinetics model for torrefaction of empty fruit bunch from palm oil waste. Energy Procedia. 105, 744-749.
  82. Heidari, M., Salaudeen, S., Dutta, A., Acharya, B., 2018. Effects of process water recycling and particle sizes on hydrothermal carbonization of biomass. Energy Fuels. 32(11), 11576-11586.
  83. Hernández, J.J., Ballesteros, R., Aranda, G., 2013. Characterisation of tars from biomass gasification: effect of the operating conditions. Energy. 50(1), 333-342.
  84. Hu, B., Wang, K., Wu, L., Yu, S.H., Antonietti, M., Titirici, M.M., 2010. Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv. Mater. 22(7), 813-828.
  85. Incropera, F.P., Dewitt, D.P., 1990. Fundamentals of heat and mass transfer, Third edit. John Wiley & Sons Inc.
  86. Ischia, G., Fiori, L., 2021. Hydrothermal carbonization of organic waste and biomass: a review on process, reactor, and plant modeling. Waste Biomass Valorization. 12(6), 2797-2824.
  87. Ismail, H.Y., Shirazian, S., Skoretska, I., Mynko, O., Ghanim, B., Leahy, J.J., Walker, G.M., Kwapinski, W., 2019. ANN-Kriging hybrid model for predicting carbon and inorganic phosphorus recovery in hydrothermal carbonization. Waste Manage. 85, 242-252.
  88. Ismail, T.M., Abd El-Salam, M., Monteiro, E., Rouboa, A., 2016. Eulerian-Eulerian CFD model on fluidized bed gasifier using coffee husks as fuel. Appl. Therm. Eng. 106, 1391-1402.
  89. Ismail, T.M., Yoshikawa, K., Sherif, H., El-Salam, M.A., 2019. Mathematical modeling of hydrothermal treatment of MSW to form a solid fuel in a commercial scale plant. Energy Procedia. 158, 1757-1764.
  90. Jarungthammachote, S., Dutta, A., 2007. Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier. Energy. 32(9), 1660-1669.
  91. Kabir, M.J., Chowdhury, A.A., Rasul, M.G., 2015. Pyrolysis of municipal green waste: a modelling, simulation and experimental analysis. Energies. 8(8), 7522-7541.
  92. Kaczor, Z., Buliński, Z., Werle, S., 2020. Modelling approaches to waste biomass pyrolysis: a review. Renewable Energy. 159, 427-443.
  93. Kadem, S., Lachemet, A., Younsi, R., Kocaefe, D., 2011. 3d-Transient modeling of heat and mass transfer during heat treatment of wood ☆. Int. Commun. Heat Mass Transfer. 38(6), 717-722.
  94. Kapoor, M., Panwar, D., Kaira, G.S., 2016. Bioprocesses for enzyme production using agro-industrial wastes, in: Agro-Industrial Wastes as Feedstock for Enzyme Production. Elsevier, pp. 61-93.
  95. Karagöz, S., Bhaskar, T., Muto, A., Sakata, Y., Oshiki, T., Kishimoto, T., 2005. Low-temperature catalytic hydrothermal treatment of wood biomass: analysis of liquid products. Chem. Eng. J. 108(1-2), 127-137.
  96. Kartal, F., Özveren, U., 2020. A deep learning approach for prediction of syngas lower heating value from CFB gasifier in Aspen plus®. Energy. 209, 118457.
  97. Keche, A.J., Gaddale, A.P.R., Tated, R.G., 2015. Simulation of biomass gasification in downdraft gasifier for different biomass fuels using ASPEN PLUS. Clean Technol. Environ. Policy. 17(2), 465-473.
  98. Keiller, B.G., Muhlack, R., Burton, R.A., van Eyk, P.J., 2019. Biochemical compositional analysis and kinetic modeling of hydrothermal carbonization of Australian Saltbush. Energy Fuels. 33(12), 12469-12479.
  99. Kersten, S.R., Wang, X., Prins, W., van Swaaij, W.P., 2005. Biomass pyrolysis in a fluidized bed reactor. part 1: literature review and model simulations. Ind. Eng. Chem. Res. 44(23), 8773-8785.
  100. Khoo, C.G., Lam, M.K., Mohamed, A.R., Lee, K.T., 2020. Hydrochar production from high-ash low-lipid microalgal biomass via hydrothermal carbonization: effects of operational parameters and products characterization. Environ. Res. 188, 109828.
  101. Koroneos, C., Lykidou, S., 2011. Equilibrium modeling for a dwndraft biomass gasifier for cotton stalks biomass in comparison with experimental data. J. Chem. Eng. Mater. Sci. 2(4), 61-68.
  102. Kruse, A., Funke, A., Titirici, M.M., 2013. Hydrothermal conversion of biomass to fuels and energetic materials. Curr. Opin. Chem. Biol. 17(3), 515-521.
  103. Ku, X., Li, T., Løvås, T., 2014. Eulerian-lagrangian simulation of biomass gasification behavior in a high-temperature entrained-flow reactor. Energy Fuels. 28(8), 5184-5196.
  104. Kumar, M., Oyedun, A.O., Kumar, A., 2017. Hydrothermal liquefaction of biomass for the production of diluents for bitumen transport. Biofuels, Bioprod. Biorefin. 11(5), 811-829.
  105. Kuo, P.C., Wu, W., Chen, W.H., 2014. Gasification performances of raw and torrefied biomass in a downdraft fixed bed gasifier using thermodynamic analysis. Fuel. 117, 1231-1241.
  106. Lanzetta, M., Di Blasi, C., 1998. Pyrolysis kinetics of wheat and corn straw. J. Anal. Appl. Pyrolysis. 44(2), 181-192.
  107. Lentz, Z., Kolar, P., Classen, J.J., 2019. Valorization of swine manure into hydrochars. Processes. 7(9), 560.
  108. Li, T., Wang, L., Ku, X., Güell, B.M., Løvås, T., Shaddix, C.R., 2015. Experimental and modeling study of the effect of torrefaction on the rapid devolatilization of biomass. Energy Fuels. 29(7), 4328-4338.
  109. Liu, H.M., Li, M.F., Sun, R.C., 2013a. Hydrothermal liquefaction of cornstalk: 7-lump distribution and characterization of products. Bioresour. Technol. 128, 58-64.
  110. Liu, H., Chen, B., Wang, C., 2020. Pyrolysis kinetics study of biomass waste using Shuffled Complex Evolution algorithm. Fuel Process. Technol. 208, 106509.
  111. Liu, H., Elkamel, A., Lohi, A., Biglari, M., 2013b. Computational fluid dynamics modeling of biomass gasification in circulating fluidized-bed reactor using the eulerian-eulerian approach. Ind. Eng. Chem. Res. 52(51), 18162-18174.
  112. Liu, Q., Chmely, S.C., Abdoulmoumine, N., 2017a. Biomass treatment strategies for thermochemical conversion. Energy Fuels. 31(4), 3525-3536.
  113. Liu, Y., Yao, S., Wang, Y., Lu, H., Brar, S.K., Yang, S., 2017b. Bio- and hydrochars from rice straw and pig manure: inter-comparison. Bioresour. Technol. 235, 332-337.
  114. Lombardi, F., Lategano, E., Cordiner, S., Torretta, V., 2013. Waste incineration in rotary kilns: a new simulation combustion tool to support design and technical change. Waste Manage. Res. J. Sust. Circ. Econ. 31(7), 739-750.
  115. Lu, X., Jordan, B., Berge, N.D., 2012. Thermal conversion of municipal solid waste via hydrothermal carbonization: comparison of carbonization products to products from current waste management techniques. Waste Manage. 32(7), 1353-1365.
  116. Lucian, M., Fiori, L., 2017. Hydrothermal carbonization of waste biomass: process design, modeling, energy efficiency and cost analysis. Energies. 10(2), 211.
  117. Lucian, M., Volpe, M., Fiori, L., 2019. Hydrothermal carbonization kinetics of lignocellulosic agro-wastes: experimental data and modeling. Energies. 12(3), 516.
  118. Luz, F.C., Cordiner, S., Manni, A., Mulone, V., Rocco, V., 2018a. Biomass fast pyrolysis in screw reactors: prediction of spent coffee grounds bio-oil production through a monodimensional model. Energy Convers. Manage. 168, 98-106.
  119. Luz, F.C., Cordiner, S., Manni, A., Mulone, V., Rocco, V., 2018b. Biomass fast pyrolysis in a shaftless screw reactor: a 1-D numerical model. Energy. 157, 792-805.
  120. Magdeldin, M., Kohl, T., Järvinen, M., 2017a. Techno-economic assessment of integrated hydrothermal liquefaction and combined heat and power production from lignocellulose residues. J. Sust. Dev. Energy, Water Environ. Syst. 6(1), 89-113.
  121. Magdeldin, M., Kohl, T., Järvinen, M., 2017b. Techno-economic assessment of the by-products contribution from non-catalytic hydrothermal liquefaction of lignocellulose residues. Energy. 137, 679-695.
  122. Magnanelli, E., Tranås, O.L., Carlsson, P., Mosby, J., Becidan, M., 2020. Dynamic modeling of municipal solid waste incineration. Energy. 209, 118426.
  123. Mandø, M., Rosendahl, L., Yin, C., Sørensen, H., 2010. Pulverized straw combustion in a low-NOx multifuel burner: modeling the transition from coal to straw. Fuel. 89(10), 3051-3062.
  124. Mansaray, K.G., Al-Taweel, A.M., Ghaly, A.E., Hamdullahpur, F., Ugursal, V.I., 2000a. Mathematical modeling of a fluidized bed rice husk gasifier: part I-model development. Energy Sources. 22(1), 83-98.
  125. Mansaray, K.G., Al-Taweel, A.M., Ghaly, A.E., Hamdullahpur, F., Ugursal, V.I., 2000b. Mathematical modeling of a fluidized bed rice husk gasifier: part II-model sensitivity. Energy Sources. 22(2), 167-185.
  126. Mansaray, K.G., Al-Taweel, A.M., Ghaly, A.E., Hamdullahpur, F., Ugursal, V.I., 2000c. Mathematical modeling of a fluidized bed rice husk gasifier: part III-model verification. Energy Sources. 22(3), 281-296.
  127. Martín-Lara, M.A., Blázquez, G., Zamora, M.C., Calero, M., 2017. Kinetic modelling of torrefaction of olive tree pruning. Appl. Therm. Eng. 113, 1410-1418.
  128. Matamba, T., Tahmasebi, A., Khoshk Rish, S., Yu, J., 2020. Promotion effects of pressure on polycyclic aromatic hydrocarbons and H2 formation during flash pyrolysis of palm kernel shell. Energy Fuels. 34(3), 3346-3356.
  129. Matta, J., Bronson, B., Gogolek, P.E., Mazerolle, D., Thibault, J., Mehrani, P., 2017. Comparison of multi-component kinetic relations on bubbling fluidized-bed woody biomass fast pyrolysis reactor model performance. Fuel. 210, 625-638.
  130. Mazaheri, H., Lee, K.T., Bhatia, S., Mohamed, A.R., 2010. Subcritical water liquefaction of oil palm fruit press fiber for the production of bio-oil: effect of catalysts. Bioresour. Technol. 101(2), 745-751.
  131. McGaughy, K., Toufiq Reza, M., 2018. Hydrothermal carbonization of food waste: simplified process simulation model based on experimental results. Biomass Convers. Biorefin. 8(2), 283-292.
  132. Mendecka, B., Di Ilio, G., Lombardi, L., 2020. Thermo-fluid dynamic and kinetic modeling of hydrothermal carbonization of olive pomace in a batch reactor. Energies. 13(16), 4142.
  133. Micali, F., Mendecka, B., Lombardi, L., Milanese, M., Ferrara, G., De Risi, A., 2019. Experimental investigation on high-temperature hydrothermal carbonization of olive pomace in batch reactor, in: AIP Conference Proceedings. 2191(1), p. 020112.
  134. Miller, R.S., Bellan, J., 1997. A generalized biomass pyrolysis model based on superimposed cellulose, hemicelluloseand liqnin kinetics. Combust. Sci. Technol. 126(1-6), 97-137.
  135. Miller, R.S., Bellan, J., 1998. Numerical simulation of vortex pyrolysis reactors for condensable tar production from biomass. Energy Fuels. 12(1), 25-40.
  136. Miltner, M., Makaruk, A., Harasek, M., Friedl, A., 2008. Computational fluid dynamic simulation of a solid biomass combustor: modelling approaches. Clean Technol. Environ. Policy. 10(2), 165-174.
  137. Mueller, C., Brink, A., Hupa, M., 2005. Numerical simulation of the combustion behavior of different biomasses in a bubbling fluidized bed boiler, in: 18th International Conference on Fluidized Bed Combustion ASMEDC. 41839, pp. 771-781.
  138. Naqvi, S.R., Tariq, R., Hameed, Z., Ali, I., Naqvi, M., Chen, W.H., Ceylan, S., Rashid, H., Ahmad, J., Taqvi, S.A., Shahbaz, M., 2019. Pyrolysis of high ash sewage sludge: kinetics and thermodynamic analysis using Coats-Redfern method. Renewable Energy. 131, 854-860.
  139. Nazari, L., Yuan, Z., Ray, M.B., Xu, C.C., 2017. Co-conversion of waste activated sludge and sawdust through hydrothermal liquefaction: optimization of reaction parameters using response surface methodology. Appl. Energy. 203, 1-10.
  140. Neves, D., Thunman, H., Matos, A., Tarelho, L., Gómez-Barea, A., 2011. Characterization and prediction of biomass pyrolysis products. Prog. Energy Combust. Sci. 37(5), 611-630.
  141. Nguyen, Q., Nguyen, D.D., Vothi, H., He, C., Goodarzi, M., Bach, Q.V., 2020. Isothermal torrefaction kinetics for sewage sludge pretreatment. Fuel. 277, 118103.
  142. Nikolopoulos, N., Isemin, R., Atsonios, K., Kourkoumpas, D., Kuzmin, S., Mikhalev, A., Nikolopoulos, A., Agraniotis, M., Grammelis, P., Kakaras, E., 2013. Modeling of Wheat Straw Torrefaction as a Preliminary Tool for Process Design. Waste Biomass Valorization. 4(3), 409-420.
  143. Nizamuddin, S., Baloch, H.A., Griffin, G.J., Mubarak, N.M., Bhutto, A.W., Abro, R., Mazari, S.A., Ali, B.S., 2017. An overview of effect of process parameters on hydrothermal carbonization of biomass. Renew. Sust. Energy Rev. 73, 1289-1299.
  144. Obeid, R., Lewis, D.M., Smith, N., Hall, T., van Eyk, P., 2020. Reaction kinetics and characterisation of species in renewable crude from hydrothermal liquefaction of monomers to represent organic fractions of biomass feedstocks. Chem. Eng. J. 389, 124397.
  145. Ong, B.H., Walmsley, T.G., Atkins, M.J., Varbanov, P.S., Walmsley, M.R., 2019. A heat-and mass-integrated design of hydrothermal liquefaction process co-located with a Kraft pulp mill. Energy. 189, 116235.
  146. Ong, H.C., Chen, W.H., Farooq, A., Gan, Y.Y., Lee, K.T., Ashokkumar, V., 2019. Catalytic thermochemical conversion of biomass for biofuel production: a comprehensive review. Renew. Sust. Energy Rev. 113, 109266.
  147. Ong, H.C., Chen, W.H., Singh, Y., Gan, Y.Y., Chen, C.Y., Show, P.L., 2020. A state-of-the-art review on thermochemical conversion of biomass for biofuel production: a TG-FTIR approach. Energy Convers. Manage. 209, 112634.
  148. Osman, A.I., Young, T.J., Farrell, C., Harrison, J., Al-Muhtaseb, A.A.H., Rooney, D.W., 2020. Physicochemical characterization and kinetic modeling concerning combustion of waste berry pomace. ACS Sustainable Chem. Eng. 8(47), 17573-17586.
  149. Othaman, M.F., Sabudin, S., Mohideen Batcha, M.F., 2016. A short review on biomass thermo-chemical conversion: recent advances. Int. J. Eng. Technol. 8(6), 2494-2499.
  150. Özsin, G., Pütün, A.E., 2017. Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FT-IR. Waste Manage. 64, 315-326.
  151. Panwar, N.L., Kothari, R., Tyagi, V.V., 2012. Thermo chemical conversion of biomass-Eco friendly energy routes. Renew. Sust. Energy Rev. 16(4), 1801-1816.
  152. Parker, G., Sutherland, A.J., 1990. Fluvial armor. J. Hydraul. Res. 28(5), 529-544.
  153. Patuzzi, F., Gasparella, A., Baratieri, M., 2014. Thermochemical and fluid dynamic model of a bench-scale torrefaction reactor. Waste Biomass Valorization. 5(2), 165-173.
  154. Pecchi, M., Patuzzi, F., Benedetti, V., Di Maggio, R., Baratieri, M., 2020. Kinetic analysis of hydrothermal carbonization using high-pressure differential scanning calorimetry applied to biomass. Appl. Energy. 265, 114810.
  155. Pecha, M.B., Arbelaez, J.I.M., Garcia-Perez, M., Chejne, F., Ciesielski, P.N., 2019. Progress in understanding the four dominant intra-particle phenomena of lignocellulose pyrolysis: chemical reactions, heat transfer, mass transfer, and phase change. Green Chem. 21(11), 2868-2898.
  156. Peng, J.H., Bi, X.T., Sokhansanj, S., Lim, C.J., 2013. Torrefaction and densification of different species of softwood residues. Fuel. 111, 411-421.
  157. Perera, S.M., Wickramasinghe, C., Narayana, M., 2020. Process parameter optimization of urban biowaste carbonization, in: 2020 Moratuwa Engineering Research Conference (MERCon) IEEE, pp. 130-135.
  158. Peters, B., 2011. Validation of a numerical approach to model pyrolysis of biomass and assessment of kinetic data. Fuel. 90(6), 2301-2314.
  159. Peters, B., Bruch, C., 2001. A flexible and stable numerical method for simulating the thermal decomposition of wood particles. Chemosphere. 42(5-7), 481-490.
  160. Porpatham, E., Ramesh, A., Nagalingam, B., 2012. Effect of compression ratio on the performance and combustion of a biogas fuelled spark ignition engine. Fuel. 95, 247-256.
  161. Prasertcharoensuk, P., Hernandez, D.A., Bull, S.J., Phan, A.N., 2018. Optimisation of a throat downdraft gasifier for hydrogen production. Biomass Bioenergy. 116, 216-226.
  162. Prins, M.J., Ptasinski, K.J., Janssen, F.J., 2006. Torrefaction of wood: part 1. weight loss kinetics. J. Anal. Appl. Pyrolysis. 77(1), 28-34.
  163. Qin, L., Wu, Y., Hou, Z., Jiang, E., 2020. Influence of biomass components, temperature and pressure on the pyrolysis behavior and biochar properties of pine nut shells. Bioresour. Technol. 313, 123682.
  164. Ramzan, N., Ashraf, A., Naveed, S., Malik, A., 2011. Simulation of hybrid biomass gasification using Aspen plus: a comparative performance analysis for food, municipal solid and poultry waste. Biomass Bioenergy. 35(9), 3962-3969.
  165. Ranzi, E., Cuoci, A., Faravelli, T., Frassoldati, A., Migliavacca, G., Pierucci, S., Sommariva, S., 2008. Chemical kinetics of biomass pyrolysis. Energy Fuels. 22(6), 4292-4300.
  166. Ravi, M.R., Jhalani, A., Sinha, S., Ray, A., 2004. Development of a semi-empirical model for pyrolysis of an annular sawdust bed. J. Anal. Appl. Pyrolysis. 71(1), 353-374.
  167. Reza, M.T., Yan, W., Uddin, M.H., Lynam, J.G., Hoekman, S.K., Coronella, C.J., Vásquez, V.R., 2013. Reaction kinetics of hydrothermal carbonization of loblolly pine. Bioresour. Technol. 139, 161-169.
  168. Roberts, G.W., Fortier, M.O.P., Sturm, B.S., Stagg-Williams, S.M., 2013. Promising pathway for algal biofuels through wastewater cultivation and hydrothermal conversion. Energy Fuels. 27(2), 857-867.
  169. Román, S., Libra, J., Berge, N., Sabio, E., Ro, K., Li, L., Ledesma, B., Álvarez, A., Bae, S., 2018. Hydrothermal carbonization: modeling, final properties design and applications: a review. Energies. 11(1), 216.
  170. Rozainee, M., Ngo, S.P., Salema, A.A., Tan, K.G., 2010. Computational fluid dynamics modeling of rice husk combustion in a fluidised bed combustor. Powder Technol. 203(2), 331-347.
  171. Safarian, S., Ebrahimi Saryazdi, S.M., Unnthorsson, R., Richter, C., 2020. Artificial neural network integrated with thermodynamic equilibrium modeling of downdraft biomass gasification-power production plant. Energy. 213, 118800.
  172. Safarian, S., Unnþórsson, R., Richter, C., 2019. A review of biomass gasification modelling. Renew. Sust. Energy Rev. 110, 378-391.
  173. Safin, R.G., Barcik, Š., Tuntsev, D.V., Safin, R.R., Hismatov, R.G., 2016. A mathematical model of thermal decomposition of wood in conditions of fluidized bed. Acta Fac. Xylologiae. 58(2), 141-148.
  174. Salman, C.A., Omer, C.B., 2020. Process modelling and simulation of waste gasification-based flexible polygeneration facilities for power, heat and biofuels production. Energies. 13(16), 4264.
  175. Sangare, D., Bostyn, S., Moscosa-Santillan, M., Gökalp, I., 2021. Hydrodynamics, heat transfer and kinetics reaction of CFD modeling of a batch stirred reactor under hydrothermal carbonization conditions. Energy. 219, 119635.
  176. Sanlisoy, A., Carpinlioglu, M.O., 2017. A review on plasma gasification for solid waste disposal. Int. J. Hydrogen Energy. 42(2), 1361-1365.
  177. Saravanakumar, A., Haridasan, T.M., Reed, T.B., 2010. Flaming pyrolysis model of the fixed bed cross draft long-stick wood gasifier. Fuel Process. Technol. 91(6), 669-675.
  178. Sarkar, A., Mondal, B., Chowdhury, R., 2014. Mathematical modeling of a semibatch pyrolyser for sesame oil cake. Ind. Eng. Chem. Res. 53(51), 19671-19680.
  179. Sarkar, J.K., Wang, Q., 2020. Different pyrolysis process conditions of South Asian waste coconut shell and characterization of gas, bio-char, and bio-oil. Energies. 13(8), 1970.
  180. Sermyagina, E., Saari, J., Kaikko, J., Vakkilainen, E., 2015. Hydrothermal carbonization of coniferous biomass: effect of process parameters on mass and energy yields. J. Anal. Appl. Pyrolysis. 113, 551-556.
  181. Shang, L., Ahrenfeldt, J., Holm, J.K., Bach, L.S., Stelte, W., Henriksen, U.B., 2014. Kinetic model for torrefaction of wood chips in a pilot-scale continuous reactor. J. Anal. Appl. Pyrolysis. 108, 109-116.
  182. Shang, L., Ahrenfeldt, J., Holm, J.K., Barsberg, S., Zhang, R., Luo, Y.H., Egsgaard, H., Henriksen, U.B., 2013. Intrinsic kinetics and devolatilization of wheat straw during torrefaction. J. Anal. Appl. Pyrolysis. 100, 145-152.
  183. Shankar Tumuluru, J., Sokhansanj, S., Hess, J.R., Wright, C.T., Boardman, R.D., 2011. A review on biomass torrefaction process and product properties for energy applications. Ind. Biotechnol. 7(5), 384-401.
  184. Sharma, A., Pareek, V., Zhang, D., 2015. Biomass pyrolysis-a review of modelling, process parameters and catalytic studies. Renew. Sust. Energy Rev. 50, 1081-1096.
  185. Shiehnejadhesar, A., Scharler, R., Mehrabian, R., Obernberger, I., 2015. Development and validation of CFD models for gas phase reactions in biomass grate furnaces considering gas streak formation above the packed bed. Fuel Process. Technol. 139, 142-158.
  186. Shih, T.H., Liou, W.W., Shabbir, A., Yang, Z., Zhu, J., 1995. A new k-ϵ eddy viscosity model for high reynolds number turbulent flows. Comput. Fluids. 24(3), 227-238.
  187. Siegel, R., J.R. Howell, 1992. Thermal Radiation Heat Transfer, Third edit. Hemisphere Publishing Corporation.
  188. Silva, V.B., Rouboa, A., 2013. Using a two-stage equilibrium model to simulate oxygen air enriched gasification of pine biomass residues. Fuel Process. Technol. 109, 111-117.
  189. Simone, M., Nicolella, C., Tognotti, L., 2013. Numerical and experimental investigation of downdraft gasification of woody residues. Bioresour. Technol. 133, 92-101.
  190. Somerville, M., Deev, A., 2020. The effect of heating rate, particle size and gas flow on the yield of charcoal during the pyrolysis of radiata pine wood. Renewable Energy. 151, 419-425.
  191. Soria-Verdugo, A., Rubio-Rubio, M., Goos, E., Riedel, U., 2020. On the characteristic heating and pyrolysis time of thermally small biomass particles in a bubbling fluidized bed reactor. Renewable Energy. 160, 312-322.
  192. Stobernack, N., Mayer, F., Malek, C., Bhandari, R., 2020. Evaluation of the energetic and environmental potential of the hydrothermal carbonization of biowaste: modeling of the entire process chain. Bioresour. Technol. 318, 124038.
  193. Sukiran, M.A., Abnisa, F., Syafiie, S., Wan Daud, W.M.A.W., Nasrin, A.B., Abdul Aziz, A.A., Loh, S.K., 2020. Experimental and modelling study of the torrefaction of empty fruit bunches as a potential fuel for palm oil mill boilers. Biomass Bioenergy. 136, 105530.
  194. Sun, S., Tian, H., Zhao, Y., Sun, R., Zhou, H., 2010. Experimental and numerical study of biomass flash pyrolysis in an entrained flow reactor. Bioresour. Technol. 101(10), 3678-3684.
  195. Sun, Y., Liu, L., Wang, Q., Yang, X., Tu, X., 2016. Pyrolysis products from industrial waste biomass based on a neural network model. J. Anal. Appl. Pyrolysis. 120, 94-102.
  196. Sutton, D., Kelleher, B., Ross, J.R., 2001. Review of literature on catalysts for biomass gasification. Fuel Process. Technol. 73(3), 155-173.
  197. Świechowski, K., Liszewski, M., Bąbelewski, P., Koziel, J.A., Białowiec, A., 2019. Oxytree pruned biomass torrefaction: mathematical models of the influence of temperature and residence time on fuel properties improvement. Materials. 12(14), 2228.
  198. Talero, G., Rincón, S., Gómez, A., 2019a. Biomass torrefaction in a standard retort: a study on oil palm solid residues. Fuel. 244, 366-378.
  199. Talero, G., Rincón, S., Gómez, A., 2019b. Torrefaction of oil palm residual biomass: thermogravimetric characterization. Fuel. 242, 496-506.
  200. Tavakkol, S., Zirwes, T., Denev, J.A., Jamshidi, F., Weber, N., Bockhorn, H., Trimis, D., 2021. An Eulerian-Lagrangian method for wet biomass carbonization in rotary kiln reactors. Renew. Sust. Energy Rev. 139, 110582.
  201. Tran, K.Q., 2020. Non-newtonian analysis of a counter-flow mixing reactor for fast hydrothermal liquefaction, in: Computer Aided Chemical Engineering. Elsevier Masson SAS. 48, pp. 1069-1074.
  202. Tran, K.Q., Håkansson, L., Trinh, T.T., 2017. CFD pre-study of Nozzle reactor for fast hydrothermal liquefaction. Energy Procedia. 142, 861-866.
  203. Trendewicz, A., Braun, R., Dutta, A., Ziegler, J., 2014. One dimensional steady-state circulating fluidized-bed reactor model for biomass fast pyrolysis. Fuel. 133, 253-262.
  204. Tungalag, A., Lee, B., Yadav, M., Akande, O., 2020. Yield prediction of MSW gasification including minor species through ASPEN plus simulation. Energy. 198, 117296.
  205. Tuntsev, D. V., Safin, R.R., Hismatov, R.G., Halitov, R.A., Petrov, V.I., 2015. The mathematical model of fast pyrolysis of wood waste, in: 2015 International Conference on Mechanical Engineering, Automation and Control Systems (MEACS) IEEE, pp. 1-4.
  206. Turner, I., Rousset, P., Rémond, R., Perré, P., 2010. International journal of heat and mass transfer an experimental and theoretical investigation of the thermal treatment of wood (Fagus sylvatica) in the range 200-260°C. Int. J. Heat Mass Transf. 53(4), 715-725.
  207. Tursi, A., 2019. A review on biomass: importance, chemistry, classification, and conversion. Biofuel Res. J. 6(2), 962-979.
  208. Van Der Stelt, M.J.C., 2010. Chemistry and reaction kinetics of biowaste torrefaction. Tech. Univ. Eindhoven.
  209. Vassilev, S.V., Baxter, D., Andersen, L.K., Vassileva, C.G., 2010. An overview of the chemical composition of biomass. Fuel. 89(5), 913-933.
  210. Wang, H., Wang, L., Zhang, J., Jing, Y., Cao, Y., 2020a. Effects of pyrolysis temperature and reaction time on the performance of swine-manure-derived bio-binder. Transp. Res. Part D Transp. Environ. 89, 102608.
  211. Wang, S., Shen, Y., 2020. CFD-DEM study of biomass gasification in a fluidized bed reactor: effects of key operating parameters. Renewable Energy. 159, 1146-1164.
  212. Wang, T., Meng, D., Zhu, J., Chen, X., 2020b. Effects of pelletizing conditions on the structure of rice straw-pellet pyrolysis char. Fuel. 264, 116909.
  213. Wang, Y., Yan, L., 2008a. CFD modeling of a fluidized bed sewage sludge gasifier for syngas. Asia-Pacific J. Chem. Eng. 3(2), 161-170.
  214. Wang, Y., Yan, L., 2008b. CFD studies on biomass thermochemical conversion. Int. J. Mol. Sci. 9(6), 1108-1130.
  215. Wickramasinghe, D.G.C., Narayana, M., Amarasinghe, A.D.U.S., 2018. Numerical simulation of suspension biomass combustor with two chambers, in: 2018 Moratuwa Engineering Research Conference (MERCon) IEEE, pp. 226-230.
  216. Wijekoon, P., Wickramasinghe, C., Athapattu, B.C.L., Narayana, M., de Alwis, A., Vithanage, M., 2021. Biomass valorization and phytoremediation as integrated technology for municipal solid waste management for developing economic context. Biomass Convers. Biorefin. 11(2), 363-382.
  217. Winterberg, M., Tsotsas, E., 2000. Modelling of heat transport in beds packed with spherical particles for various bed geometries and/or thermal boundary conditions. Int. J. Therm. Sci. 39(5), 556-570.
  218. Xia, C., Cai, L., Zhang, H., Zuo, L., Shi, S.Q., Lam, S.S., 2021. A review on the modeling and validation of biomass pyrolysis with a focus on product yield and composition. Biofuel Res. J. 8(1), 1296-1315.
  219. Xiao, R., Yang, W., Cong, X., Dong, K., Xu, J., Wang, D., Yang, X., 2020. Thermogravimetric analysis and reaction kinetics of lignocellulosic biomass pyrolysis. Energy. 201, 117537.
  220. Xiong, Q., Kong, S.C., Passalacqua, A., 2013. Development of a generalized numerical framework for simulating biomass fast pyrolysis in fluidized-bed reactors. Chem. Eng. Sci. 99, 305-313.
  221. Xiong, Q., Yang, Y., Xu, F., Pan, Y., Zhang, J., Hong, K., Lorenzini, G., Wang, S., 2017. Overview of computational fluid dynamics simulation of reactor-scale biomass pyrolysis. ACS Sustainable Chem. Eng. 5(4), 2783-2798.
  222. Xu, L., Jiang, Y., Wang, L., 2017. Thermal decomposition of rape straw: pyrolysis modeling and kinetic study via particle swarm optimization. Energy Convers. Manage. 146, 124-133.
  223. Xue, Y., Chen, H., Zhao, W., Yang, C., Ma, P., Han, S., 2016. A review on the operating conditions of producing bio-oil from hydrothermal liquefaction of biomass. Int. J. Energy Res. 40(7), 865-877.
  224. Yang, H., Zhou, Y., Liu, J., 2009. Land and water requirements of biofuel and implications for food supply and the environment in China. Energy Policy. 37(5), 1876-1885.
  225. Yin, S., Dolan, R., Harris, M., Tan, Z., 2010. Subcritical hydrothermal liquefaction of cattle manure to bio-oil: effects of conversion parameters on bio-oil yield and characterization of bio-oil. Bioresour. Technol. 101(10), 3657-3664.
  226. Yu, J., Guo, Q., Gong, Y., Ding, L., Wang, J., Yu, G., 2021. A review of the effects of alkali and alkaline earth metal species on biomass gasification. Fuel Process. Technol. 214, 106723.
  227. Zadeh, Z.E., Abdulkhani, A., Saha, B., 2021. A comparative production and characterisation of fast pyrolysis bio-oil from Populus and Spruce woods. Energy. 214, 118930.
  228. Zainal, Z.A., Ali, R., Lean, C.H., Seetharamu, K.N., 2001. Prediction of performance of a downdraft gasifier using equilibrium modeling for different biomass materials. Energy Convers. Manage. 42(12), 1499-1515.
  229. Zhang, B., Chen, J., He, Z., Chen, H., Kandasamy, S., 2019. Hydrothermal liquefaction of fresh lemon-peel: parameter optimisation and product chemistry. Renewable Energy. 143, 512-519.
  230. Zhang, B., Huang, H.J., Ramaswamy, S., 2012. A kinetics study on hydrothermal liquefaction of high-diversity grassland perennials. Energy Sources Part A. 34(18), 1676-1687.
  231. Zhang, L., Xu, C.C., Champagne, P., 2010. Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers. Manage. 51(5), 969-982.
  232. Zhang, Y., 2010. Hydrothermal liquefaction to convert biomass into crude oil, in: Biofuels from Agricultural Wastes and Byproducts. Wiley-Blackwell, Oxford, UK. 42(37), pp. 201-232.
  233. Zhu, Y., Biddy, M.J., Jones, S.B., Elliott, D.C., Schmidt, A.J., 2014. Techno-economic analysis of liquid fuel production from woody biomass via hydrothermal liquefaction (HTL) and upgrading. Appl. Energy. 129, 384-394.