A critical review of machine learning for lignocellulosic ethanol production via fermentation route

Document Type : Review Paper


1 Department of Chemical Engineering, Boğaziçi University, 34342, Bebek-Istanbul, Turkey.

2 Department of Energy Systems Engineering, Istanbul Bilgi University, 34060, Eyup-Istanbul, Turkey.


In this work, machine learning (ML) applications in lignocellulosic bioethanol production were reviewed. First, the pretreatment-hydrolysis-fermentation route, the most commonly studied alternative, was summarized. Next, a bibliometric analysis was performed to identify the current trends in the field; it was found that ML applications in the field are not only increasing but also expanding their relative share in publications, with bioethanol seeming to be the most frequently researched topic while biochar and biogas are also receiving increased attention in recent years. Then, the implementation of ML for lignocellulosic bioethanol production via this route was reviewed in depth. It was observed that artificial neural network (ANN) is the most commonly used algorithm (appeared in almost 90% of articles), followed by response surface methodology (RSM) (in about 25% of articles) and random forest (RF) (in about 10% of articles). Bioethanol concentration is the most common output variable in the fermentation step, while fermentable sugar and glucose concentration are studied most in hydrolysis. The datasets are usually small, while the fitnesses of the models (R2) are usually high in the papers reviewed. Finally, a perspective for future studies, mostly considering improving data availability, was provided. 

Graphical Abstract

A critical review of machine learning for lignocellulosic ethanol production via fermentation route


  • Studies on machine learning (ML) applications for lignocellulosic ethanol production are critically reviewed.
  • Bibliometric research and future perspectives on ML applications are provided.
  • ANN is the most commonly used algorithm (appearing in almost 90% of articles).
  • Bioethanol concentration is the most common output variable in the fermentation step.
  • Fermentable sugar and glucose concentration are studied most in studies focused on the hydrolysis step.


  1. Agrawal, R., Verma, A., Singhania, R.R., Varjani, S., Di Dong, C., Kumar Patel, A., 2021. Current understanding of the inhibition factors and their mechanism of action for the lignocellulosic biomass hydrolysis. Bioresour. Technol. 332, 125042.
  2. Aguilar-Reynosa, A., Romaní, A., Ma. Rodríguez-Jasso, R., Aguilar, C.N., Garrote, G., Ruiz, H.A., 2017. Microwave heating processing as alternative of pretreatment in second-generation biorefinery: an overview. Energy Convers. Manage. 136, 50-65.
  3. Allen, F.H., 2002. The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr., Sect. B: Struct. Sci. 58(3), 380-388.
  4. Alpaydin, E., 2020. Introduction to Machine Learning, 4 (ed). The MIT Press.
  5. Alper Tapan, N., Yıldırım, R., Erdem Günay, M., 2016. Analysis of past experimental data in literature to determine conditions for high performance in biodiesel production. Biofuels, Bioprod. Biorefin. 10(4), 422-434.
  6. Alviso, D., Artana, G., Duriez, T., 2020. Prediction of biodiesel physico-chemical properties from its fatty acid composition using genetic programming. Fuel. 264, 116844.
  7. Aruwajoye, G.S., Faloye, F.D., Kassim, A., Saha, A.K., Kana, E.G., 2022. Intelligent modelling of fermentable sugar concentration and combined severity factor (CSF) index from pretreated starch-based lignocellulosic biomass. Biomass Convers. Biorefin.
  8. Aui, A., Wang, Y., Mba-Wright, M., 2021. Evaluating the economic feasibility of cellulosic ethanol: a meta-analysis of techno-economic analysis studies. Renew. Sust. Energy Rev. 145, 111098.
  9. Bannor B, E., Acheampong, A.O., 2019. Deploying artificial neural networks for modeling energy demand: international evidence. Int. J. Energy Sect. Manage. 14(2), 285-315.
  10. Bergerhoff, G., Hundt, R., Sievers, R., Brown, I.D., 1983. The inorganic crystal structure data base. J. Chem. Inf. Comput. Sci. 23(2), 66-69.
  11. Betiku, E., Taiwo, A.E., 2015. Modeling and optimization of bioethanol production from breadfruit starch hydrolyzate vis-à-vis response surface methodology and artificial neural network. Renewable Energy. 74, 87-94.
  12. Brandt, A., Gräsvik, J., Hallett, J.P., Welton, T., 2013. Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem. 15(3), 550-583.
  13. Chang, C.W., Yu, W.C., Chen, W.J., Chang, R.F., Kao, W.S., 2011. A study on the enzymatic hydrolysis of steam exploded napiergrass with alkaline treatment using artificial neural networks and regression analysis. J. Taiwan Inst. Chem. Eng. 42(6), 889-894.
  14. Charte, F., Romero, I., Pérez-Godoy, M.D., Rivera, A.J., Castro, E., 2017. Comparative analysis of data mining and response surface methodology predictive models for enzymatic hydrolysis of pretreated olive tree biomass. Comput. Chem. Eng. 101, 23-30.
  15. Cheah, W.Y., Sankaran, R., Show, P.L., Tg. Ibrahim, T.N.B., Chew, K.W., Culaba, A., Chang, J.S., 2020. Pretreatment methods for lignocellulosic biofuels production: current advances, challenges and future prospects. Biofuel Res. J. 7(1), 1115-1127.
  16. Chen, W.H., Lo, H.J., Aniza, R., Lin, B.J., Park, Y.K., Kwon, E.E., Sheen, H.K., Grafilo, L.A.D.R., 2022. Forecast of glucose production from biomass wet torrefaction using statistical approach along with multivariate adaptive regression splines, neural network and decision tree. Appl. Energy. 324, 119775.
  17. Chouaibi, M., Daoued, K.B., Riguane, K., Rouissi, T., Ferrari, G., 2020. Production of bioethanol from pumpkin peel wastes: comparison between response surface methodology (RSM) and artificial neural networks (ANN). Industrial Crops and Products. 155, 112822.
  18. Coşgun, A., Günay, M.E., Yıldırım, R., 2021. Exploring the critical factors of algal biomass and lipid production for renewable fuel production by machine learning. Renewable Energy. 163, 1299-1317.
  19. Coşgun, A., Günay, M.E., Yıldırım, R., 2022. Analysis of lipid production from Yarrowia lipolytica for renewable fuel production by machine learning. Fuel. 315, 122817.
  20. Culaba, A.B., Mayol, A.P., San Juan, J.L.G., Vinoya, C.L., Concepcion, R.S., 2nd, Bandala, A.A., Vicerra, R.R.P., Ubando, A.T., Chen, W.H., Chang, J.S., 2022. Smart sustainable biorefineries for lignocellulosic biomass. Bioresour. Technol. 344(Part B), 126215.
  21. Curtarolo, S., Setyawan, W., Wang, S., Xue, J., Yang, K., Taylor, R.H., Nelson, L.J., Hart, G.L.W., Sanvito, S., Buongiorno-Nardelli, M., Mingo, N., Levy, O., 2012. AFLOWLIB.ORG: a distributed materials properties repository from high-throughput ab initio Comput. Mater. Sci. 58, 227-235.
  22. Das, S., Bhattacharya, A., Ganguly, A., Dey, A., Chatterjee, P.K., 2016. Artificial neural network modelling of xylose yield from water hyacinth by dilute sulphuric acid hydrolysis for ethanol production. Int. J. Environ. Technol. Manage. 19(2), 150-166.
  23. Dave, N., Varadavenkatesan, T., Selvaraj, R., Vinayagam, R., 2021. Modelling of fermentative bioethanol production from indigenous Ulva prolifera biomass by Saccharomyces cerevisiae NFCCI1248 using an integrated ANN-GA approach. Sci. Total Environ. 791, 148429.
  24. Dharmalingam, B., Tantayotai, P., Panakkal, E.J., Cheenkachorn, K., Kirdponpattara, S., Gundupalli, M.P., Cheng, Y.S., Sriariyanun, M., 2022. Organic Acid Pretreatments and Optimization Techniques for Mixed Vegetable Waste Biomass Conversion into Biofuel Production. BioEnergy Res.
  25. Dong, C., Chen, J., 2019. Optimization of process parameters for anaerobic fermentation of corn stalk based on least squares support vector machine. Bioresour. Technol. 271, 174-181.
  26. Erdem Günay, M., Yıldırım, R., 2020. Recent advances in knowledge discovery for heterogeneous catalysis using machine learning. Catal. Rev. 63(1), 120-164.
  27. Ethaib, S., Omar, R., Mazlina, M.K.S., Radiah, A.B.D., Syafiie, S., 2016. Development of a hybrid PSO-ANN model for estimating glucose and xylose yields for microwave-assisted pretreatment and the enzymatic hydrolysis of lignocellulosic biomass. Neural Comput. Appl. 30(4), 1111-1121.
  28. Ezzatzadegan, L., Yusof, R., Morad, N.A., Shabanzadeh, P., Muda, N.S., Borhani, T.N., 2021. Experimental and artificial intelligence modelling study of oil palm trunk sap fermentation. Energies. 14(8), 2137.
  29. Feng, S., Zhou, H., Dong, H., 2019. Using deep neural network with small dataset to predict material defects. Mater. 162, 300-310.
  30. Fischer, J., Lopes, V.S., Cardoso, S.L., Coutinho Filho, U., Cardoso, V.L., 2017. Machine learning techniques applied to lignocellulosic ethanol in simultaneous hydrolysis and fermentation. Braz. J. Chem. Eng. 34(1), 53-63.
  31. Franco, B.M., Navas, L.M., Gómez, C., Sepúlveda, C., Acién, F.G., 2019. Monoalgal and mixed algal cultures discrimination by using an artificial neural network. Algal Res. 38, 101419.
  32. Galbe, M., Wallberg, O., 2019. Pretreatment for biorefineries: a review of common methods for efficient utilisation of lignocellulosic materials. Biotechnol. Biofuels. 12, 294.
  33. Gama, R., Van Dyk, J.S., Burton, M.H., Pletschke, B.I., 2017. Using an artificial neural network to predict the optimal conditions for enzymatic hydrolysis of apple pomace. 3 Biotech. 7, 138.
  34. Ganguly, P., Das, P., 2022. Integral approach for second-generation bio-ethanol production and wastewater treatment using peanut shell waste: yield, removal, and ANN studies. Biomass Convers. Biorefin.
  35. Ge, S., Shi, Y., Xia, C., Huang, Z., Manzo, M., Cai, L., Ma, H., Zhang, S., Jiang, J., Sonne, C., Lam, S.S., 2021. Progress in pyrolysis conversion of waste into value-added liquid pyro-oil, with focus on heating source and machine learning analysis. Energy Convers. Manage. 245, 114638.
  36. Giordano, P.C., Beccaria, A.J., Goicoechea, H.C., Olivieri, A.C., 2013. Optimization of the hydrolysis of lignocellulosic residues by using radial basis functions modeling and particle swarm optimization. Biochem. Eng. J. 80, 1-9.
  37. Gitifar, V., Eslamloueyan, R., Sarshar, M., 2013. Experimental study and neural network modeling of sugarcane bagasse pretreatment with H2SO4 and O3 for cellulosic material conversion to sugar. Bioresour. Technol. 148, 47-52.
  38. Grahovac, J., Jokić, A., Dodić, J., Vučurović, D., Dodić, S., 2016. Modelling and prediction of bioethanol production from intermediates and byproduct of sugar beet processing using neural networks. Renewable Energy. 85, 953-958.
  39. Gražulis, S., Chateigner, D., Downs, R.T., Yokochi, A., Quirós, M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P., Le Bail, A., 2009. Crystallography Open Database–an open-access collection of crystal structures. J. appl. Crystallogr. 42(4), 726-729.
  40. Griffin, D.W., Schultz, M.A., 2012. Fuel and chemical products from biomass syngas: a comparison of gas fermentation to thermochemical conversion routes. Environ. Prog. Sustainable Energy. 31(2), 219-224.
  41. Guo, H.N., Wu, S.B., Tian, Y.J., Zhang, J., Liu, H.T., 2021. Application of machine learning methods for the prediction of organic solid waste treatment and recycling processes: a review. Bioresour. Technol. 319, 124114.
  42. Haldar, D., Shabbirahmed, A.M., Mahanty, B., 2023. Multivariate regression and artificial neural network modelling of sugar yields from acid pretreatment and enzymatic hydrolysis of lignocellulosic biomass. Bioresour. Technol. 370, 128519.
  43. Jahanbakhshi, A., Salehi, R., 2019. Processing watermelon waste using Saccharomyces cerevisiae yeast and the fermentation method for bioethanol production. J. Food Process Eng. 42(7), e13283.
  44. Jain, A., Hautier, G., Ong, S.P., Persson, K., 2016. New opportunities for materials informatics: resources and data mining techniques for uncovering hidden relationships. J. Mater. Res. 31(8), 977-994.
  45. Kaya, M., Hajimirza, S., 2019. Using a novel transfer learning method for designing thin film solar cells with enhanced quantum efficiencies. Sci. Rep. 9(1), 5034.
  46. Kim, J.H., Block, D.E., Mills, D.A., 2010. Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Appl. Microbiol. Biotechnol. 88, 1077-1085.
  47. Kim, J.S., Lee, Y.Y., Kim, T.H., 2016. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour. Technol. 199, 42-48.
  48. Kirklin, S., Saal, J.E., Meredig, B., Thompson, A., Doak, J.W., Aykol, M., Rühl, S., Wolverton, C., 2015. The open quantum materials database (OQMD): assessing the accuracy of DFT formation energies. npj Comput. Mater. 1(1), 15010.
  49. Konishi, M., 2020. Bioethanol production estimated from volatile compositions in hydrolysates of lignocellulosic biomass by deep learning. J. Biosci. Bioeng. 129(6), 723-729.
  50. Kucharska, K., Hołowacz, I., Konopacka-Łyskawa, D., Rybarczyk, P., Kamiński, M., 2018. Key issues in modeling and optimization of lignocellulosic biomass fermentative conversion to gaseous biofuels. Renewable Energy. 129, 384-408.
  51. Kumar, R., Tabatabaei, M., Karimi, K., Sárvári Horváth, I., 2016. Recent updates on lignocellulosic biomass derived ethanol-a review. Biofuel Res. J. 3(1), 347-356.
  52. Kumar, S., Gupta, R., Lee, Y.Y., Gupta, R.B., 2010. Cellulose pretreatment in subcritical water: effect of temperature on molecular structure and enzymatic reactivity. Bioresour. Technol. 101(4), 1337-1347.
  53. Kumar, S., Jain, S., Kumar, H., 2018. Prediction of jatropha-algae biodiesel blend oil yield with the application of artificial neural networks technique. Energy Sources, Part A. 41(11), 1285-1295.
  54. Landis, D.D., Hummelshoj, J.S., Nestorov, S., Greeley, J., Dulak, M., Bligaard, T., Norskov, J.K., Jacobsen, K.W., 2012. The Computational Materials Repository. Comput. Sci. Eng. 14(6), 51-57.
  55. Larose, D.T., Larose, C.D., 2014. Discovering Knowledge in Data: An Introduction to Data Mining, 2 (ed). Wiley, Hoboken, New Jersey.
  56. Lee, K.M., Zanil, M.F., Chan, K.K., Chin, Z.P., Liu, Y.C., Lim, S., 2020. Synergistic ultrasound-assisted organosolv pretreatment of oil palm empty fruit bunches for enhanced enzymatic saccharification: an optimization study using artificial neural networks. Biomass Bioenergy. 139, 105621.
  57. Li, H., Chen, J., Zhang, W., Zhan, H., He, C., Yang, Z., Peng, H., Leng, L., 2023. Machine-learning-aided thermochemical treatment of biomass: a review. Biofuel Res. J. 10(1), 1786-1809.
  58. Li, J., Suvarna, M., Li, L., Pan, L., Pérez-Ramírez, J., Ok, Y.S., Wang, X., 2022. A review of computational modeling techniques for wet waste valorization: Research trends and future perspectives. J. Clean. Prod. 367, 133025.
  59. Li, W., Ghosh, A., Bbosa, D., Brown, R., Wright, M.M., 2018. Comparative techno-economic, uncertainty and life cycle analysis of lignocellulosic biomass solvent liquefaction and sugar fermentation to ethanol. ACS Sustain. Chem. Eng. 6(12), 16515-16524.
  60. Liu, C.G., Liu, L.Y., Zi, L.H., Zhao, X.Q., Xu, Y.H., Bai, F.W., 2014. Assessment and regression analysis on instant catapult steam explosion pretreatment of corn stover. Bioresour. Technol. 166, 368-372.
  61. Liu, C.G., Xiao, Y., Xia, X.X., Zhao, X.Q., Peng, L., Srinophakun, P., Bai, F.W., 2019. Cellulosic ethanol production: progress, challenges and strategies for solutions. Biotechnol. Adv. 37(3), 491-504.
  62. Loow, Y.L., Wu, T.Y., Md. Jahim, J., Mohammad, A.W., Teoh, W.H., 2016. Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose. 23, 1491-1520.
  63. Lugani, Y., Rai, R., Prabhu, A.A., Maan, P., Hans, M., Kumar, V., Kumar, S., Chandel, A.K., Sengar, R.S., 2020. Recent advances in bioethanol production from lignocelluloses: a comprehensive review with a focus on enzyme engineering and designer biocatalysts. Biofuel Res. J. 7(4), 1267-1295.
  64. Luo, H., Gao, L., Liu, Z., Shi, Y., Xie, F., Bilal, M., Yang, R., Taherzadeh, M.J., 2021. Prediction of phenolic compounds and glucose content from dilute inorganic acid pretreatment of lignocellulosic biomass using artificial neural network modeling. Bioresour. Bioprocess. 8, 134.
  65. Ma, R., Colon, Y.J., Luo, T., 2020. Transfer Learning Study of Gas Adsorption in Metal-Organic Frameworks. ACS Appl. Mater. Interfaces. 12(30), 34041-34048.
  66. Moayedi, H., Aghel, B., Foong, L.K., Bui, D.T., 2020. Feature validity during machine learning paradigms for predicting biodiesel purity. Fuel. 262, 116498.
  67. Mohaptra, S., Dash, P.K., Behera, S.S., Thatoi, H., 2016. Optimization of delignification of two Pennisetum grass species by NaOH pretreatment using Taguchi and ANN statistical approach. Environ. Technol. 37(8), 940-951.
  68. Mondal, P., Sadhukhan, A.K., Ganguly, A., Gupta, P., 2021. Optimization of process parameters for bio-enzymatic and enzymatic saccharification of waste broken rice for ethanol production using response surface methodology and artificial neural network-genetic algorithm. 3 Biotech. 11, 28.
  69. Moodley, P., Rorke, D.C., Kana, E.B.G., 2019. Development of artificial neural network tools for predicting sugar yields from inorganic salt-based pretreatment of lignocellulosic biomass. Bioresour. Technol. 273, 682-686.
  70. Onay, M., 2022. Sequential modelling for carbohydrate and bioethanol production from Chlorella saccharophila CCALA 258: a complementary experimental and theoretical approach for microalgal bioethanol production. Environ. Sci. Pollut. Res. Int. 29(10), 14316-14332.
  71. Parkhey, P., Ram, A.K., Diwan, B., Eswari, J.S., Gupta, P., 2020. Artificial neural network and response surface methodology: a comparative analysis for optimizing rice straw pretreatment and saccharification. Prep. Biochem. Biotechnol. 50(8), 768-780.
  72. Pereira, R.D., Badino, A.C., Cruz, A.J.G., 2020. Framework based on artificial intelligence to increase industrial bioethanol production. Energy Fuels. 34(4), 4670-4677.
  73. Phromphithak, S., Onsree, T., Tippayawong, N., 2021. Machine learning prediction of cellulose-rich materials from biomass pretreatment with ionic liquid solvents. Bioresour. Technol. 323, 124642.
  74. Plazas Tovar, L., Ccopa Rivera, E., Pinto Mariano, A., Wolf Maciel, M.R., Maciel Filho, R., 2018. Prediction of overall glucose yield in hydrolysis of pretreated sugarcane bagasse using a single artificial neural network: good insight for process development. J. Chem. Technol. Biotechnol. 93(4), 1031-1043.
  75. Ponnuchamy, V., 2022. Multiscale modeling studies for exploring lignocellulosic biomass structure, Advanced Catalysis for Drop-in Chemicals. pp. 257-289.
  76. Pradhan, D., Jaiswal, S., Jaiswal, A.K., 2022. Artificial neural networks in valorization process modeling of lignocellulosic biomass. Biofuels, Bioprod. Biorefin. 16(6), 1849-1868.
  77. Qiao, J., Cui, H., Wang, M., Fu, X., Wang, X., Li, X., Huang, H., 2022. Integrated biorefinery approaches for the industrialization of cellulosic ethanol fuel. Bioresour. Technol. 360, 127516.
  78. Raj, T., Chandrasekhar, K., Naresh Kumar, A., Rajesh Banu, J., Yoon, J.J., Kant Bhatia, S., Yang, Y.H., Varjani, S., Kim, S.H., 2022. Recent advances in commercial biorefineries for lignocellulosic ethanol production: current status, challenges and future perspectives. Bioresour. Technol. 344(Pt B), 126292.
  79. Rashid, T., Ali Ammar Taqvi, S., Sher, F., Rubab, S., Thanabalan, M., Bilal, M., ul Islam, B., 2021. Enhanced lignin extraction and optimisation from oil palm biomass using neural network modelling. Fuel. 293, 120485.
  80. Ravindran, R., Jaiswal, A.K., 2016. A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: challenges and opportunities. Bioresour Technol. 199, 92-102.
  81. Rivera, E.C., Rabelo, S.C., dos Reis Garcia, D., Filho, R.M., da Costa, A.C., 2010. Enzymatic hydrolysis of sugarcane bagasse for bioethanol production: determining optimal enzyme loading using neural networks. J. Chem. Technol. Biotechnol. 85(7), 983-992.
  82. Scheller, H.V., Ulvskov, P., 2010. Hemicelluloses. Annu. Rev. Plant Biol. 61, 263-289.
  83. Sebayang, A.H., Masjuki, H.H., Ong, H.C., Dharma, S., Silitonga, A.S., Kusumo, F., Milano, J., 2017. Optimization of bioethanol production from sorghum grains using artificial neural networks integrated with ant colony. Ind. Crops Prod. 97, 146-155.
  84. Selvakumar, P., Kavitha, S., Sivashanmugam, P., 2018. Optimization of process parameters for efficient bioconversion of thermo-chemo pretreated Manihot esculenta Crantz YTP1 stem to ethanol. Waste Biomass Valorization. 10(8), 2177-2191.
  85. Sewsynker-Sukai, Y., Faloye, F., Kana, E.B.G., 2016. Artificial neural networks: an efficient tool for modelling and optimization of biofuel production (a mini review). Biotechnol. Biotechnol. Equip. 31(2), 221-235.
  86. Shet, V.B., C. Shetty, V., Siddik, A.K.G,R.,J. Shetty, N., Concepta Goveas, L., D’Mello, G., Vaman Rao, C.P,U.,A,A., 2018a. Optimization of microwave assisted H2so4 hydrolysis of cocoa pod shells: comparison between response surface methodology and artificial neural network and production of bioethanol thereof. J. Microbiol. Biotechnol. Food Sci. 7(5), 473-477.
  87. Shet, V.B., Palan, A.M., Rao, S.U., Varun, C., Aishwarya, U., Raja, S., Goveas, L.C., Vaman Rao, C., Ujwal, P., 2018b. Comparison of response surface methodology and artificial neural network to enhance the release of reducing sugars from non-edible seed cake by autoclave assisted HCl hydrolysis. 3 Biotech. 8(2), 127.
  88. Sidana, A., Yadav, S.K., 2022. Recent developments in lignocellulosic biomass pretreatment with a focus on eco-friendly, non-conventional methods. J. Clean. Prod. 335, 130286.
  89. Sindhu, R., Binod, P., Pandey, A., 2016. Biological pretreatment of lignocellulosic biomass-an overview. Bioresour. Technol. 199, 76-82.
  90. Singhal, A., Kumar, M., Bhattacharya, M., Kumari, N., Jha, P.K., Chauhan, D.K., Thakur, I.S., 2018. Pretreatment of Leucaena leucocephala wood by acidified glycerol: optimization, severity index and correlation analysis. Bioresour. Technol. 265, 214-223.
  91. Smuga-Kogut, M., Kogut, T., Markiewicz, R., Słowik, A., 2021. Use of machine learning methods for predicting amount of bioethanol obtained from lignocellulosic biomass with the use of ionic liquids for pretreatment. Energies. 14(1), 243.
  92. Sousa Jr, R., Carvalho, M.L., Giordano, R.L.C., Giordano, R.C., 2011. Recent trends in the modeling of cellulose hydrolysis. Braz. J. Chem. Eng. 28(4), 545-564.
  93. Suresh, T., Sivarajasekar, N., Balasubramani, K., Ahamad, T., Alam, M., Naushad, M., 2020. Process intensification and comparison of bioethanol production from food industry waste (potatoes) by ultrasonic assisted acid hydrolysis and enzymatic hydrolysis: statistical modelling and optimization. Biomass Bioenergy. 142, 105752.
  94. Suvarna, M., Jahirul, M.I., Aaron-Yeap, W.H., Augustine, C.V., Umesh, A., Rasul, M.G., Günay, M.E., Yildirim, R., Janaun, J., 2022. Predicting biodiesel properties and its optimal fatty acid profile via explainable machine learning. Renewable Energy. 189, 245-258.
  95. Taiwo, A., Madzimbamuto, T., Ojumu, T., 2018. Optimization of corn steep liquor dosage and other fermentation parameters for ethanol production by Saccharomyces cerevisiae type 1 and anchor instant yeast. Energies. 11(7), 1740.
  96. Vani, S., Sukumaran, R.K., Savithri, S., 2015. Prediction of sugar yields during hydrolysis of lignocellulosic biomass using artificial neural network modeling. Bioresour. Technol. 188, 128-135.
  97. Villars, P., Cenzual, K., 2007. Pearson's crystal data®: crystal structure database for inorganic compounds. ASM International Materials Park, OH.
  98. Vinitha, N., Vasudevan, J., Gopinath, K.P., 2022. Bioethanol production optimization through machine learning algorithm approach: biomass characteristics, saccharification, and fermentation conditions for enzymatic hydrolysis. Biomass Convers. Biorefin.
  99. Vollmer, N.I., Driessen, J.L.S.P., Yamakawa, C.K., Gernaey, K.V., Mussatto, S.I., Sin, G., 2022. Model development for the optimization of operational conditions of the pretreatment of wheat straw. Chem. Eng. J. 430, 133106.
  100. Wang, Z., Peng, X., Xia, A., Shah, A.A., Huang, Y., Zhu, X., Zhu, X., Liao, Q., 2022. The role of machine learning to boost the bioenergy and biofuels conversion. Bioresour. Technol. 343, 126099.
  101. Xu, Z., Huang, F., 2014. Pretreatment methods for bioethanol production. Appl. Biochem. Biotechnol. 174(1), 43-62.
  102. Yan, L., Ma, R., Li, L., Fu, J., 2016. Hot water pretreatment of lignocellulosic biomass: an effective and environmentally friendly approach to enhance biofuel production. Chem. Eng. Technol. 39(10), 1759-1770.
  103. Yang, B., Wyman, C.E., 2008. Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod. Biorefin: Innovation Sustainable Econ. 2(1), 26-40.
  104. Yaoyang, X., Boeing, W.J., 2013. Mapping biofuel field: a bibliometric evaluation of research output. Renew. Sust. Energy Rev. 28, 82-91.
  105. Zhang, Y., Ling, C., 2018. A strategy to apply machine learning to small datasets in materials science. npj Comput. Mater. 4(1), 25.
  106. Zhao, F., Yi, Y., Lü, X., 2021. Chapter 4-Essential process and key barriers for converting plant biomass into biofuels, Advances in 2nd Generation of Bioethanol Production. pp. 53-70.
  107. Zheng, Y., Pan, Z., Zhang, R., 2009. Overview of biomass pretreatment for cellulosic ethanol production. Int. J. Agric. Biological Eng. 2(3), 51-68.
  108. Zhu, X., Li, Y., Wang, X., 2019. Machine learning prediction of biochar yield and carbon contents in biochar based on biomass characteristics and pyrolysis conditions. Bioresour. Technol. 288, 121527.
  109. Zoghlami, A., Paes, G., 2019. Lignocellulosic biomass: understanding recalcitrance and predicting hydrolysis. Front Chem. 7, 874.