Combining pieces: a thorough analysis of light activation boosting power and co-substrate preferences for the catalytic efficiency of lytic polysaccharide monooxygenase MtLPMO9A

Document Type : Research Paper

Authors

1 Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brasil.

2 PhotoBioCatalysis Unit - BioCat, CPBL and BTL departments, Interfaculty School of Bioengineers, Université libre de Bruxelles, Campus de la Plaine, Bd. du Triomphe, Acc.2, CP 245, 1050 Bruxelles, Belgium.

Abstract

Cost-efficient plant biomass conversion using biochemical and/or chemical routes is essential for transitioning to sustainable chemical technologies and renewable biofuels. Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that make part of modern hydrolytic cocktails destined for plant biomass degradation. Here, we characterized MtLPMO9A from Thermothelomyces thermophilus M77 (formerly Myceliophthora thermophila) and demonstrated that it could be efficiently driven by chlorophyllin excited by light in the presence of a reductant agent. However, in the absence of chemical reductant, chlorophyllin and light alone do not lead to a significant release of the reaction products by the LPMO, indicating a low capacity of MtLPMO9A reduction (either via direct electron transfer or via superoxide ion, O2•-). We showed that photocatalysis could significantly increase the LPMO activity against highly crystalline and recalcitrant cellulosic substrates, which are poorly degraded in the absence of chlorophyllin and light. We also evaluated the use of co-substrates by MtLPMO9A, revealing that the enzyme can use both hydrogen peroxide (H2O2) and molecular oxygen (O2) as co-substrates for cellulose catalytic oxidation.

Graphical Abstract

Combining pieces: a thorough analysis of light activation boosting power and co-substrate preferences for the catalytic efficiency of lytic polysaccharide monooxygenase MtLPMO9A

Highlights

  • MtLPMO9A can be efficiently activated by light at the presence of chlorophyllin.
  • Photoactivation improves performance of MtLPMO9A on crystalline cellulose.
  • MtLPMO9A can use both O2 and H2O2 as co-substrates.
  • For H2O2 reactions MtLPMO9A requires chemical reductant.
  • Photobiocatalysis mediated by LPMOs might play a role in plant biomass valorization.

Keywords


  1. Aachmann, F.L., Sørlie, M., Skjåk-bræk, G., Eijsink, V.G., Vaaje-kolstad, G., 2012. NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions. Proc. Natl. Acad. Sci. 109(46), 18779-18784.
  2. Agger, J.W., Isaksen, T., Varnai, A., Vidal-Melgosa, S., Willats, W.G., Ludwig, R., Horn, S.J., Eijsink, V.G., Westereng, B., 2014. Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proc. Natl. Acad. Sci. 111(17), 6287-6292.
  3. Beeson, W.T., Phillips, C.M., Cate, J.H., Marletta, M.A., 2012. Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J. Am. Chem. Soc. 134(2), 890-892.
  4. Beeson, W.T., Vu, V.V., Span, E.A., Phillips, C.M., Marletta, M.A., 2015. Cellulose degradation by polysaccharide monooxygenases. Rev. Biochem. 84, 923-946.
  5. Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer,G., Schmidt, T., Kiefer, F., Cassarino, T.G., Bertoni, M., Bordoli, L., and Schwede, T., 2014. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42(W1), W252-W258.
  6. Bissaro, B., Forsberg, Z., Ni, Y., Hollmann, F., Vaaje-Kolstad, G., Eijsink, V.G., 2016. Fueling biomass-degrading oxidative enzymes by light-driven water oxidation. Green Chem. 18(19), 5357-5366.
  7. Bissaro, B., Kommedal, E., Røhr, Å.K., and Eijsink, V.G., 2020. Controlled depolymerization of cellulose by light-driven lytic polysaccharide oxygenases. Nat. Commun. 11(1), 890.
  8. Bissaro, B., Røhr, Å.K., Müller, G., Chylenski, P., Skaugen, M., Forsberg, Z., Horn, S.J., Vaaje-Kolstad, G., Eijsink, V.G., 2017. Oxidative cleavage of polysaccharides by monocopper enzymes depends on H2O2. Nat. Chem. Biol. 13(10), 1123-1128.
  9. Blossom, B.M., Russo, D.A., Singh, R.K., van Oort, B., Keller, M.B., Simonsen, T.I., Perzon, A., Gamon, L.F., Davies, M.J., Cannella, D., Croce, R., Jensen, P.E., Bjerrum, M.J., Felby, C., 2020. Photobiocatalysis by a lytic polysaccharide monooxygenase using intermittent illumination. ACS Sustainable Chem. Eng. 8(25), 9301-9310.
  10. Camilo, C.M. , Polikarpov, I., 2014. High-throughput cloning, expression and purification of glycoside hydrolases using Ligation-Independent Cloning (LIC). Protein Expression Purif. 99, 35-42.
  11. Cannella, D., Möllers, K.B., Frigaard, N.U., Jensen, P.E., Bjerrum, M.J., Johansen, K.S., , Felby, C., 2016. Light-driven oxidation of polysaccharides by photosynthetic pigments and a metalloenzyme. Nat. Commun. 7, 11134.
  12. Di Tommaso, P., Moretti, S., Xenarios, I., Orobitg, M., Montanyola, A., Chang, J.M., Taly, J.F., Notredame, C. 2011. T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res. 39(suppl-2), W13-W17.
  13. Dolmans, D.E., Fukumura, D., Jain, R.K., 2003. Photodynamic therapy for cancer. Nat. Rev. Cancer. 3(5), 380-387.
  14. Eibinger, M., Ganner, T., Bubner, P., Rošker, S., Kracher, D., Haltrich, D., Ludwig, R., Plank, H., Nidetzky, B., 2014. Cellulose surface degradation by a lytic polysaccharide monooxygenase and its effect on cellulase hydrolytic efficiency. J. Biol. Chem. 289(52), 35929-35938.
  15. Eibinger, M., Sattelkow, J., Ganner, T., Plank, H., , Nidetzky, B., 2017. Single-molecule study of oxidative enzymatic deconstruction of cellulose. Nat. Commun. 8(1), 894.
  16. Forsberg, Z., Mackenzie, A.K., Sorlie, M., Rohr, A.K., Helland, R., Arvai, A.S., Vaaje-Kolstad, G., Eijsink, V.G., 2014. Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. Proc. Natl. Acad. Sci. 111(23), 8446-8451.
  17. Frommhagen, M., Koetsier, M.J., Westphal, A.H., Visser, J., Hinz, S.W., Vincken, J.P., van Berkel, W.J., Kabel, M.A., Gruppen, H., 2016. Lytic polysaccharide monooxygenases from Myceliophthora thermophila C1 differ in substrate preference and reducing agent specificity. Biotechnol. Biofuels. 9, 186.
  18. Frommhagen, M., Sforza, S., Westphal, A.H., Visser, J., Hinz, S.W., Koetsier, M.J., van Berkel, W.J., Gruppen, H., Kabel, M.A., 2015. Discovery of the combined oxidative cleavage of plant xylan and cellulose by a new fungal polysaccharide monooxygenase. Biotechnol. Biofuels. 8, 101.
  19. Gibson, D.G., Young, L., Chuang, R.Y., Venter, J.C., Hutchison, C.A., Smith, H.O., 2009. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods. 6(5), 343-345.
  20. Hangasky, J.A., Iavarone, A.T., Marletta, M.A., 2018. Reactivity of O2 versus H2O2 with polysaccharide monooxygenases. Proc. Natl. Acad. Sci. 115(19), 4915-4920.
  21. Harris, P.V., Welner, D., McFarland, K.C., Re, E., Navarro Poulsen, J.C., Brown, K., Salbo, R., Ding, H., Vlasenko, E., Merino, S., Xu, F., Cherry, J., Larsen, S., Lo Leggio, L., 2010. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry. 49(15), 3305-3316.
  22. Himmel, M.E., Ding, S.Y., Johnson, D.K., Adney, W.S., Nimlos, M.R., Brady, J.W., Foust, T.D., 2007. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science. 315(5813), 804-807.
  23. Horn, S.J., Vaaje-Kolstad, G., Westereng, B., Eijsink, V., 2012. Novel enzymes for the degradation of cellulose. Biotechnol. Biofuels. 5(1), 45.
  24. Isaksen, T., Westereng, B., Aachmann, F.L., Agger, J.W., Kracher, D., Kittl, R., Ludwig, R., Haltrich, D., Eijsink, V.G., Horn, S.J., 2014. A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides. J. Biol. Chem. 289(5), 2632-2642.
  25. Kadowaki, M.A., Várnai, A., Jameson, J.K., Leite, A.E.T., Costa-Filho, A.J., Kumagai, P.S., Prade, R.A., Polikarpov, I., Eijsink, V.G., 2018. Functional characterization of a lytic polysaccharide monooxygenase from the thermophilic fungus Myceliophthora thermophila. PLoS One. 13(8), e0202148.
  26. Keller, M.B., Felby, C., Labate, C.A., Pellegrini, V.O.A., Higasi, P., Singh, R.K., Polikarpov, I., Blossom, B.M., 2020a. A simple enzymatic assay for the quantification of C1-specific cellulose oxidation by lytic polysaccharide monooxygenases. Biotechnol. Lett. 42(1), 93-102.
  27. Keller, M.B., Badino, S.F., Blossom, B.M., McBrayer, B., Borch, K., Westh, P., 2020b. Promoting and impeding effects of lytic polysaccharide monooxygenases on glycoside hydrolase activity. ACS Sustainable Chem. Eng. 8(37), 14117-14126.
  28. Kittl, R., Kracher, D., Burgstaller, D., Haltrich, D., Ludwig, R., 2012. Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay. Biotechnol. Biofuels. 5, 79.
  29. Kracher, D., Scheiblbrandner, S., Felice, A.K., Breslmayr, E., Preims, M., Ludwicka, K., Haltrich, D., Eijsink, V.G., Ludwig, R., 2016. Extracellular electron transfer systems fuel cellulose oxidative degradation. Science. 352(6289), 1098-1101.
  30. Kuusk, S., Kont, R., Kuusk, P., Heering, A., Sørlie, M., Bissaro, B., Eijsink, V.G., Väljamäe, P., 2019. Kinetic insights into the role of the reductant in H2O2-driven degradation of chitin by a bacterial lytic polysaccharide monooxygenase. J. Biol. Chem. 294(5), 1516-1528.
  31. Liu, B., Kognole, A.A., Wu, M., Westereng, B., Crowley, M.F., Kim, S., Dimarogona, M., Payne, C.M., Sandgren, M., 2018. Structural and molecular dynamics studies of a C1‐oxidizing lytic polysaccharide monooxygenase from Heterobasidion irregulare reveal amino acids important for substrate recognition. FEBS J. 285(12), 2225-2242.
  32. Miller, G.L., 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426-428.
  33. Müller, G., Várnai, A., Johansen, K.S., Eijsink, V.G., Horn, S.J., 2015. Harnessing the potential of LPMO-containing cellulase cocktails poses new demands on processing conditions. Biofuels. 8, 187.
  34. Pellegrini, V.O., Serpa, V.I., Godoy, A.S., Camilo, C.M., Bernardes, A., Rezende, C.A., Junior, N.P., Cairo, J.P.L.F, Squina, F.M., Polikarpov, I., 2015. Recombinant Trichoderma harzianum endoglucanase I (Cel7B) is a highly acidic and promiscuous carbohydrate-active enzyme. Appl. Microbiol. Biotechnol. 99(22), 9591-9604.
  35. Phillips, C.M., Beeson IV, W.T., Cate, J.H., Marletta, M.A., 2011. Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem. Biol. 6(12), 1399-1406.
  36. Pothiraj, C., Kanmani, P., Balaji, P., 2006. Bioconversion of lignocellulose materials. Mycobiology. 34(4), 159-165.
  37. Quinlan, R. J., Sweeney, M. D., Lo Leggio, L.L., Otten, H., Poulsen, J.C.N., Johansen, K.S., Krogh, K.B., Jorgensen, C.I., Tovborg, M., Anthonsen, A., Clive T.T, Walter, P., Dupree, P., Xu, F., Davies, G.J., Walton, P.H., 2011. Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc. Natl. Acad. Sci. 108(37), 15079-15084.
  38. Ragauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G., Cairney, J., Eckert, C.A., Frederick, W.J., Hallett, J.P., Leak, D.J., Liotta, C.L., Mielenz, J.R., Murphy, R., Templer, R., Tschaplinski, T., 2006. The path forward for biofuels and biomaterials. Science. 311(5760), 484-489.
  39. Robert, X., Gouet, P., 2014. Deciphering key features in protein structures with the new endscript server. Nucleic Acids Res. 42(W1), W320-W324.
  40. Rossi, B.R., Pellegrini, V.O., Cortez, A.A., Chiromito, E.M., Carvalho, A.J., Pinto, L.O.,Rezende, C.A., Mastelaro, V.R., Polikarpov, I., 2021. Cellulose nanofibers production using a set of recombinant enzymes. Carbohydr. Polym. 256, 117510.
  41. Song, B., Li, B., Wang, X., Shen, W., Park, S., Collings, C., Feng, A., Smith, S.J., Walton, J.D., Ding, S.Y., 2018. Real-time imaging reveals that lytic polysaccharide monooxygenase promotes cellulase activity by increasing cellulose accessibility. Biotechnol. Biofuels. 11, 41.
  42. Steen, E.J., Kang, Y., Bokinsky, G., Hu, Z., Schirmer, A., McClure, A., del Cardayre, S.B., Keasling, J. D., 2010. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature. 463, 559-562.
  43. Stepnov, A.A., Forsberg, Z., Sørlie, M., Nguyen, G.S., Wentzel, A., Røhr, Å.K., Eijsink, V.G., 2021. Unraveling the roles of the reductant and free copper ions in LPMO kinetics. Biotechnol. Biofuels. 14, 28.
  44. Tursi, A., 2019. A review on biomass: importance, chemistry, classification, and conversion. Biofuel Res. J. 6(2), 962-979.
  45. Vaaje-Kolstad, G., Horn, S.J., Van Aalten, D.M., Synstad, B.,, Eijsink, V.G., 2005. The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is Essential for Chitin Degradation*♦. Biol. Chem. 280(31), 28492-28497.
  46. Vaaje-Kolstad, G., Westereng, B., Horn, S.J., Liu, Z., Zhai, H., Sørlie, M., Eijsink, V.G., 2010. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. 330(6001), 219-222.
  47. Velasco, J., Oliva, B., Mulinari, E.J., Quintero, L.P., da Silva Lima, A., Gonçalves, A.L., Gonçalves, T.A., Damasio, A., Squina, F.M., Milagres, A.M.F., Abdella, A., Wilkins, M.R., Segato, F., 2019. Heterologous expression and functional characterization of a GH10 endoxylanase from Aspergillus Fumigatus Niveus with potential biotechnological application. Biotechnol Rep. 24, e00382.
  48. Velasco, J., Pellegrini, V.D.O.A., Sepulchro, A.G.V., Kadowaki, M.A.S., Santo, M.C.E., Polikarpov, I., , Segato, F., 2021. Comparative analysis of two recombinant LPMOs from Aspergillus fumigatus and their effects on sugarcane bagasse saccharification. Enzyme Microb. Technol. 144, 109746.
  49. Vermaas, J.V., Crowley, M.F., Beckham, G.T., Payne, C.M., 2015. Effects of lytic polysaccharide monooxygenase oxidation on cellulose structure and binding of oxidized cellulose oligomers to cellulases. J. Phys. Chem. B. 119(20), 6129-6143.
  50. Vu, V.V., Beeson, W.T., Phillips, C.M., Cate, J.H., Marletta, M.A., 2014. Determinants of regioselective hydroxylation in the fungal polysaccharide monooxygenases. J. Am. Chem. Soc. 136(2), 562-565.
  51. Walton, P.H., Davies, G.J., 2016. On the catalytic mechanisms of lytic polysaccharide monooxygenases. Curr. Opin. Chem. Biol. 31, 195-207.
  52. Wang, B., Walton, P.H., Rovira, C., 2019. Molecular mechanisms of oxygen activation and hydrogen peroxide formation in lytic polysaccharide monooxygenases. ACS Catal. 9(6), 4958-4969.
  53. Wang, B., Wang, Z., Davies, G.J., Walton, P.H., Rovira, C., 2020. Activation of O2 and H2O2 by lytic polysaccharide monooxygenases. ACS Catal. 10(21), 12760-12769.
  54. Westereng, B., Cannella, D., Wittrup Agger, J., Jørgensen, H., Larsen Andersen, M., Eijsink, V.G.H., Felby, C., 2015. Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer. Sci. Rep. 5(1), 18561.
  55. Wood, T.M., 1988. Preparation of crystalline, amorphous, and dyed cellulase substrates, in: Wood, W.A., Kellogg S.T. (Eds.), Methods in Enzymology. 160. 19-25.
  56. Wu, M., Beckham, G.T., Larsson, A.M., Ishida, T., Kim, S., Payne, C.M., Himmel, M.E., Crowley, M.F., Horn, S.J., Westereng, B., Igarashi, K., Samejima, M., Ståhlberg, J., Eijsink, V.G.H., Sandgren, M. 2013. Crystal Structure and Computational Characterization of the lytic polysaccharide monooxygenase GH61D from the Basidiomycota Fungus Phanerochaete chrysosporium. J. Biol. Chem. 288(18), 12828-12839.